TweetFollow Us on Twitter

Writing Contextual Menu Plugins for OS X, part 1

Volume Number: 18 (2002)
Issue Number: 8
Column Tag: Mac OS X

Writing Contextual Menu Plugins for OS X, part 1

Implementing the new COM-compatible API

by Brent Simmons

The API for contextual menu plugins is different in OS X than in OS 8/9. It's COM-compatible--it's based on Microsoft's Component Object Model.

That should be enough to scare you off, but don't let it. The good news is you can deal with the COM interface once and re-use that code. The even better news is that this article will provide it for you so you won't have to write it in the first place.

After getting the COM parts out of the way, this article will show how to add a Copy Path menu command to the Finder's contextual menu. This command will copy the path of a selected file or folder onto the clipboard (a path as in /Users/john/myCat.tiff). The second article in this series will go further: it will show how to add submenus, work with text selections, and execute Unix commands.


Figure 1. Copy Path command in Finder's contextual menu

You can download the source and project files for this article from

http://ranchero.com/downloads/mactech/CopyPathPluginSource.sit

The sample plugin is built with the April 2002 Developer Tools version of Project Builder.

Before we start coding, let's get the mile-high view of contextual menus on OS X.

Overview

The basic gist of contextual menus is that when you control-click on something--some files, a folder, some text--a menu appears with commands that do something with what you clicked on.

In other words, contextual menus act on a selection. You wouldn't, for example, put the Sleep command in a contextual menu, since Sleep doesn't act on a selection.

Also, you wouldn't put an Eject command in a menu that appears when text is selected. Though the Eject command acts on a selection, it doesn't act on text. An Eject command (or similar) should appear only when a removable disk is selected.

Contextual menu plugins are system-wide--almost, anyway. Not every app supports system contextual menus. But you'll find plenty that do, including Eudora, CodeWarrior IDE, BBEdit, Internet Explorer, and of course the Finder.

Plugins are bundles; they're CFPlugins. They can be installed at ~/Library/Contextual Menu Items/ or at /Library/Contextual Menu Items/. The first location makes a plugin accessible to a specific user; the second location makes a plugin accessible to all users.

Okay. Let's code.

Implementing the COM IUnknown Interface

A contextual menu plugin has three things it must do: add menu items when requested, run a chosen menu command, and satisfy the requirements of the COM-compatible API.

We'll start with the COM stuff, because it's not utterly thrilling--and, gotten out of the way once means it's out of the way forever. In fact, if you're in a hurry you can skip down to the UUIDs section below.

IUnknown

Think of COM as a framework for object-oriented plugins. Every plugin must implement the IUnknown interface. IUnknown is the base class; it implements interface querying and reference counting.

Specifically it implements three functions: addRef, which increments the reference count; release, which decrements the reference count and releases the object if the count goes to zero; and queryInterface, which is called to determine if a plugin implements a given interface.

Cocoa developers especially are familiar with reference counting. Each time a COM object is retained its reference count is incremented. When it's released, the reference count is decremented. When it goes to zero the object is disposed.

If you're not familiar with reference counting, you can think of it as a "friends" counter. Each time you get an addRef call, it's like someone ringing you up and saying, hey, I'm your friend. Each time you get a release call, it's like someone ringing you up and saying, hey, I'm no longer your friend. You keep a count of how many friends you have. When the count goes to zero you may as well not exist anymore. (It's a good thing people aren't COM objects.)

Incrementing the reference count

addRef, the first of the required IUnknown interface functions, is called to increment the reference count:

Listing 1: incrementing the reference count

addRef
static ULONG addRef (void *pluginInstance)
   {
      tyPlugin *instance = (tyPlugin*) pluginInstance;
      (*instance).refCount += 1;
      return ((*instance).refCount);
   }

It gets a pointer to an instance of the plugin and bumps refCount. (Note that though it returns the reference count, this is just a convention, not something to be relied on.)

tyPlugin is a struct defined in CopyPathPlugin.h:
typedef struct tyPlugin {
   ContextualMenuInterfaceStruct *cmInterface;
   CFUUIDRef factoryId;
   UInt32 refCount;
   } tyPlugin;

The first element of the tyPlugin struct is a pointer to a struct that lays out the functions implemented by the plugin. factoryId is the unique ID of the plugin. refCount is the current reference count.

ContextualMenuInterfaceStruct, also defined in CopyPathPlugin.h, looks like this:

static ContextualMenuInterfaceStruct interfaceTable = {
   NULL,
   queryInterface,
   addRef,
   release,
   examineContext,
   handleSelection,
   postMenuCleanup
   };

The first item is some necessary padding. The next three functions--queryInterface, addRef, and release--are required by the IUnknown interface. The final three functions--examineContext, handleSelection, and postMenuCleanup--are required by the contextual menus plugin interface.

Decrementing the reference count

release, the second of the required IUnknown interface functions, is called to decrement the reference count. When the reference count goes to zero, the instance is disposed.

Listing 2: decrementing the reference count

release
static ULONG release (void *pluginInstance)
   {
      tyPlugin *instance = (tyPlugin*) pluginInstance;
      (*instance).refCount -= 1;
      if ((*instance).refCount == 0) {      
         deallocateInstance (instance);
         return (0);
         }
      return ((*instance).refCount);
   }

The important part is where it checks if refCount has gone to zero and in that case calls deallocateInstance.

Listing 3: deallocating an instance of the plugin

deallocateInstance
static void deallocateInstance (tyPlugin *pluginInstance)
   {
      CFUUIDRef factoryId = (*pluginInstance).factoryId;
      free (pluginInstance);
   
      if (factoryId) {
         CFPlugInRemoveInstanceForFactory (factoryId);
         CFRelease (factoryId);
         } 
   }

The instance is passed to free which deallocates the memory. Then the instance is disassociated from its factory ID and the factory ID reference is released.

Allocating a new instance

How are instances allocated in the first place? The system calls the factory function pluginFactory to create new instances of the plugin object. It knows to call pluginFactory because in the Application Settings in Project Builder we've specified pluginFactory as the name of the factory method.

Choose Edit Active Target from the Project menu; click on the Bundle Settings tab; click on the Expert button (in the upper right of the window). Expand the CFPluginFactories line and underneath you'll see the UUID of this plugin with a value of pluginFactory.

Here's pluginFactory itself:

Listing 4: creating a new instance of the plugin

pluginFactory
void* pluginFactory (CFAllocatorRef allocator,
   CFUUIDRef typeId)
   {
      #pragma unused (allocator)
      if (CFEqual (typeId, kContextualMenuTypeID))
         return (allocateInstance (kCMPlugInFactoryId));
      return (NULL);
   }

First it does a sanity-check (via CFEqual) that what's wanted is a contextual menu plugin, then it calls allocateInstance to actually allocate a new instance.

Listing 5: allocating a new instance of the plugin

allocateInstance
static tyPlugin* allocateInstance (CFUUIDRef factoryId)
   {
      tyPlugin *newInstance;
      newInstance = (tyPlugin*) malloc (sizeof (tyPlugin));
      (*newInstance).cmInterface = &interfaceTable;
      (*newInstance).factoryId = CFRetain (factoryId);   
      CFPlugInAddInstanceForFactory (factoryId);
      (*newInstance).refCount = 1;
   
      return (newInstance);
   }

Malloc allocates the memory for a new instance, then the elements of the struct are filled in. cmInterface gets a pointer to the interface table (a ContextualMenuInterfaceStruct). The factory ID is set and retained via CFRetain. The instance is associated with this factory ID via CFPlugInAddInstanceForFactory. refCount is set to 1 and the instance is returned.

queryInterface

queryInterface, the third and last of the required IUnknown interface functions, is called to check to see if a given plugin implements a given interface.

Listing 6: handling an interface query

queryInterface
static HRESULT queryInterface (void* pluginInstance,
   REFIID iid, LPVOID* ppv)
   {
      if (isGoodInterface (iid)) {
         addRef (pluginInstance);
         *ppv = pluginInstance;
         return (S_OK);
         }
      *ppv = NULL;
      return (E_NOINTERFACE);
   }

If the interface is one that this plugin implements, then the reference count is incremented (via addRef) and a pointer to the plugin instance is returned. Otherwise an error code (E_NOINTERFACE) is returned.

isGoodInterface checks to see that the requested interface is either IUnknown or the contextual menu plugin interface.

Listing 7: determining if a requested interface is implemented by this plugin

isGoodInterface
static Boolean isGoodInterface (REFIID iid)
   {
      CFUUIDRef interfaceId =
         CFUUIDCreateFromUUIDBytes (NULL, iid);
      Boolean flGoodInterface = false;
      
      if (CFEqual (interfaceId, kContextualMenuInterfaceID))
         flGoodInterface = true;
      if (CFEqual (interfaceId, IUnknownUUID))
         flGoodInterface = true;
   
      CFRelease (interfaceId);
      return (flGoodInterface);
   }

It creates a CFUUIDRef that can be compared to the contextual menu interface ID and the IUnknown ID. If it matches either interface ID, then it's an interface that this plugin implements. isGoodInterface returns true if there's a match, false otherwise.

UUIDs

This is the only COM thing you have to re-do for each plugin you create. Luckily, it's a piece of cake, just slightly tedious.

A UUID is a universally unique identifier that identifies your plugin. In this sample it appears in CopyPathPlugin.h as the following un-aesthetic lines:

/*The unique ID for this plugin:
CEEFF462-6C32-11D6-A15C-0050E4591B3C*/
#define kCMPlugInFactoryId (CFUUIDGetConstantUUIDWithBytes \
   (NULL, 0xCE, 0xEF, 0xF4, 0x62, 0x6C, 0x32, 0x11, 0xD6, \
   0xA1, 0x5C, 0x00, 0x50, 0xE4, 0x59, 0x1B, 0x3C))

To generate a new UUID, launch Terminal.app, and on the command line type uuidgen and hit Return. Underneath will appear a new UUID. (See Figure 2.)


Figure 2. Generating a UUID via the command line

When you go to create your own plugins, copy the UUID generated by uuidgen into your code as in the sample. Then do the tedious bit of copy-and-paste needed to make it look like the above.

Then choose Edit Active Target from the Project menu; click the Bundle Settings tab; click the Expert button. Your UUID should appear in two places (as in this sample): under CFPlugInFactories and under CFPlugInTypes. (See Figure 3.)


Figure 3. Bundle settings

Enough COM. Let's do the fun part, the contextual menus interface.

Contextual Menus Interface

Contextual menu plugins must implement three functions beyond the three required IUnknown interface functions.

examineContext is called to give the chance for the plugin to add commands to the menu that's being built. The plugin can see what the current context is, and decide what commands to add or not add.

handleSelection is called to actually run the command the user chose.

postMenuCleanup is called afterward in case the plugin has any cleanup to do.

examineContext

You don't own the contextual menu, you just get the chance to add one or more commands. It's a shared menu: the system may add commands and other plugins may add commands.

This sample plugin will add a Copy Path command when a file or folder is selected in the Finder. examineContext is the first of the required contextual menus interface functions.

Listing 8: determining if a file object is selected

examineContext
static OSStatus examineContext (void *pluginInstance,
   const AEDesc *context, AEDescList *commandList)
   {
      if (getFileObject (context, nil))
         return (addCommandToMenu (commandList));
      if (getFileObjectFromList (context, nil))
         return (addCommandToMenu (commandList));
      return (noErr);
   }

Here's an important point: though we said above that we want this command to appear only in the Finder, in fact we'll do something smarter. Let's not care if it it's the Finder or not, let's care only that it's a file or folder object that's selected.

That way, if someone writes a Finder replacement that supports system contextual menus, this plugin will work there too.

A general rule of thumb is that the important part of the context is the type or types of objects selected. The application is of lesser importance, when it's even important at all. In this sample we don't care if it's Apple's Finder, John Doe's cool replacement Finder, or any other app that presents file objects.

context is an Apple event descriptor describing the object or objects selected. What we want to know is if it's a file or folder selected. To do that we see if the object either is or can be coerced to a descriptor of typeAlias (which points to a file or folder).

So examineContext calls getFileObject which returns true if context is already of typeAlias or can be coerced to typeAlias. (It may be of typeFSS, for instance.)

If getFileObject returns false, then examineContext calls getFileObjectFromList. If context is an AEDescList, then it checks to see if the first item in the list is of typeAlias or can be coerced to typeAlias. The reason we do this is because in testing we discovered that context is always an AEDescList when selecting even just one file or folder in the Finder. We could perhaps have gotten away with assuming that that would always be true, and skipped the call to getFileObject, but then a future version of the Finder might break our plugin. (Or the plugin might not work with other apps where context isn't always an AEDescList.)

getFileObject

This function checks to see if a descriptor is of typeAlias or can be coerced to typeAlias.

Listing 9: getting a file object from the context descriptor

getFileObject
static Boolean getFileObject (const AEDesc *desc,
   AEDesc *resultDesc)
   {
      AEDesc tempDesc = {typeNull, NULL};
      Boolean flFile = false;
      OSErr err = noErr;
   
      if ((*desc).descriptorType == typeAlias) {
         if (resultDesc != nil)
            return (AEDuplicateDesc (desc, resultDesc) == noErr);   
         else
            return (true);
         } 
   
      err = AECoerceDesc (desc, typeAlias, &tempDesc);
      if ((err == noErr) &&
         (tempDesc.descriptorType == typeAlias)) {      
         flFile = true;
   
         if (resultDesc != nil)
            flFile =(AEDuplicateDesc (&tempDesc, resultDesc)
               == noErr);
         } 
      AEDisposeDesc (&tempDesc);
      return (flFile);
   }

If context is already of typeAlias, then we know it's a file or folder, and the function returns true. The function checks (*desc).descriptorType to determine the type of the context descriptor.

If context can be coerced to typeAlias (via AECoerceDesc), then again the function returns true. Otherwise it returns false.

Note that this function will make a copy of context (via AEDuplicateDesc) in resultDesc if the caller wants. This will be used later when the plugin is called to run our menu command (via handleSelection).

getFileObjectFromList

This function gets a file object from a list (an AEDescList).

Listing 10: getting a file object from an AEDescList

getFileObjectFromList

static Boolean getFileObjectFromList (const AEDesc *desc,
   AEDesc *resultDesc)
   {   
      Boolean flFile = false;
      long numItems = 0;
      OSErr err = noErr;
      AEKeyword keyword;
      AEDesc tempDesc = {typeNull, NULL};
   
      if ((*desc).descriptorType != typeAEList)
         return (false);
   
      err = AECountItems (desc, &numItems);   
      require_noerr (err, getFileObjectFromList_fail);
      if (numItems == 1) {   
         err = AEGetNthDesc (desc, 1, typeWildCard,
            &keyword, &tempDesc);
         if (err == noErr) {
            flFile = getFileObject (&tempDesc, nil);         
            if ((flFile) && (resultDesc != nil))
               AEDuplicateDesc (&tempDesc, resultDesc);      
            AEDisposeDesc (&tempDesc);
            } 
         } 
      getFileObjectFromList_fail:
      return (flFile);
   }

First it makes sure that context is in fact an AEDescList. Then it counts the number of items in the list via AECountItems. If the number of items is one, then it gets the first item (AEGetNthDesc), then calls getFileObject to see if that first object is of typeAlias or can be coerced to typeAlias.

As with getFileObject, this function will return a copy of the file object in resultDesc as a typeAlias descriptor if the caller wishes. But for examineContext we don't want a copy, we just want to know if it's a file object or not.

Back to examineContext: if either getFileObject or getFileObjectFromList return true, then it calls addCommandToMenu to add the Copy Path command to the contextual menu.

Adding a command

The contextual menu being built is passed to examineContext as an AEDescList. To add a command to the menu, addMenuCommand creates an AERecord and adds the command string and command ID. Then it adds the record to the end of commandList.

Listing 11: adding the Copy Path command to the contextual menu

addCommandToMenu
static OSStatus addCommandToMenu (AEDescList *commandList)
   {
      AERecord command = {typeNull, NULL};
      Str255 commandString = copyPathCommand;
      OSErr err = noErr;
      SInt32 commandId = 2000;
   
      err = AECreateList (NULL, 0, true, &command);
      require_noerr (err, addCommandToMenu_complete_fail);
      err = AEPutKeyPtr (&command, keyAEName, typeChar,
         &commandString [1], commandString [0]);
      require_noerr (err, addCommandToMenu_fail);
   
      err = AEPutKeyPtr (&command, 'cmcd',
         typeLongInteger, &commandId, sizeof (commandId));
      require_noerr (err, addCommandToMenu_fail);
      /*0 means add to end of list.*/
      err = AEPutDesc (commandList, 0, &command); 
      addCommandToMenu_fail:
      AEDisposeDesc (&command);
      addCommandToMenu_complete_fail:
      return (err);
   }

The command is created via AECreateList. AEPutKeyPtr is used to add the text of the command and its command ID. (This sample doesn't actually use the command ID, since there's just one menu command--but if you have more than one command the command ID is quite useful.)

Finally the command record is added to the end of the command list via AEPutDesc.

After cleaning up, addCommandToMenu returns, then examineContext returns. Then we move on to implementing handleSelection.

handleSelection

This function, the second function required by the contextual menu interface, is called to run a contextual menu command. In this sample we run the Copy Path command. Our version of handleSelection looks like this:

Listing 12: handling the Copy Path command

handleSelection
static OSStatus handleSelection (void *pluginInstance,
   AEDesc *context, SInt32 commandId)
   {
      AEDesc aliasDesc = {typeNull, NULL};
      char path [MAXPATHLEN];
      OSErr err = noErr;
      if (!getAliasDesc (context, &aliasDesc))
         return (noErr);
      if (getPathStringFromAlias (&aliasDesc, path))
         writePathToClipboard (path);
      AEDisposeDesc (&aliasDesc);
      return (err);
   }

It takes a pointer to the plugin instance, a pointer to the context (the same context that examineContext gets, a description of the selected object(s)), and the command ID of the menu command that was chosen.

Just as in examineContext, we want to get a descriptor of typeAlias from context. So getAliasDesc is called to get a typeAlias descriptor. If it fails, the plugin does nothing.

Once it has the descriptor, it calls getPathStringFromAlias to get the path to the file object as a C string. Then it calls writePathToClipboard to write the path string to the clipboard. After cleaning up it returns.

getAliasDesc

Backing up... here's getAliasDesc:

Listing 13: getting a typeAlias descriptor

getAliasDesc
static Boolean getAliasDesc (const AEDesc *desc,
   AEDesc *resultDesc)
   {
      if (getFileObject (desc, resultDesc))
         return (true);   
      return (getFileObjectFromList (desc, resultDesc));
   }

It calls getFileObject and getFileObjectFromList, which are the same functions we used in examineContext to determine if a file object was selected. The difference here is that the second parameter to these functions is not null, it's a pointer to a descriptor that should become a typeAlias descriptor--a file object.

getPathStringFromAlias

handleSelection then calls getPathStringFromAlias:

Listing 14: getting a path string from a typeAlias descriptor

getPathStringFromAlias
static Boolean getPathStringFromAlias (const AEDesc *desc,
   char *path)
   {
      FSRef fileRef;
      Size dataSize = AEGetDescDataSize (desc);
      AliasHandle aliasRef;
      Boolean flChanged = false;
      OSErr err = noErr;
   
      aliasRef = (AliasHandle) NewHandle (dataSize);
      if (aliasRef == nil)
         return (false);
   
      err = AEGetDescData (desc, *aliasRef, dataSize);   
      require_noerr (err, getFileObjectFromAlias_fail);
   
      err = FSResolveAlias (NULL, aliasRef,
         &fileRef, &flChanged);
      require_noerr (err, getFileObjectFromAlias_fail);
   
      err = FSRefMakePath (&fileRef, (UInt8*) path,
         MAXPATHLEN);
   
      getFileObjectFromAlias_fail:   
      DisposeHandle ((Handle) aliasRef);
      return (err == noErr);
   }

It allocates a new AliasHandle via NewHandle, then gets its data by calling AEGetDescData to get it from the typeAlias descriptor.

Then it gets an FSRef from the AliasHandle by calling FSResolveAlias.

Then it gets a path string from the FSRef by calling FSRefMakePath. (Note: MAXPATHLEN is defined in sys/param.h, which is included by CopyPathPlugin.h.)

It returns after cleaning up.

writePathToClipboard

Finally handleSelection calls writePathToClipboard which writes the path string to the clipboard.

Listing 15: writing text to the clipboard

writePathToClipboard
static void writePathToClipboard (char *path)
   {
      ScrapRef scrap;
      ClearCurrentScrap ();
      GetCurrentScrap (&scrap);
      PutScrapFlavor (scrap, kScrapFlavorTypeText,
         kScrapFlavorMaskNone, strlen (path),
         (const void*) path);
   }

It clears the current scrap (clipboard), gets a reference to the current scrap, then writes the string as text to the scrap via PutScrapFlavor. Simple.

That's it for implementing handleSelection.

postMenuCleanup

This function is the third and last function required by the contextual menu interface. If the plugin had any cleanup to do after running the command, this would be the place to do it. But since there's no cleanup to do (in this sample), postMenuCleanup is a no-op:

Listing 16: cleaning up

postMenuCleanup
static void postMenuCleanup (void *pluginInstance)
   {
      /*This plugin has no cleanup to do.*/
   }

Testing and debugging plugins

After building your plugin, you'll find it in the build directory in the project directory. Copy it to ~/Library/Contextual Menu Items/. You may need to create the Contextual Menu Items folder if it doesn't already exist.

If you're replacing a plugin that's already installed, first trash the old version, then copy the new version into the Contextual Menu Items folder.

You'll need to quit and restart the Finder before it will see the new version of the plugin. What I do is put an AppleScript script in my dock that looks like this:

tell application "Finder"
   quit
end tell

OS X is just a bit unpredictable when it runs this script. Sometimes the Finder quits twice. Sometimes the Finder restarts, sometimes not. No harm is apparent. If the Finder doesn't restart, click the Mac smiley face icon in the Dock and the Finder will launch.

If you'd rather, you can log out then log back in instead, which also restarts the Finder.

To test this plugin, install it as above, then control-click (or right-click if you have a two-button mouse) on one file or folder in the Finder. You should see a Copy Path command in the menu that appears. Choose the command, then choose Show Clipboard from the Finder's Edit menu. The clipboard contents should be text, the path to the object you clicked on. Try doing a paste in another app just to make sure everything works as expected.

Tip: for debugging plugins I use printf calls. The output appears in Console.app, which you can find in the /Applications/Utilities/ directory.

Conclusion

As you've seen, implementing contextual menu plugins in OS X is not terribly difficult, it's just that the COM-compatible interface is not obvious. Given sample code and an understanding of how the COM interface works, you can concentrate on the code that's unique to your plugin.

Coming in part two

In the next article we'll go farther, we'll show how to build a submenu, how to send an update event to the Finder, how to handle selected text (in apps such as BBEdit and Internet Explorer), and how to call a Unix command from a menu command.

References


Brent Simmons is a Seattle-based independent Mac OS X developer and writer, a fan of both Cocoa and Carbon. He runs a Mac developer news weblog at ranchero.com; he can be contacted at brent@ranchero.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.