TweetFollow Us on Twitter

The Road to Code: Bits and Bytes and Everything Nice

Volume Number: 23 (2007)
Issue Number: 09
Column Tag: The Road to Code

The Road to Code: Bits and Bytes and Everything Nice

More Memory Topics

by Dave Dribin

Memory

Last month in The Road to Code, we went over control statements, such as loops and conditional statements, as well as pointers. This month, we will be going over arrays and dynamic memory. Dynamic memory is used heavily in Objective-C, but I think the concepts are better demonstrated with straight C.

Arrays

A topic that goes hand in hand with pointers is arrays. Arrays are a collection of items of the same type. For example, let's say we want to keep track of the first three even numbers. We could use three separate variables, but that's a little tedious. Fortunately, there's another option. We can use an array, which is a single variable that holds multiple values. For example, see Listing 1.

Listing 1: main.c Simple arrays

#include <stdio.h>
int main(int argc, const char * argv[])
{
   int evens[3];
   evens[0] = 2;
   evens[1] = 4;
   evens[2] = 6;
   
   printf("evens[0] = %d\n", evens[0]);
   printf("evens[1] = %d\n", evens[1]);
   printf("evens[2] = %d\n", evens[2]);
    return 0;
}
When this program is run, you should get the following output:
evens[0] = 2
evens[1] = 4
evens[2] = 6

Digging into this example, the first odd thing you'll notice is the declaration of the evens variable. It starts off like other variable declarations with a type and a name, but after the name you'll see the square brackets with the number three in it: [3]. The square brackets tell the compiler that we are declaring an array of integers, instead of a single integer, and the number inside the brackets is how many items the array may hold. So, in this case, evens is an array that may hold three integers.

The second odd thing is how we are getting and setting the values of the array. Again, we use the square brackets to tell the compiler which item in the array we want to access. The number between the brackets is called an array index. This brings us to the first important bit of information: the first item in the array has an index of 0. Thus, the second item has an index of 1, and the last item has an index of 2. Even though this array has three items, the index ranges from 0 to 2. In fact, the last index of any array is the number of items minus one. It is important to remember this because the C compiler will not remind you. It will happily allow you to accesses index 3 of a three-item array. This kind of bug is very serious, and causes all sorts of trouble. So always be sure to double-check your array indexes!

The nice thing about arrays is that you can make them bigger to hold more items very easily. If we wanted to hold the first five even numbers, we just need to make our array bigger. In order to reduce code repetition, we can use for loops to initialize and print out the array:

Listing 2 main.c Using for loops with an array

#include <stdio.h>
int main(int argc, const char * argv[])
{
   int evens[5];
   int i;
   for (i = 0; i < 5; i++)
      evens[i] = (i+1) * 2;
   
   for (i = 0; i < 5; i++)
      printf("evens[%d] = %d\n", i, evens[i]);
    return 0;
}

This example shows that array indexes may be a variable, instead of a constant number. We are using the variable i to loop over all the indexes of the array. Note the condition of the for loop: i < 5. Using a less than operator ensures i loops from 0 to 4. This code is now more extensible because of the array and for loops. We can easily create an array to hold the first 100 even numbers. But we still have to change the number five in three different places. You may be wondering if we can eliminate this repetition as well, and it turns out that we can.

Preprocessor Macros

In order to reduce this kind of code repetition, the C language has what is called a preprocessor. The preprocessor allows you define macros that perform a search and replace on your code. Let's see how this can help us:

Listing 3: main.c Using a preprocessor macro

#include <stdio.h>
#define ARRAY_SIZE 5
int main(int argc, const char * argv[])
{
   int evens[ARRAY_SIZE];
   int i;
   for (i = 0; i < ARRAY_SIZE; i++)
      evens[i] = (i+1) * 2;
   
   for (i = 0; i < ARRAY_SIZE; i++)
      printf("evens[%d] = %d\n", i, evens[i]);
    return 0;
}

The second line in this program defines a new macro named ARRAY_SIZE. This tells the compiler to replace all uses of ARRAY_SIZE with the number five. The command to define a new macro is #define. Because the first character of this command is the pound character, this kind of macro definition is often called a pound define. While a pound define is very similar to setting a variable, you should not use an equal sign or a semicolon. If we used:

#define ARRAY_SIZE = 5;

Then, the evens declaration would result in invalid C syntax, after the macro replacement:

   int evens[= 5;];

With our new macro in place, changing the array size to ten can be accomplished with one simple change:

#define ARRAY_SIZE 10

Arrays as Pointers

So what's this about arrays and pointers being similar? As it turns out, pointers and arrays can often be used interchangeably in C. A pointer to an integer, int *, can be set to an array without any conversion necessary:

Listing 4: main.c Using pointers and arrays

#include <stdio.h>
#define ARRAY_SIZE 5
int main(int argc, const char * argv[])
{
   int evens[ARRAY_SIZE];
   int * pointer;
   int i;
   for (i = 0; i < ARRAY_SIZE; i++)
      evens[i] = (i+1) * 2;
   
   pointer = evens;
   for (i = 0; i < ARRAY_SIZE; i++)
      printf("pointer[%d] = %d\n", i, pointer[i]);
    return 0;
}

We set the variable pointer to be equal to the array evens without using an ampersand, &, the address of operator, like we did in last month's article. Also, notice that the compiler lets us use an array index on the pointer variable, just like an array. This is because pointers and arrays are virtually the same in C. You do have to be very careful when using pointers as arrays, though. The C compiler does not know that pointer points to an array, instead of an ordinary variable. The compiler simply assumes that if you are trying to access a pointer as an array, you must be right. You can easily introduce subtle and hard to find bugs, so be careful.

If it's so dangerous, why should we use it? In these examples, the sizes of the arrays are set in stone when we compile them. If we want to change the size of the array when the program is running, we have to use pointers as arrays. But before we go over how to do this, we need to take a step back and look under the hood a bit. We need to further understand how computer memory works.

Computer Numbers

Over the last couple of articles, I've been using a box analogy for variables. Each variable is like a box that holds a specific type of data, such as an integer or floating point number. Also, each box is assigned a unique address, which I compared to a P.O. Box number. But real boxes typically hold physical objects like shoes or books. What is a number, and how can a box hold one? Do numbers have certain physical characteristics? It turns out they do, and it all revolves around ones and zeroes.

Internally, computers only understand two digits: 0 and 1. Everything a computer does, from the simple math, to complex graphics and sound all boil down to 0 and 1. So how can computers count higher than 1? It's very similar to normal decimal numbers, where we only have ten digits, 0 through 9. By stringing together multiple digits, we can count much higher than 9, to numbers such as 523. Computers can string together multiple zeros and ones, too, to make larger numbers, such as 1101. Because computers only deal with two digits, instead of the usual ten, these numbers are called binary numbers. Since humans better understand decimal numbers, we need to be able to convert binary numbers, such as 1101, back into normal decimal numbers and vice versa.

To convert binary numbers, we once again have to drudge up some simple math. Normal decimal numbers we use every day are called base-10 numbers because there are 10 digits, 0 through 9. When digits are strung to create a larger number, like 523, each digit carries a certain weight. The base-10 number 523 can be expressed as a simple equation:

52310 = 5x100 + 2x10 + 3x1 = 500 + 20 + 3

The numbers 1, 10, and 100 are the weight of each digit. As we add more digits, the weight goes up by another power of 10 to 1,000, then 10,000, and so on. The small 10 subscript is the mathematical way of clarifying we are talking about a base-10 number. We don't normally include this subscript, as we nearly always deal with base-10 numbers.

Binary numbers work similarly, except there are only two digits available, 0 and 1. To convert a binary number to decimal, we can use base-10 numbers as the weight of each digit. Instead of each weight going up by a power of 10, they go up by a power of 2, i.e. 1, 2, 4, 8, 16, etc. Because binary numbers are based around powers of 2, they are called base-2 numbers and a small 2 subscript may be used to denote a binary number. Thus the 11012 binary number can be converted to 1310 using the power of 2 weights:

11012 = 1x8 + 1x4 + 0x2 + 1x1 = 8 + 4 + 1 = 1310

Because the use of 0 and 1 for the digits of binary numbers, they have been given the shorthand name of bit, which is a contraction of binary digit. Binary numbers are often classified by how many bits they have, thus 11012 is considered a 4-bit number.

Bytes

As we combine more bits together into one binary number, we can start representing larger and larger numbers. When we have a binary number with eight bits, we can represent a number between 0 and 255. This is because the largest 8-bit binary number is 111111112. If we expand this out, using the weight of each digit, we get:

111111112 = 1x128 + 1x64 + 1x32 + 1x16 + 1x8 + 1x4 + 1x2 + 1x1 = 25510

For historic reasons, these 8-bit numbers are the basis of all modern computing and are given a very special name of their own: a byte. Thus a single byte can represent any decimal number from 0 to 255.

Even though we usually let the compiler translate decimal numbers to binary, sometimes you have to deal directly with bits. Unfortunately, binary numbers can be very tedious for people to write out. To make it easier to represent long binary numbers, without converting to decimal, the computer scientists invented a new notation called hexadecimal numbers or just hex for short. Hexadecimal numbers are base-16 numbers that have 16 digits with the weight of each digit being a power of 16. The only problem is that there are not 16 digits available: only 10. Those clever computer scientists decided to borrow the first 6 letters of our alphabet, A through F, to fill in the blanks. Because all of these number conversions can get quite confusing, I've created Table 1 to help convert between binary, hexadecimal, and decimal numbers.

Table 1: Binary, Hexadecimal, Decimal Conversion Chart

Binary Number   Hexadecimal Number   Decimal Number   
              0000                 0                      0   
              0001                 1                      1   
              0010                 2                      2   
              0011                 3                      3   
              0100                 4                      4   
              0101                 5                      5   
              0110                 6                      6   
              0111                 7                      7   
              1000                 8                      8   
              1001                 9                      9   
              1010                 A                      10   
              1011                 B                      11   
              1100                 C                      12   
              1101                 D                      13   
              1110                 E                      14   
              1111                 F                      15   

To convert larger hexadecimal numbers to decimal, we have to resort to power of 16 digit weights. For example, to convert the hexadecimal number 5FC16 to decimal, we first convert each hexadecimal digit to decimal using Table 1, and then use powers of 16 as the digit weights:

5FC16 = 5x256 + 15x16 + 12x1 = 1280 + 240 + 12 = 152310

Using Table 1, we can convert any 4-bit binary number easily to hexadecimal. Converting larger binary numbers to hexadecimal numbers does not even require any math. We just group together 4 bits, and use Table 1 on each group. For example to convert 110110012 to hexadecimal, we first chop it up into 2 groups: 11012 and 10012. Then, converting each group of four, we get D916. If we wanted to convert this number to decimal, we can use the power of 16 weights, again:

110110012 = D916 = 13x16 + 9x1 = 208 + 9 = 21710

This grouping of 4-bits is called a nibble, sometimes spelled nybble. By breaking large binary numbers up into nibbles, it's easy convert them into hexadecimal no matter how many bits you have. With words like bits, bytes, and nibbles, it's easy to see why computer scientists have such a good sense of humor.

Bytes of Memory

How do bits and bytes relate to programming variables? All of the boxes used for the variables in your program are stored in the computer's memory. Your computer's memory, called RAM (short for Random Access Memory) is like the post office, where all P.O. Boxes live. Each box is given a unique number, an address, and each one has the same size. The fundamental size of each box is one byte. But wait... I said earlier that one byte could only hold a number from 0 to 255. So how can an integer variable in C store larger numbers? Well, the C compiler uses multiple, consecutive bytes to create a bigger box. Typically, it uses four bytes, or 32 bits for a variable of type int, which is big enough to hold numbers from 0 to 4,294,967,295. That's just over four billion.

What about negative numbers? Computers steal one bit and use it as the sign of a number. This conversion of negative numbers to binary is called two's complement. I don't have enough space to fully cover two's complement in this article. If you want to learn more, Wikipedia has a good article [1] that is a great place to start. The end result of using two's complement means that int, a signed 32-bit integer, can only hold numbers between -2,147,483,648 and 2,147,483,647. If you need to use larger numbers, and you do not need to use negative numbers, you can use the unsigned int data type when you declare your variables to tell the compiler not to use 1 bit for the sign.

The C compiler has a special operator, called sizeof, that returns the number of bytes a variable or data type uses. This operator works like a function, and you pass a variable or type as the argument. For example, this line of code will print 4:

   printf("%d\n", sizeof(int));

Because all programs have different needs, the C language has other integer data types that are stored using a different number of bytes.

Data Type
sizeof
Largest Signed Value
Smallest Unsigned Value
Largest Unsigned Value
char 1 255 -128 127
short 2 65535 -32768 32767
int 4 4.295x109 -2.147x109 2.147x109
long 4 4.295x109 -2.147x109 2.147x109
long long 8 1.845x1019 -9.223x1018 9.223x1018

Table 2: Standard C Data Types

Table 2 (above) summarizes the standard integer data types and the number of bytes they use on a 32-bit Mac OS X program. By default, these data types are signed. You can use the unsigned keyword in front of any of these types if you only care about positive numbers.

I specifically said "a 32-bit Mac OS X program," because the C language does not make any guarantee of these sizes on other operating systems and processors. For example, on a 64-bit Intel Mac OS X program, sizeof(long) is not four bytes, it's eight. If you really, really care about the number of bytes a variable uses, you should use one of the newer data types. In 1999, signed integer data types of the format intxxx_t, where xxx is a number of bits: 8, 16, 32, or 64 were added. So if you really want a 32-bit signed integer, you would use int32_t. There are also unsigned variants, which use uintxxx_t. So an unsigned 8-bit integer type would be uint8_t. These new types are available in the stdlib.h header file. Listing 6 demonstrates the sizeof operator and these new data types.

Listing 5: main.c demonstrating sizeof

#include <stdio.h>
#include <stdlib.h>
int main(int argc, const char * argv[])
{
   long foo;
   unsigned long bar;
   
   printf("sizeof(foo) = %d\n", sizeof(foo));
   printf("sizeof(bar) = %d\n", sizeof(bar));
   printf("sizeof(uint8_t) = %d\n", sizeof(uint8_t));
   printf("sizeof(uint16_t) = %d\n", sizeof(uint16_t));
   printf("sizeof(uint32_t) = %d\n", sizeof(uint32_t));
   printf("sizeof(uint64_t) = %d\n", sizeof(uint64_t));
   
   return 0;
}

Sizes of Computer Addresses

Most computer processors from the 1980s and 1990s use 32-bit numbers internally for addresses, too. Computer processors are classified by the number of bits used for addresses, thus these processors are classified as 32-bit processors. This means a 32-bit processor only has enough addresses for slightly over four billion bytes of memory, at it's maximum. Since 1 billion bytes, or more precisely 1,073,741,824 bytes, is called a gigabyte, a 32-bit processor is said to address a maximum of four gigabytes. While this may seem like a lot, this may not be enough for some applications.

You may have heard some buzz about "64-bit." In fact, 64-bit Cocoa support is one of the new major features of Leopard. Newer computer processors, like the PowerPC G5 and the Intel Core 2 Duo, can use 64-bit addresses. This allows the computer to access more than four gigabytes of memory, which speeds up some programs that work on large amounts of data, such images, videos, and scientific data.

Dynamic Memory

When you declare a variable inside a function, the compiler automatically sets aside the number of bytes necessary for its storage. This setting aside of memory is called allocating memory. Once the function finishes executing, the allocated memory is automatically given back to the system, called deallocating memory. When the compiler handles memory allocation for you, this is called automatic memory allocation. Because the memory of variables inside a function are allocated and deallocated automatically, they are sometimes referred to as automatic variables.

Sometimes this automatic memory allocation is not good enough, and you have to take matters into your own hands. The standard C library has a function named malloc that allocates the specified number of bytes of memory and returns the address of this new memory. You can assign this address to a pointer, and then use it like we used pointers in last month's article. Because you manually allocated the memory, you must also deallocate it yourself using the free function. When you take control of memory allocation, this is called dynamic memory allocation, or dynamic memory, for short. Listing 8 is a simple example of dynamic memory.

Listing 6: main.c Using dynamic memory

#include <stdio.h>
#include <stdlib.h>
int main(int argc, const char * argv[])
{
   int * pointer;
   pointer = malloc(sizeof(int));
   *pointer = 5;
   printf("*pointer = %d\n", *pointer);
   free(pointer);
   
   return 0;
}

Along with great power comes great responsibility. As such, it's very important to deallocate memory that you allocate. Failing to return memory to the system is called a memory leak. Memory leaks are a serious class of bugs that can affect the performance of your program and the entire system. There are no magic ways to avoid memory leaks in C. You just have to be very careful and make sure you free any memory you allocate with malloc. Memory that is leaked by your application is reclaimed when your application exits. This doesn't mean leaks should be ignored, however. Leaked memory limits the amount of memory available for other tasks, and can slow down the entire system. Objective-C has some techniques to avoid memory leaks, which we will cover in due time.

Dynamic Memory for Arrays

Using dynamic memory, as previously shown in Listing 8, provides no benefit to automatic memory. One real reason to use dynamic memory is when we want to change the size of an array while the program is running. To demonstrate this, let's look at Listing 10, which reads numbers from the user, and prints them in reverse order:

Listing 7: main.c Printing numbers in reverse

#include <stdio.h>
#define MAX_LENGTH 25
void read_numbers(int array[], int length)
{
   int i;
   for (i = 0; i < length; i++)
   {
      printf("Enter number %d: ", i+1);
      scanf("%d", &array[i]);
   }
}
void print_in_reverse(int array[], int length)
 {
   int i;
   for (i = length-1; i >= 0; i--)
   {
      printf("%d\n", array[i]);
   }
}
int main(int argc, const char * argv[])
{
   int numbers[MAX_LENGTH];
   int length;
   
   printf("How many numbers? ");
   scanf("%d", &length);
   if (length < 1)
   {
      printf("Choose a number greater than or equal to 1\n");
      return 1;
   }
   
   if (length > MAX_LENGTH)
   {
      printf("Choose a number less than or equal to %d\n",
            MAX_LENGTH);
      return 1;
   }
   
   read_numbers(numbers, length);
   print_in_reverse(numbers, length);
   return 0;
}

In this program, we have an array of integers, numbers, that has a size of MAX_LENGTH, which is set to twenty-five. The first thing it does is ask the user how many numbers they are going to type in. It does some error checking on this number to make sure it's not too big or too small. Then, it reads that many numbers into the array. Finally, it prints them out in reverse order. I also introduce some new syntax. When arrays are used as arguments to functions, they cannot include a size. Thus, you use square brackets without a number, for example array[].

Here is a sample run of this program:/P>

How many numbers? 4
Enter number 1: 42
Enter number 2: -3
Enter number 3: 523
Enter number 4: 11
11
523
-3
42

Great, it seems to work as designed! Unfortunately, this program has one limitation: the user can only enter twenty-five numbers. What if the user wanted to enter 100, or even 1,000 or 1,000,000 numbers? Sure, we could change MAX_LENGTH, but this is always going to be a guessing game. And if we make MAX_LENGTH very large, then we are wasting memory when the user only wants to enter a few numbers. The solution is to use dynamic memory.

Listing 8: main.c Dynamic size of an array

#include <stdio.h>
#include <stdlib.h>
void read_numbers(int array[], int length)
{
   int i;
   for (i = 0; i < length; i++)
   {
      printf("Enter number %d: ", i+1);
      scanf("%d", &array[i]);
   }
}
void print_in_reverse(int array[], int length)
{
   int i;
   for (i = length-1; i >= 0; i--)
   {
      printf("%d\n", array[i]);
   }
}
int main(int argc, const char * argv[])
{
   int * numbers;
   int length;
   
   printf("How many numbers? ");
   scanf("%d", &length);
   if (length < 1)
   {
      printf("Choose a number greater than or equal to 1\n");
      return 1;
   }
   
   numbers = malloc(length * sizeof(int));
   read_numbers(numbers, length);
   print_in_reverse(numbers, length);
   free(numbers);
   
   return 0;
}

In Listing 8, we changed the type of numbers from an array to a pointer. After getting length from the user, we allocate the needed memory with malloc. Because numbers is now a pointer – and pointers are interchangeable with arrays – we don't have to change the arrays in the function arguments.

The trick for using malloc on arrays is to use the sizeof operator to allocate the correct number of bytes. Remember that each integer uses four bytes of memory. Thus, five integers require twenty bytes of memory. This is why we multiply length by sizeof(int). By using malloc to allocate memory, we've solved two issues. First, the only limit on the size of the array is the amount of memory the user's computer has. We can eliminate the MAX_LENGTH constant and our error checking on the maximum size. Second, we are only allocating memory that we need. We are not wasting memory by only using a portion of a larger array.

This also demonstrates the importance of using the sizeof operator, instead of hard coding the number four. You don't have to remember how many bytes an integer uses. It also makes your program more portable. Because an integer may use a different number of bytes on a different computer, this program will compile on any platform that can compile C. While you may not plan on running your software on a different computer, it's impossible to see the future. Even if you stick to writing only Mac software, Apple has switched processors a number of times, from 68000, to PowerPC, and now Intel. Who knows what Macs will be running on in another ten years?

Conclusion

We've covered a lot of background information in this article. While these examples may seem trivial, the basic concepts they illustrate lie at the heart of Objective-C and programming for Mac OS X. Once we finally get to some "real" Mac programming, our time spent going over all this background information will be time well spent.

Footnotes

[1]: Wikipedia Two's Complement article. http://en.wikipedia.org/wiki/Twos_complement


Dave Dribin has been writing professional software for over eleven years. After five years programming embedded C in the telecom industry and a brief stint riding the Internet bubble, he decided to venture out on his own. Since 2001, he has been providing independent consulting services, and in 2006, he founded Bit Maki, Inc. Find out more at http://www.bitmaki.com/ and http://www.dribin.org/dave/.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Audio Hijack 3.7.3 - Record and enhance...
Audio Hijack (was Audio Hijack Pro) drastically changes the way you use audio on your computer, giving you the freedom to listen to audio when you want and how you want. Record and enhance any audio... Read more
CleanMyMac X 4.6.15 - Delete files that...
CleanMyMac makes space for the things you love. Sporting a range of ingenious new features, CleanMyMac lets you safely and intelligently scan and clean your entire system, delete large, unused files... Read more
Suitcase Fusion 21.2.1 - Font management...
Suitcase Fusion is the creative professional's font manager. Every professional font manager should deliver the basics: spectacular previews, powerful search tools, and efficient font organization.... Read more
Civilization VI 1.3.6 - Next iteration o...
Civilization® VI is the award-winning experience. Expand your empire across the map, advance your culture, and compete against history’s greatest leaders to build a civilization that will stand the... Read more
Dashlane 6.2042.0 - Password manager and...
Dashlane is an award-winning service that revolutionizes the online experience by replacing the drudgery of everyday transactional processes with convenient, automated simplicity - in other words,... Read more
Airfoil 5.9.2 - Send audio from any app...
Airfoil allows you to send any audio to AirPort Express units, Apple TVs, and even other Macs and PCs, all in sync! It's your audio - everywhere. With Airfoil you can take audio from any... Read more
VirtualBox 6.1.16 - x86 virtualization s...
VirtualBox is a family of powerful x86 virtualization products for enterprise as well as home use. Not only is VirtualBox an extremely feature rich, high performance product for enterprise customers... Read more
Xcode 12.1 - Integrated development envi...
Xcode includes everything developers need to create great applications for Mac, iPhone, iPad, and Apple Watch. Xcode provides developers a unified workflow for user interface design, coding, testing... Read more
FileZilla 3.51.0 - Fast and reliable FTP...
FileZilla (ported from Windows) is a fast and reliable FTP client and server with lots of useful features and an intuitive interface. Version 3.51.0: Bugfixes and minor changes: Fixed import of... Read more
KeyCue 9.8 - Displays all menu shortcut...
KeyCue has always been a handy tool for learning and remembering keyboard shortcuts. With a simple keystroke or click, KeyCue displays a table with all available keyboard shortcuts, system-wide... Read more

Latest Forum Discussions

See All

PUBG Mobile has provided yet another upd...
PUBG Mobile has been making a point of publicly mentioning all of their ongoing efforts to vanquish cheating from the popular battle royale. Today two teams within the company have provided updates on their progress. [Read more] | Read more »
Zombieland: AFK Survival is celebrating...
Zombieland: AFK Survival is currently celebrating its one-year anniversary. If you don't quite recognise the name that's because it initially launched as Zombieland: Double Tapper. Anyway, the game is celebrating turning one with two Halloween-... | Read more »
Distract Yourself With These Great Mobil...
There’s a lot going on right now, and I don’t really feel like trying to write some kind of pithy intro for it. All I’ll say is lots of people have been coming together and helping each other in small ways, and I’m choosing to focus on that as I... | Read more »
Genshin Impact Guide - Gacha Strategy: W...
If you're playing Genshin Impact without spending money, you'll always need to be looking for ways to optimize your play to maximize rewards without getting stuck in a position where you're tempted to spend. The most obvious trap here is the game'... | Read more »
Genshin Impact Adventurer's Guide
Hello and well met, fellow adventurers of Teyvat! Check out our all-in-one resource for all things Genshin Impact. We'll be sure to add more as we keep playing the game, so be sure to come back here to check for updates! [Read more] | Read more »
Genshin Impact Currency Guide - What...
Genshin Impact is great fun, but make no mistake: this is a gacha game. It is designed specifically to suck away time and money from you, and one of the ways the game does this is by offering a drip-feed of currencies you will feel compelled to... | Read more »
XCOM 2 Collection on iOS now available f...
The XCOM 2 Collection, which was recently announced to be coming to iOS in November, is now available to pre-order on the App Store. [Read more] | Read more »
Presidents Run has returned for the 2020...
IKIN's popular endless runner Presidents Run has returned to iOS and Android just in time for the 2020 election season. It will see players choosing their favourite candidate and guiding them on a literal run for presidency to gather as many votes... | Read more »
New update for Cookies Must Die adds new...
A new update for Rebel Twins’ platformer shooter Cookies Must Die is coming out this week. The update adds quite a bit to the game, including new levels and characters to play around with. [Read more] | Read more »
Genshin Impact Guide - How to Beat Pyro...
The end game of Genshin Impact largely revolves around spending resin to take on world bosses and clear domain challenges. These fights grant amazing rewards like rare artifacts and ascension materials for weapons and adventurers, but obviously... | Read more »

Price Scanner via MacPrices.net

Use our exclusive iPhone Price Trackers to fi...
Looking for a new Apple iPhone 12 or 12 Pro? Perhaps a deal on last year’s iPhone 11? Check out our iPhone Price Tracker here at MacPrices.net. We track new and clearance iPhone prices from Apple as... Read more
Weekend deal: $100 off 13″ MacBook Airs at Am...
Amazon has new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP, starting at only $899. Their prices are the lowest available for new MacBooks from any Apple resellers. These are the same 13″... Read more
New 10.9″ 64GB Apple iPad Air on sale for $55...
Amazon has Apple’s new 2020 10.9″ 64GB WiFi iPad Air on sale today for $549.99 shipped. That’s $40 off MSRP. Pre-orders are available today at this discounted price, and Amazon states that the iPad... Read more
Get a clearance 2019 27″ 5K iMac for up to $5...
Apple has Certified Refurbished 2019 27″ 5K iMacs available starting at $1439 and up to $520 off their original MSRP. Apple’s one-year warranty is standard and shipping is free. The following... Read more
AT&T offers the Apple iPhone 11 for $10/m...
AT&T is offering Apple’s 64GB iPhone 11 for $10 per month, for customers opening a new line of service, no trade-in required. Discount is applied via monthly bill credits over a 30 month period.... Read more
Apple’s 2020 11″ iPad Pros on sale today for...
Apple reseller Expercom has new 2020 11″ Apple iPad Pros on sale for $50-$75 off MSRP, with prices starting at $749. These are the same iPad Pros sold by Apple in their retail and online stores: – 11... Read more
Did Apple Drop The Ball By Not Branding Its C...
EDITORIAL: 10.21.20 – In the branding game, your marketing strategy can either be a hit or a miss and the latter is the case for Apple when it missed out on an opportunity to brand its “SE” series of... Read more
27″ 6-core and 8-core iMacs on sale for up to...
Adorama has Apple’s 2020 27″ 6-core and 8-core iMacs on sale today for $50-$100 off MSRP, with prices starting at $1749. Shipping is free: – 27″ 3.1GHz 6-core iMac: $1749, save $50 – 27″ 3.3GHz 6-... Read more
Apple’s 16″ MacBook Pros are on sale for $300...
B&H Photo has 16″ MacBook Pros on sale today for $300-$350 off Apple’s MSRP, starting at $2099. Expedited shipping is free to many addresses in the US. Their prices are among the lowest available... Read more
Apple has 2020 13″ MacBook Airs available sta...
Apple has a full line of Certified Refurbished 2020 13″ MacBook Airs available starting at only $849 and up to $200 off the cost of new Airs. Each MacBook features a new outer case, comes with a... Read more

Jobs Board

Dental Receptionist - *Apple* Valley Clinic...
Dental Receptionist - Apple Valley Clinic + Job ID: 57314 + Department: Apple Valley Dental + City: Apple Valley, MN + Location: HP - Apple Valley Clinic Read more
*Apple* Mobility Specialist - Best Buy (Unit...
**788165BR** **Job Title:** Apple Mobility Specialist **Job Category:** Store Associates **Store Number or Department:** 001013-Virginia Commons-Store **Job Read more
Cub Foods - *Apple* Valley - Now Hiring Par...
Cub Foods - Apple Valley - Now Hiring Part Time! United States of America, Minnesota, Apple Valley Retail Post Date Oct 08, 2020 Requisition # 124800 Sign Up for Read more
*Apple* Mobility Specialist - Best Buy (Unit...
**784631BR** **Job Title:** Apple Mobility Specialist **Job Category:** Store Associates **Store Number or Department:** 000522-Baxter-Store **Job Description:** The Read more
Senior Data Engineer - *Apple* - Theorem, L...
Job Summary Apple is seeking an experienced, detail-minded data engineeringconsultant to join our worldwide business development and strategy team. If you are Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.