An Apple patent (number 20110221575) that has appeared at the US Patent & Trademark Office shows some of the company's plans for RFID device circuitry. It relates to radio frequency identification (RFID) circuitry, and more particularly, to electronic devices that can selectively cause the RFID circuitry to provide a message indicative of an event associated with the device.
Per the patent An electronic device with RFID circuitry is provided. The electronic device is operative to instruct the RFID circuitry to provide a desired message indicative of an event associated with the electronic device. For example, if the electronic device experienced some type of system failure, the device may instruct the RFID circuitry to provide a message indicative of that failure. The inventors are Tyler Mincey and Andrew Hodge.
Here's Apple's background and summary of the invention: "RFID circuitry is used in a variety of different applications. For example, RFID circuitry can be used in connection with highway toll systems, inventory management systems, badge entry systems, public transportation systems, and payment systems. In each of these applications, the RFID circuitry may provide information contained therein to an RFID reader. The information provided by the RFID circuitry may be fixed, thereby limiting the device's RFID communication repertoire. What is needed is an electronic device that can cause its RFID circuitry to selectively provided different information.
"Electronic devices having RFID circuitry and methods for using RFID circuitry are provided. The RFID circuitry can be controlled or programmed to provide one or more messages. The message(s) provided by the RFID circuitry may be based on events that occur within the electronic device. The events may include trigger events that are detected by a sensor system such as a water detection system. The trigger events may represent events that can lead to or cause device failure, or otherwise compromise operation of the device. The events may also include software events that are executed by the electronic device. These events may be captured as quantifiable messages indicative of such events. For example, software events may include user interactions with the device (e.g., an indication of the last song played), notifications (e.g., status indications such as a new message notification), and user specified messages.
"The specificity of messages provided by the RFID circuitry may vary. The message may be generic or tailored to the event. For example, in one embodiment, the electronic device may instruct the RFID circuitry to provide a generic error message when a trigger event is received. In another embodiment, the electronic device may instruct the RFID circuitry to provide a message tailored to a received trigger event (e.g., provide a message indicating that the device has been damaged by water in response to receiving a trigger event from a water detection system). In yet another embodiment, the electronic device may instruct the RFID circuitry to provide messages based on received software events.
"Various electronic devices with varying RFID circuitry arrangements may be provided. These RFID arrangements may use passive RFID circuitry, which enables the electronic device to provide messages via its RFID circuitry when powered off, disabled, or operating in a low power state. This enables the electronic device to provide passive messages without incurring substantial energy cost. For example, if the device has been damaged, the RFID circuitry can provide a message indicating that has been damaged even though the device is no longer functional.
"In one embodiment, the electronic device can include circuitry that selects which message or messages are provided by the RFID circuitry when it is read by an RFID reader. In this embodiment, the RFID circuitry may include first memory for storing first data and second memory for storing second data, and selection circuitry operative to select between the first memory and the second memory based on a selection signal. The electronic device can include control circuitry that provides the selection signal to the RFID circuitry in response to receiving an event. The data stored in the memory may be preprogrammed. Thus, by enabling selection of one of the preprogrammed memories, the appropriate message can be quickly selected prior to a device failure.
"In another embodiment, the electronic device can write data to memory contained in the RFID circuitry, thereby enabling the electronic device to provide custom tailored messages. In this embodiment, RFID circuitry can include rewritable memory. The electronic device can also include control circuitry operative to provide data to be written to the rewritable memory in response to receiving an event.
"In yet another embodiment, the RFID circuitry can include both preprogrammed memory and rewritable memory. This provides control circuitry the option of selecting the appropriate memory, writing data to memory, or both, in response to receiving one or more events. For example, the control circuitry may update data in the rewritable memory based on received software events and select one of the preprogrammed memories based on a received trigger event."
-- Dennis Sellers