TweetFollow Us on Twitter

Simple Call Stack Logging

Volume Number: 25
Issue Number: 06
Column Tag: Programming

Simple Call Stack Logging

Who called NSLog()?

by Sengan Baring-Gould

In this article I present an extension to NSLog() which not only prints out a user specified message but also lists the function calls that led to its invocation. By the end of this article you will have a new tool you can use in your own applications, and you'll understand how it works so that you can adapt it to your needs.

Why log?

NSLog() is an important tool for debugging. It can be placed anywhere in an application to log internal state.

Many programmers prefer logging to using a debugger, as it helps them concentrate on possible causes of a problem while filtering out irrelevant information. Logging provides a complete textual record of the problem that can be studied later.

Debuggers on the other hand interrupt the developer who must record by hand all the relevant state before letting the application continue. Continuing is an unforgiving operation: once performed, prior state that was not recorded is lost.

Brian W Kernighan (one of the authors of the seminal text on the C language) said:

"As a personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a variable or two. One reason is that it is easy to get lost in details of complicated data structures and control flow; we find stepping through a program less productive than thinking harder and adding output statements and self-checking code at critical places. Clicking over statements takes longer than scanning the output of judiciously-placed displays. It takes less time to decide where to put print statements than to single-step to the critical section of code, even assuming we know where that is. More important, debugging statements stay with the program; debugger sessions are transient".

However, if NSLog() is invoked from a function that is called from many other functions, determining which function call caused the bug can be very difficult. We need a record of the function calls that led to the invocation of NSLog().

Where we are headed

Our new debug function debugLog() will print out any message we want the same way NSLog() does. Following the message, it will list the function invocations that led it to be called:

2009-04-05 15:37:58.119 TestDebugLog[14442:10b] C++ constructor
        0000301f — CPP::CPP() + 33             (TestDebugLog)
        0000316c — main + 86                   (TestDebugLog)
        00001a5e — start + 54                  (TestDebugLog)

The first line follows NSLog()'s traditional format: the date, the time, the name of the application (TestDebugLog) and then the message we passed as argument: "C++ Constructor".

On the next lines, debugLog() lists the function invocations that led it to be called:

  • debugLog() was called from the C++ constructor CPP::CPP() defined in TestDebugLog.
  • CPP:CPP() was called by main also defined in TestDebugLog.
  • main was called by start also defined in TestDebugLog. (start is the function the Operating System calls when it starts an application).

The module name between parentheses specifies where a function is defined. In the following example, NSPopAutoreleasePool is shown to be defined in the Foundation framework:

2009-04-05 15:40:03.921 TestDebugLog[14462:10b] Objective-C dealloc
        000030d3 — [Objc dealloc]  + 33        (TestDebugLog)
        91117e4f — NSPopAutoreleasePool + 431  (Foundation)
        000031d1 — main + 207                  (TestDebugLog)
        00001a4a — start + 54                  (TestDebugLog)

Obtaining the list of function invocations

Obtaining the list of function invocations to print is a two step process. First, debugLog() must obtain the addresses of the functions that called it. A computer uses addresses to keep track of what it is doing, but addresses are not specified in a program's source-code.

Then debugLog() must translate these addresses into the function names that appear in the program's source code. Three different methods are required to obtain C, C++, and Objective-C function names.

1. Retrieving the list of called functions' addresses

Compilers transform source-code into machine code that computers understand. When a function is called, the caller's return address must be saved so that the CPU can continue running the caller after the function invocation completes. In the context of this discussion, we will assume that these return addresses are stored on the stack. (We will ignore specific optimizations used by the PowerPC and x86 CPUs).

Unfortunately, the stack also records other information, such as local variables and function arguments. Determining precisely which items in the stack are return addresses requires compiler specific knowledge. Conveniently, the new version of gcc which ships with Leopard provides a new function, backtrace(), which gives us the return addresses in the current stack.

Remember that inlined functions are embedded within their callers rather than being invoked. This means backtrace will not see them in the stack and they will not be listed by debugLog().

2. Function layout in memory

Functions are compiled independently by the compiler and occupy contiguous areas of memory. Therefore if we know the starting addresses of any two consecutive functions f and g, and if we have an address x which falls between f and g ( &f <= x < &g ), we know that x belongs to the function f.

One rarely has addresses that match the beginning of each function precisely. Therefore function-lookup functions are designed to return information about the preceding function when given an address. Our case matches this scenario: the return addresses provided by backtrace occur within functions. Thus we can safely ignore the difference between return addresses and starting function addresses for most of this discussion. Similarly, we'll adopt the standard convention of referring to starting function addresses as function addresses.

3. Retrieving C function names

When an application is first loaded into memory, it needs to be told the addresses of the external library functions it wants to use. Because libraries are updated independently of applications, the addresses of their functions may change, although the names of their functions will not. It is the responsibility of the dynamic linker to give each application this information.

The dynamic linker reads function names from a symbol table embedded in the application and the libraries the application uses. The symbol table lists all the C function addresses and the C function names that can be accessed externally. Therefore if we know an address, we can ask the dynamic linker for the corresponding function name. The backtrace_symbols() function provides this functionality.

Because the dynamic linker only knows about externally visible function names, backtrace_symbols() always returns the nearest preceding external symbol. Static C functions are not exported and will not be given the correct name by the linker.

Most symbols will be exported as external if you compile your application in Debug Configuration. This is not true if you compile it in Release Configuration. The UNIX utility nm lists exported function names with a preceding capital T letting you check if an unexpected function name shows up.

4. Retrieving Objective-C method names

Objective-C does not use the dynamic linker. Instead it uses the Objective-C runtime, which like the dynamic linker keeps track of all known method addresses and names. (A method is a function defined within a class). However there is no equivalent to backtrace_symbols() which returns a function name when given a function address. We must build one ourselves.

The Objective-C runtime provides a function to enumerate all the Objective-C classes that can be invoked by the application, including those in the frameworks bound to the application. It also provides a function to enumerate the methods in any Objective-C class. With these components we can obtain every method's address and name.

Implementation

This code is Objective-C++ so don't forget to use the ".mm" extension for your implementation filename. We start with the necessary includes:

DebugLog Implementation File: SBGDebug.mm

#include "SBGDebug.h"
#include <cxxabi.h>
#include <map>
#include <string>
#include <execinfo.h>
#include <stdio.h>
#import <objc/Object.h>

1. Finding Objective-C methods

We want to build a method-lookup function that will return the method in which an address lies. We know how to enumerate the name and address of every Objective-C method available to the application, but this enumeration is expensive. Therefore we need a data structure in which to store the locations of the member functions.

The data structure must return the correct member function when queried with any address belonging to that member function. NSDictionary does not provide this functionality, but C++'s Standard Template Library's (STL) map container does.

map::upper_bound returns an iterator to the first element in the map whose key is larger than the queried key. For a map with method addresses as keys and method names as values, map::upper_bound will return an iterator pointing to the name of the method following the one we are looking for. Simply decrementing the iterator will make it point to the preceding method name.

// Lookup Function names
static std::map<uint32, std::string>* objectiveCMethodNames = NULL;
inline static uint32 lookupFunction(uint32 addr, const char** name)
{
   if (objectiveCMethodNames == NULL)
      return NULL;
     // Find the next function
   std::map<uint32, std::string>::iterator iter
      = objectiveCMethodNames->upper_bound( addr );
    // Go back a function: now we are looking at the right one!
   —iter;
   *name = iter->second.c_str();
   return iter->first;
}

Populating the STL map is a simple matter of iterating through all the classes known to the Objective-C runtime, and enumerating their methods.

// Add classes by stepping through their method lists.
inline static void  addObjectiveCMethod(uint32 addr, const char* name)
{   (*objectiveCMethodNames)[addr] = std::string(name); }
void addClass(Class c)
{
   unsigned int method_count;
   Method *method_list = class_copyMethodList(c, &method_count);
   for (int i = 0; i < method_count; i++)
   {
      Method      func = method_list[i];
      const char* name = sel_getName( method_getName( func ) );
      uint32      addr = (uint32) method_getImplementation( func );
      addObjectiveCMethod(   addr,
                           [[NSStringstringWith Format:@"[%s %s]",
                           class_getName(c), name] cString]);
   }
}

We could call the code that enumerates the Objective-C methods explicitly from main, but that requires remembering to add the call to each new application that uses debugLog(). Instead I can put the enumeration code into the load method of an Objective-C class which is guaranteed to be called if debugLog() is built into the application. The only gotcha is that the load method is invoked before Cocoa has created an NSAutoreleasePool. That's why the code below creates its own NSAutoreleasePool to avoid memory leaks.

@implementation SBGDebug
+ (void) load
{
   if (objectiveCMethodNames != NULL)
      return;
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   objectiveCMethodNames = new std::map<uint32, std::string>();
   int numClasses = objc_getClassList(NULL, 0);
   if (numClasses > 0 )
   {
      Class *classes = (Class*) malloc(sizeof(Class) * numClasses);
      numClasses     = objc_getClassList(classes, numClasses);
      for (int i = 0; i < numClasses; ++i)
         addClass(classes[i]);
      free(classes);
   }
   [pool release];
}
@end

2. Deciding whether a function is C, C++ or Objective-C

The return addresses provided by backtrace() could belong to a C function, a C++ function or an Objective-C method. We need a way to decide which case we're dealing with. We start by asking both the C/C++ function-lookup function and the Objective-C method-lookup function to what function they believe a return address belongs. We will obtain two addresses a and b which should both be smaller than the return address r. Because functions are contiguous and do not intersect with each other, a and b must differ, and one of them must be lower than the other. For the same reason, the return address r cannot belong to the function with the lower address, as that function must end before the higher address. Therefore we use the name of the function that starts at the higher address:

extern "C" void debugLog(NSString* format, ...)
{
   // Print the debug message
   va_list arguments;
   va_start(arguments,format);
   NSLogv(format, arguments);
   // Dump the callstack
   uint32 callstack[128];
   int  frames = backtrace((void**) callstack, 128);
   char** strs = backtrace_symbols((void**) callstack, frames);
   for (int i = 1; i < frames; ++i)
   {
      char functionSymbol[64*1024];
      char moduleName    [64*1024];
      int  offset        = 0;
      sscanf(strs[i], "%*d %s %*s %s %*s %d", &moduleName,
                                       &functionSymbol, &offset);
      uint32 addr = callstack[i];
      if (objectiveCMethodNames)
      {
         const char* objcName;
         uint32      objcAddr = lookupFunction(addr, &objcName);
         if (      (objcAddr != 0)
               &&   (addr > objcAddr)
               &&   (addr - objcAddr < offset))
         {   printf("\t%8.8x — %s  + %d\t\t(%s)\n", addr, objcName,
                                             addr - objcAddr, moduleName);
            continue; };
      };
      int   validCppName;
      char* functionName = abi::__cxa_demangle(functionSymbol, NULL, 0,
                                                            &validCppName);
      if (validCppName == 0)
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionName, offset, moduleName);
      else
         printf(   "\t%8.8x — %s + %d\t\t(%s)\n",
                  addr, functionSymbol, offset, moduleName);
      if (functionName)
         free(functionName);
   }
   free(strs);
}

The output of backtrace_symbols() is an array of C-strings. We use sscanf() to parse them. The resulting function names are passed to the C++ demangler to convert into human-readable form if they are C++ names.

debugLog() uses printf() rather than NSLog() to avoid printing the application's name at the beginning of each line.

debugLog() is declared as extern "C" so it can be linked directly to Objective-C code. The class interface file does the same:

DebugLog Interface File: SBGDebug.h

@interface SBGDebug : NSObject
+ (void) load;
@end
#ifdef __cplusplus
extern "C" {
#endif
void debugLog(NSString* format, ...);
#ifdef __cplusplus
};
#endif

Using DebugLog

Invoke debugLog() just as you would NSLog():

Test file: TestDebugLog.mm

#import "SBGDebug.h"
// C++ test
struct CPP      { CPP(); ~CPP(); };
CPP::CPP()      { debugLog(@"C++ Constructor"); };
CPP::~CPP()   { debugLog(@"C++ Destructor"); };
// Objective C test
@interface Objc : NSObject
@end
@implementation Objc
- (id)      init
{ debugLog(@"Objective-C init"); return [super init]; };
(void)   dealloc
{ debugLog(@"Objective-C dealloc"); [super dealloc]; };
@end
// Main
int main(int argc, const char* argv[])
{
   NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
   CPP   cpp;
   Objc* objc = [[[Objc alloc] init] autorelease];
   debugLog(@"C — test arguments work too: %@", objc);
   [pool release];
   return 0;
}

Conclusion

Leopard provides all the components necessary to build a cross-platform NSLog() which can print function call traces. Although the code I provide assumes compilation to a 32-bit executable, extending it to 64 bits should be straightforward as only standard library functions are used.

You can download the entire Objective-C++ project from the MacTech ftp source archive at ftp.mactech.com/src/mactech/volume25_2009/25.06.sit.

Don't forget to compile it and run it in Debug Configuration!

References:

backtrace() : man backtrace.

backtrace_symbols() limitations : http://lists.apple.com/archives/darwin-dev/2009/Mar/msg00111.html.

backtrace_symbols() : man backtrace_symbols.

abi::__cxa_demangle : http://www.ib.cnea.gov.ar/~oop/biblio/libstdc++/namespaceabi.html.

Objective-C runtime: http://developer.apple.com/documentation/Cocoa/Reference/ObjCRuntimeRef/ObjCRuntimeRef.pdf.

The Standard Template Library: http://www.sgi.com/tech/stl/


Dr. Sengan Baring-Gould is a Boulder, Colorado-based independent Mac OS X developer and writer. He is available for consulting and specializes in Algorithms, AI, Cocoa, Debugging tools, High performance code, and UIs. He can be reached at sengan@ansemond.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Notion 2.1.9 - A unified workspace for m...
Notion is the unified workspace for modern teams. Features: Integration with Slack Documents Wikis Tasks More guests: invite up to 10 collaborators, friends & family to your pages Page... Read more
Spotify 1.2.0.1165 - Stream music, creat...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Thunderbird 102.5.1 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Pinegrow 7.03 - Mockup and design web pa...
Pinegrow (was Pinegrow Web Designer) is desktop app that lets you mockup and design webpages faster with multi-page editing, CSS and LESS styling, and smart components for Bootstrap, Foundation,... Read more
Adobe After Effects 2022 23.1 - Create p...
The new, more connected Adobe After Effects can make the impossible possible. Get powerful new features like a Live 3D Pipeline that brings CINEMA 4D scenes in as layers - without intermediate... Read more
SteerMouse 5.6.7 - Powerful third-party...
SteerMouse is an advanced driver for USB and Bluetooth mice. SteerMouse can assign various functions to buttons that Apple's software does not allow, including double-clicks, modifier clicks,... Read more
Wireshark 4.0.2 - Network protocol analy...
Wireshark is one of the world's foremost network protocol analyzers, and is the standard in many parts of the industry. It is the continuation of a project that started in 1998. Hundreds of... Read more
Adobe Premiere Pro 2022 23.1 - Digital v...
Adobe Premiere Pro is available as part of Adobe Creative Cloud for as little as $54.99/month. The price on display is a price for annual by-monthly plan for Adobe Premiere Pro only. Adobe Premiere... Read more
1Password 8.9.10 - Powerful password man...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
FotoMagico 6.3 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more

Latest Forum Discussions

See All

SwitchArcade Round-Up: ‘Chained Echoes’,...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 8th, 2022. Today is Thursday, and that usually means an absolute deluge of new releases on the eShop. But the year is winding down, so we’ve only got ten or so to look at... | Read more »
‘Awaken Legends: Idle RPG’ Celebrates th...
Awaken Legends: Idle RPG is adding its first update since the game was soft-launched in November, letting players get their hands on a new hero “Hera Valen". Players can also look forward to the Covenant of the Dark Knight event and the Wishing Well... | Read more »
‘Horizon Chase 2’ Japan World Tour Expan...
Horizon Chase 2 () from Aquiris is getting a major expansion today on Apple Arcade. The Japan World Tour expansion brings in 11 new races across 9 cities and it should be rolling out now as of this writing. I expect it to be available worldwide... | Read more »
Dark Fantasy Visual Novel ‘The 13th Mont...
Originally announced for release in August, The 13th Month from Japanese developer Kobayashimaru and publisher Kodansha released on PC via Steam worldwide this month. The dark fantasy visual novel that reimagines the classic Sleeping Beauty tale, is... | Read more »
Tom Clancey’s The Divison Resurgence ann...
Ubisoft has announced the latest Live Test dates for Tom Clancy’s The Division Resurgence, the hotly anticipated mobile entry in the Divison series. Starting December 8th and ending on the 22nd, the test will offer a huge amount of content for the... | Read more »
‘Easy Come Easy Golf’ New Update Adds St...
Easy Come Easy Golf () from Clap Hanz is one of my favorite games on Apple Arcade. It has been updated quite a bit since launch bringing in new modes and improvements. It recently launched on Nintendo Switch as well. | Read more »
Out Now: ‘Magic vs Metal’, ‘Suzerain’, ‘...
Each and every day new mobile games are hitting the App Store, and so each week we put together a big old list of all the best new releases of the past seven days. Back in the day the App Store would showcase the same games for a week, and then... | Read more »
SwitchArcade Round-Up: Reviews Featuring...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 7th, 2022. Today can be accurately described as Mikhail Madness, with a whopping four reviews from our pal-est of pals. Football Manager 2023 Touch, Wobbledogs, Soccer Story... | Read more »
Alchemy Stars celebrates 1 and a half ye...
It has been one and a half years since Alchemy Stars launched, and Level Infinite is celebrating in style with a host of new content. There will be a new story mission and even a store to explore, and a whole new mode for those budding idol... | Read more »
Fighting Game ‘Art of Fighting 2’ ACA Ne...
Last week, side-scrolling shooter Pulstar hit mobile platforms as the newest ACA NeoGeo series release from Hamster and SNK. Read Shaun’s review of it here. Today, fighting game Art of Fighting 2 has launched on iOS and Android. Art of Fighting 2... | Read more »

Price Scanner via MacPrices.net

New! Details on Verizon’s Christmas/Holiday p...
Verizon is offering discounts on iPhones, Apple Watch models, and iPads with specific promo codes as part of their Christmas/Holiday 2022 offerings. Codes are valid when adding a new line of service... Read more
Apple MagSafe accessories are back on Holiday...
Amazon has Apple MagSafe Chargers and Apple’s MagSafe Battery on sale for up to 24% off MSRP again as part of their Christmas/Holiday sale. Shipping is free, and all models are in stock: – MagSafe... Read more
13″ M2 MacBook Airs on sale again for the low...
Amazon has 13″ MacBook Airs with M2 CPUs in stock today and on sale for $150 off MSRP as part of their Christmas/Holiday Sale, prices start at $1049. Shipping is free. They are the lowest prices... Read more
Get an Apple 16″ MacBook Pro for $400 off MSR...
16″ MacBook Pros with Apple’s M1 Pro CPUs are in stock and on sale today at B&H Photo for $300-$400 off Apple’s MSRP for a limited time. Prices start at $2099 for M1 Pro models with 512GB or 1TB... Read more
Holiday clearance sale! Previous-generation A...
Amazon has 2nd generation 32GB and 64GB 4K Apple TVs with Siri remotes and 32GB Apple TV HDs on clearance sale for $80-$90 off original MSRP. Shipping is free, and delivery is available in time for... Read more
Christmas sale at Verizon: Apple AirPods Pro...
Verizon has first-generation Apple AirPods Pro on sale for $159.99 on their online store as part of their continuing Christmas/Holiday sale. Their price is $90 off Apple’s original MSRP, and it’s the... Read more
New Christmas/New Years promo at Xfinity Mobi...
Switch to Xfinity Mobile and open a new line of service, and take $400 off the price of a new iPhone, no trade-in required, through January 10, 2023. The $400 is applied to your account as credits... Read more
Apple iPad Smart Keyboard Folio prices drop u...
Apple iPad Smart Keyboard Folio prices have dropped up to $60 off MSRP at Amazon and Walmart as part of their Christmas/Holiday sales. These are the cheapest prices currently available for these iPad... Read more
Today is the final day for Xfinity Mobile’s $...
If you switch to Xfinity Mobile and open a new line of service, they will take $500 off the price of a new iPhone, no trade-in required. This is the best no trade-in Cyber Monday Apple iPhone 14 deal... Read more
Amazon restocks 10.2″ 64GB 9th-generation iPa...
Amazon has Apple’s 9th generation 10.2″ 64GB WiFi iPads (Silver) in stock and on sale for $269.99 shipped as part of their Christmas/Holiday Sale. Their price is $60 off Apple’s MSRP. Free delivery... Read more

Jobs Board

*Apple* Systems Administrator - JAMF - Activ...
…Administration **Duties and Responsibilities** + Configure and maintain the client's Apple Device Management (ADM) solution. The current solution is JAMF supporting Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Sephora Beauty Advisor - *Apple* Blossom Ma...
Sephora Beauty Advisor - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.