TweetFollow Us on Twitter

Taking Advantage of The Intel Core Duo Processor-Based iMac

Volume Number: 22 (2006)
Issue Number: 7
Column Tag: Performance Optimization

Taking Advantage of The Intel Core Duo Processor-Based iMac

How to make your applications run faster

by Ganesh Rao and Ron Wayne Green

Introduction

This is the first of a three part series that will address the most effective techniques to optimize applications for the Intel(R) Core(TM) Duo processor-based Macs. Part one introduces the key aspects of the Core Duo processor, and exposes the architectural features for which tuning is most important. A data-driven performance methodology using the software development tools available on a Mac to highlight tuning and optimization opportunities for a variety of applications is then described at length. Intel Core Duo processors feature two execution cores and each of the cores is capable of vector processing of data, referred to as the Intel(R) Digital Media Boost, which extends the Single Instruction Multiple Data (SIMD) technology. The second part of this series outlines how to take advantage of SIMD by enabling vectorization in the Intel Compiler. The final part of this 3-part series provides readers with the next level of optimization by taking advantage of both execution cores in addition to SIMD. We will cover auto-parallelization, where simple loops can be rendered parallel. And finally we will cover OpenMP, which are powerful user-specified directives embedded in source code to auto-magically tell the compiler to thread the application. You will love how easily you can thread applications while at the same time maintaining fine grain control of threads.

In this article, advanced and innovative software optimizations techniques supported by industry-leading compilers are addressed. These optimization techniques are used in the field every day to get better performance. Key topics will be illustrated with C++ and Fortran code snippets.

Intel Core duo processor

There is a rumor going around that Apple Macs now use an Intel processor, and a very happy Intel processor at that! All humor aside, we know that the MacTech community is gaining a very sophisticated understanding of the details of the Intel Core Duo processor. We want to call out features in the processor that, based on our experience, are most likely to increase the performance of your application. Stated differently, in this section we call out processor features that can be leveraged to extract better application performance. The Intel Core Duo processor includes two execution cores in a single processor. Please see Figure 1. Each of the execution cores supports Single instruction Multiple Data (SIMD), which involves performing multiple computations with a single instruction in parallel. Please see Illustration 2 for a diagrammatic representation of SIMD.



Figure 1: Intel(R) Core(R) Duo processor architectue



Figure 2: SIMD performs the same operation on multiple data

Applications that are most likely to benefit from SIMD are those that can be characterized as 'loopy'. SIMD is quite commonly seen in programs that spend a significant amount of time processing integers and/or floating point numbers in a loop. An example of this is a matrix-multiply operation. Intel Streaming SIMD Extensions (SSE), and the AIM Alliance AltiVec* instructions are example implementations of SIMD. In a subsequent article, part 2 of this 3-part series, we will get an opportunity to share our best practices to taking advantage of the SIMD processing capability in your processor.

SIMD extracts the best performance of a single core. Taking this to the next level, it is obvious that one needs to keep both cores busy to get maximal performance from an application. The most optimal way of taking advantage of both execution cores is to thread your application. We will share some of our best known methods to thread applications in the third part of the series. We will wrap up our three part discussion by highlighting innovative compiler technologies.

Drawing the baseline

The start of any performance optimization activity should be the clear definition of the performance baseline. The unit of the baseline could be either transactions per second, or more simply, the run-time of the application. Our experience is that we are setting ourselves up for failure if we do not have a clear, reproducible understanding of the baseline. Having a reproducible baseline also means clearly defining your benchmark application with the correct workload that is representative of anticipated usage. It may be worthwhile at this stage to consider if you can peel out a part of the application you wish to examine and wrap a main() function around it. This technique allows you to observe the behavior of the section of the application of most interest. You can then use the 'time' utility to measure the time spent by the program. In most production applications, it is difficult to completely separate the kernel that we wish to observe and improve performance. In these cases, it may be easier to insert timers in your code as shown below:

Example:

/* Sample Timing */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void)
{
   clock_t start, finish;
   long loop;
   double  duration, loop_calc;
   start = clock();
   // CODE TO BE MEASURED HERE
   //
   finish = clock();
   duration = (double)(finish - start)/CLOCKS_PER_SEC;
   printf("\n%2.3f seconds\n", duration);
}

While it is perfectly fine to use this 'time' API for applications and sections of code that run for a sufficient duration, the resolution of the clock is not fine enough for measuring a small, fast-running section of code.

An alternative is to use the rdtsc instruction (Read Time Stamp Counter). The rdtsc instruction returns the elapsed CPU clocks since the last reboot. This allows significantly higher resolution than using the 'time' API. Intel compilers implement a convenient intrinsic1 that makes it easy to measure rdtsc.

#include <stdio.h>
int main(void)
{
uint64_t start;
uint64_t stop;
uint64_t elapsed;
  
  #if __INTEL_COMPILER  
  // Start the counter
start=_rdtsc();  
#else   
  
  //Code to be measured here
  
  ...
  
//
#if __INTEL_COMPILER  
//Stop the counter
stop=_rdtsc();
elapsed = stop - start;
#else
//Calculate the runtime
elapsed = stop - start;
  printf("Processor cycles = %i64\n", elapsed); 
}

As of this writing, in some cases, rdtsc may report a wrong Time-Stamp counter value2. Using the technique described above with rdtsc does not work well if your thread switches context between the two cores, since the timer is separate on each core.

The other preferred alternative is to use the OS supported mach_absolute_time API abstraction.

#include <CoreServices/CoreServices.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
int main(void)
{
    uint64_t        start;
    uint64_t        stop;
    uint64_t        elapsed;
    // Start the clock.
    start = mach_absolute_time();
    //Code to be measured here
  
    ...
  
    //
    // Stop the clock.
    stop = mach_absolute_time();
    // Calculate the run time
    elapsed = stop - start;
    printf("Processor cycles = %i64\n", elapsed); 
}

In the measurements we did, while mach_absolute_time and rdtsc seemed to provide answers that were close, there were small deviations. We need to clarify that while it may be comforting to think that we are measuring at the accuracy of clock-ticks, the measurements come bundled with a lot of variances. Specifically, you cannot measure the latency of a single instruction or even a bundle of instructions using either rdtsc or mach_absolute_time. In many cases, it is to the benefit of the programmer to set up benchmarks that have a sufficient runtime between start and stop timer. A sufficient runtime may be at a minimum on the order of tens or hundreds of seconds.

Hotspots in the code

Once we have a baseline, a powerful alternative to hand peeling code and inserting timers is to run a profiler to identify the hotspots in your code. Shark3 is a powerful tool to help you achieve this. We are not going to go into too much detail about using Shark in this article, since it is covered extensively elsewhere. Additionally, Shark can do much more than what we are calling out here. At a high level, Shark allows you to get a time profile which is based on sampling your code at fixed time intervals. Depending on your application, you may see profiles that are relatively flat, meaning there are no particular areas in your code that are exercised more than others. Or you could see clear peaks, which would mean that your program exercises a smaller portion of your code more extensively. Shark can clump the time profile by threads allowing you to see the profile of your code for each of the individual threads.

As a quick guide, start Shark from the hard disk at "/Developer/Applications/Performance Tools/CHUD"4. Figure 3 shows the start of a Shark session.



Figure 3: Shark Info window

Don't hit the Shark "start" button yet. First, start the application you need to profile. Hit the "start" button in Shark. Once started, Shark will automatically stop after 30 seconds or you can choose to hit "stop". Note that it is a good idea to take Shark snapshots over slightly extended periods to get repeatable results. Also, make sure that you have stopped running other applications so as to not pollute the profile gathered. Depending on your application, you may choose to start after your application has "warmed up" or progressed beyond startup initializations and initial file IO. If you are experienced with your application and its runtime behavior, it is relatively easy to know the hotspots in your code, and where they occur during a typical run. Thus, a correct technique is to monitor your application's log output, determine when the hotspot is started, start Shark, and gather a profile over a sufficient length of time.



Figure 4: Shark Time Profile

Note that at this stage it may still be to your advantage to insert timers in your code with print-statements as we saw in the previous section around the areas of code that are of interest to you.

Using the techniques highlighted above, we can gain insight into the operating characteristics of programs, and understand where we can make a difference. We can generally think of performance improvement for the serial portion of the code, but also consider threading the code and consider performance improvements due to threading. We can do a back-of-the-envelope estimate of the potential degree to which the performance of the overall application can be optimized due to serial improvements in the code, using Amdahl's law, as illustrated below.

Let us say that the hotspot or the section of the serial code we are optimizing is taking up fraction x of the total program run time. Then a speedup of fraction y on this section of the code should theoretically improve overall performance by 1/ ((1-x) + x/y). As a limiting condition, the theoretical maximum speedup possible is 1/(1-x). The limiting maximum speed up would occur if the section of the code we are considering takes zero time to run. As an example, if a section we are focused on is taking 50% of the total run time (x = .5), and we provide a doubling of speed (y = 2) in this section, we can expect an overall speedup of 1/(.5+(.5/2)) = 1/.75 = 1.33 or 33% speedup of the overall performance. As a theoretical maximum, we can get a 2x performance gain for the whole application where fraction x = .5, when speedup y tends to infinity.

Once we determine where we can make a difference, and how much of a difference we can make, we can then look at ways and means in which to make improvements. Please note that while in this article we are looking at serial improvements, in a future article we will look at estimating and planning for parallel improvements in detail.

One other related note before we end this section. Note that compilers as part of optimization can completely eliminate chunks of code it determines will not effect the outcome of the final program, also referred to as dead code elimination. While this is a very good thing for real applications, you need to be careful to ensure that the compilers do not throw away the performance kernel you have extracted in a snippet program in order to examine. Typically an output statement of the result will be all that is required to ensure that the Compiler does not eliminate the small section of code.

COMPILERS

This may sound like a cliche, but perhaps the first and the foremost tool at your disposal to make a performance difference should be your compiler. In addition to the GNU (gcc) Compiler, we will be discussing using the Intel(R) C++ compiler in the following sections. Both compilers integrate into Apple's Xcode Integrated Development Environment, and are binary and source compatible. Fortran developers can use the Intel(R) Fortran Compiler for Mac OS or several GNU options including g77, gfortran, or G95. While GNU is invoked with the 'gcc' command line, Intel Compilers are invoked with the 'icc' command line for C/C++ and the 'ifort' command for Fortran. While the examples that follow use the Intel C/C++ compiler, the same options apply to the Intel Fortran compiler (ifort).

Generally speaking, newer versions of the compiler optimize for systems running newer processors. You can verify the version of the compiler by using the -v flag.

$ icc -v
Version 9.1
$ gcc -v
Using built-in specs.
Target: i686-apple-darwin8
Configured with: /private/var/tmp/gcc/gcc-5250.obj~12/src/configure --disable-checking 
-enable-werror --prefix=/usr --mandir=/share/man --enable-languages=c,objc,c++,obj-c++ 
--program-transform-name=/^[cg][^.-]*$/s/$/-4.0/ --with-gxx-include-dir=/include/c++/4.0.0 
--build=powerpc-apple-darwin8 --with-arch=pentium-m --with-tune=prescott --program-prefix= 
--host=i686-apple-darwin8 --target=i686-apple-darwin8
Thread model: posix
gcc version 4.0.1 (Apple Computer, Inc. build 5250)
  

Here is a very brief run down of the general optimization options available with the compilers. O0 (gcc -O0 or icc -O0) means no optimization is turned on. While it may be helpful to have O0 option to debug applications, your application will run at significant sub-optimal speed at this option level.

O1 and O2 are higher levels of optimization. O1 usually makes optimization tradeoffs that result in smaller compile time compared to O2.

O3 is the highest level of optimization and makes aggressive decisions on optimizations that require a judgment call between the size of the generated code, and the expected resulting speed of the application.

We should note here that despite throwing the best optimization options, compilers can still use your help. As an example, let us look at an often overlooked performance hit: denormals5, denormalized IEEE floating point representations in your code, can trigger exceptions that could result in severe runtime penalties. This is because denormals may require hardware and the OS to intervene in operations using denormal operands. When your application frequently uses very small numbers, you should consider taking advantage of the flush-to-zero (also referred to as FTZ for short) feature. The FTZ feature allows the CPU to take denormal values in registers within the CPU, and convert those values to zero, a valid IEEE representation. FTZ is default when using SIMD.

Consider the following example where denormals are deliberately triggered for illustration. Here, we look at the timing between gcc and icc for the following example:

#include <stdio.h>
main()
{
        long int i;
        double coefficient = .9;
        double data = 3e-308;
        for (i=0; i < 99999999; i++)
        {
                data *= coefficient;
        }
        printf("%f\t %x\n", data, *(unsigned long*)&data);
}
$ g++ -O3 denormal.cpp -o gden
$ time ./gden
0.000000         5
   real    0m13.462s
user    0m12.676s
sys     0m0.041s
$ icc denormal.cpp -o iden
denormal.cpp(8) : (col. 9) remark: LOOP WAS VECTORIZED.
$ time ./iden
0.000000         0
real    0m0.178s
user    0m0.138s
sys     0m0.006s

Notice that since the loop was fairly simple, the Intel compiler was able to vectorize the loop, and therefore use SIMD. Because Flush-To-Zero is the default when using SIMD registers, notice that the runtime improvement can be dramatic. We will dive into SIMD and auto-vectorization in more detail in the next installment of this series of articles.

Next installment

Now that we had a chance to go through the introductions, in the next installment, we will see how to pack a punch in your optimizations, without going through the tedious process of hand assembling instructions or even intrinsics. We will accomplish this by taking advantage of the Auto-vectorization feature. And yes, if you have Altivec code or SSE instructions that you are intending to migrate to take advantage of Auto-vectorization, then the next installment is a must read for you!

In the meantime, hopefully you will get the chance to visit with some members of the Intel Software Development Products team at WWDC.


Both authors are members of the Intel Compiler team. Ganesh Rao has been with Intel for over nine years and currently helps optimize applications to take advantage of the latest Intel processors using the Intel Compilers.

Ron Wayne Green has been involved in Fortran and high-performance computing applications development and support for over twenty years, and currently assists with Fortran and high-performance computing issues.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Art Text 4.0.1 - $29.99
Art Text is graphic design software specifically tuned for lettering, typography, text mockups and various artistic text effects. Supplied with a great variety of ready to use styles and materials,... Read more
Adobe Dreamweaver CC 2020 20.2 - Build w...
Dreamweaver CC 2020 is available as part of Adobe Creative Cloud for as little as $20.99/month (or $9.99/month if you're a previous Dreamweaver customer). Adobe Dreamweaver CC 2020 allows you to... Read more
Adobe Acrobat DC 20.009.20074 - Powerful...
Acrobat DC is available only as a part of Adobe Creative Cloud, and can only be installed and/or updated through Adobe's Creative Cloud app. Adobe Acrobat DC with Adobe Document Cloud services is... Read more
beaTunes 5.2.10 - Organize your music co...
beaTunes is a full-featured music player and organizational tool for music collections. How well organized is your music library? Are your artists always spelled the same way? Any R.E.M. vs REM?... Read more
DiskCatalogMaker 8.1.5 - Catalog your di...
DiskCatalogMaker is a simple disk management tool which catalogs disks. Simple, light-weight, and fast Finder-like intuitive look and feel Super-fast search algorithm Can compress catalog data for... Read more
Meteorologist 3.4.1 - Popular weather ap...
Meteorologist is a simple interface to weather provided by weather.com. It provides the ability to show the weather in the main menu bar, displaying more detail in a pop-up menu, whose contents are... Read more
NeoFinder 7.6 - Catalog your external me...
NeoFinder (formerly CDFinder) rapidly organizes your data, either on external or internal disks, or any other volumes. It catalogs and manages all your data, so you stay in control of your data... Read more
GarageSale 8.1.1 - Create outstanding eB...
GarageSale is a slick, full-featured client application for the eBay online auction system. Create and manage your auctions with ease. With GarageSale, you can create, edit, track, and manage... Read more
Firetask Pro 4.2.2 - Innovative task man...
Firetask Pro uniquely combines the advantages of classical priority-and-due-date-based task management with GTD. Stay focused and on top of your commitments - Firetask Pro's "Today" view shows all... Read more
Bookends 13.4.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more

Latest Forum Discussions

See All

Distract Yourself With These Great Mobil...
There’s a lot going on right now, and I don’t really feel like trying to write some kind of pithy intro for it. All I’ll say is lots of people have been coming together and helping each other in small ways, and I’m choosing to focus on that as I... | Read more »
Pokemon Go's July Community Day wil...
Pokemon Go developers have announced the details concerning the upcoming Gastly Community Day. This particular event was selected by the players of the game after the Gas Pokemon came in second place after a poll that decided which Pokemon would... | Read more »
Clash Royale: The Road to Legendary Aren...
Supercell recently celebrated its 10th anniversary and their best title, Clash Royale, is as good as it's ever been. Even for lapsed players, returning to the game is as easy as can be. If you want to join us in picking the game back up, we've put... | Read more »
Detective Di is a point-and-click murder...
Detective Di is a point-and-click murder mystery set in Tang Dynasty-era China. You'll take on the role of China's best-known investigator, Di Renjie, as he solves a series of grisly murders that will ultimately lead him on a collision course with... | Read more »
Dissidia Final Fantasy Opera Omnia is se...
Dissidia Final Fantasy Opera Omnia, one of Square Enix's many popular mobile RPGs, has announced a plethora of in-game events that are set to take place over the summer. This will include several rewards, Free Multi Draws and more. [Read more] | Read more »
Sphaze is a neat-looking puzzler where y...
Sphaze is a neat-looking puzzler where you'll work to guide robots through increasingly elaborate mazes. It's set in a visually distinct world that's equal parts fantasy and sci-fi, and it's finally launched today for iOS and Android devices. [... | Read more »
Apple Arcade is in trouble
Yesterday, Bloomberg reported that Apple is disappointed in the performance of Apple Arcade and will be shifting their approach to the service by focusing on games that can retain subscribers and canceling other upcoming releases that don't fit... | Read more »
Pixel Petz, an inventive platform for de...
Pixel Petz has built up a sizeable player base thanks to its layered, easy-to-understand creative tools and friendly social experience. It revolves around designing, trading, and playing with a unique collection of pixel art pets, and it's out now... | Read more »
The King of Fighters Allstar's late...
The King of Fighters ALLSTAR, Netmarble's popular action RPG, has once again been updated with a plethora of new content. This includes battle cards, events and 21 new fighters, which increases the already sizeable roster even more. [Read more] | Read more »
Romancing SaGa Re;univerSe, the mobile s...
Square Enix latest mobile spin-off Romancing SaGa Re;univerSe is available now globally for both iOS and Android. It initially launched in Japan back in 2018 where it's proven to be incredibly popular, so now folks in the West can finally see what... | Read more »

Price Scanner via MacPrices.net

Apple’s $779 13″ MacBook Air deal returns to...
Apple has clearance, Certified Refurbished, 2019 13″ MacBook Airs available again starting at $779. Each MacBook features a new outer case, comes with a standard Apple one-year warranty, and is... Read more
$200 13″ MacBook Pro discounts are back at Am...
Amazon has 2020 13″ 2.0GHz MacBook Pros on sale again today for $150-$200 off Apple’s MSRP. Shipping is free. Be sure to purchase the MacBook Pro from Amazon, rather than a third-party seller, and... Read more
Deal Alert! Apple AirPods with Wireless Charg...
Sams Club has Apple AirPods with Wireless Charging Case on sale on their online store for only $149.98 from July 6, 2020 to July 9, 2020. Their price is $50 off Apple’s MSRP, and it’s the lowest... Read more
Xfinity Mobile promo: Apple iPhone XS models...
Take $300 off the purchase of any Apple iPhone XS model at Xfinity Mobile while supplies last. Service plan required: – 64GB iPhone XS: $599.99 save $300 – 256GB iPhone XS: $749.99 save $300 – 512GB... Read more
New July 2020 promo at US Cellular: Switch an...
US Cellular has introduced a new July 2020 deal offering free 64GB Apple iPhone 11 smartphones to customers opening a new line of service. No trade-in required, and discounts are applied via monthly... Read more
Apple offers up to $400 Education discount on...
Apple has launched their Back to School promotion for 2020. They will include one free pair Apple AirPods (with charging case) with the purchase of a MacBook Air, MacBook Pro, iMac, or iMac Pro (Mac... Read more
July 4th Sale: Woot offers wide range of Macs...
Amazon-owned Woot is blowing out a wide range of Apple Macs and iPads for July 4th staring at $279 and ranging up to just over $1000. Models vary from older iPads and 11″ MacBook Airs to some newer... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Abt Electronics has Apple’s new 32″ Pro Display XDR model with the nano-texture glass in stock and on sale today for up to $144 off MSRP. Shipping is free: – Pro Display XDR (nano-texture glass): $... Read more
New 2020 Mac mini on sale for up to $100 off...
Amazon has Apple’s new 2020 Mac minis on sale today for $40-$100 off MSRP with prices starting at $759. Shipping is free: – 2020 4-Core Mac mini: $759 $40 off MSRP – 2020 6-Core Mac mini: $998.99 $... Read more
July 4th Sale: $100 off every 2020 13″ MacBoo...
Apple resellers have new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP as part of their July 4th sales. Starting at $899, these are the cheapest new 2020 MacBooks for sale anywhere: (1) B... Read more

Jobs Board

Operating Room Assistant, *Apple* Hill Surg...
Operating Room Assistant, Apple Hill Surgical Center - Full Time, Day Shift, Monday - Saturday availability required Tracking Code 62363 Job Description Operating Read more
Perioperative RN - ( *Apple* Hill Surgical C...
Perioperative RN - ( Apple Hill Surgical Center) Tracking Code 60593 Job Description Monday - Friday - Full Time Days Possible Saturdays General Summary: Under the Read more
Product Manager, *Apple* Commercial Sales -...
Product Manager, Apple Commercial Sales Austin, TX, US Requisition Number:77652 As an Apple Product Manager for the Commercial Sales team at Insight, you Read more
*Apple* Mac Product Engineer - Barclays (Uni...
Apple Mac EngineerWhippany, NJ Support the development and delivery of solutions, products, and capabilities into the Barclays environment working across technical Read more
Blue *Apple* Cafe Student Worker - Pennsylv...
…enhance your work experience. Student positions are available at the Blue Apple Cafe. Employee meal discount during working hours. Duties include food preparation, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.