TweetFollow Us on Twitter

Sep 00 Challenge 3D For Free Using the Mac's Standard Apps

Volume Number: 16 (2000)
Issue Number: 9
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

Busy Beavers

Before we get to this month's Challenge, I have to confess being a little distracted. No, not because the annual holiday up at the lake is just a few days away, although I'll also confess that the prospect of a couple of weeks away from the Real Job is most appealing. No, the distraction is because UPS just delivered another addition to the family of computers at the Boonstra household. The most recent additions have been iMacs for the Junior members of the family, but this one is for Me. A new G4. No, not one of the new dual-processor models introduced by Apple at JavitsWorld. (Those of us in Boston cannot acknowledge use of the term MacWorld for anything on the Right Coast that doesn't happen in Bean Town.) Dual processors might mean something to those PhotoShop users among you, but they don't do much for the Rest of Us until Mac OS X comes along. No, the new addition is one of those now-obsolete single-processor G4-500 models that have (finally) dropped a little in price. As those of you who participate in the Challenge contests know, I've been limping along with an old 8500, enhanced over the years with a faster 604e, then a dual 604e upgrade (BeOS, oh BeOS, wherefore art thou BeOS?), and finally with a G3 board. Several readers have asked in the past about whether AltiVec technology could be used in the Challenge, but, sadly, I didn't have a G4 to use in the evaluation. A problem now rectified, or at least it will be once I complete the file transfers proceeding even as I write.

Now that you all know about my new toy, we can get on to the business at hand. This month's problem was suggested by F. C Kuechmann, who earns two Challenge points for the suggestion. Your Challenge this month is to create a Busy Beaver Turing Machine and write a program that simulates its execution.

The Busy Beaver problem was invented in the early 1960s by Tibor Rado of Ohio State University. He asked the following question about 2-symbol Turing machines: what is the largest number of 1s that a Turing machine with n states could write to a tape initially filled with 0s. That "busy beaver" number, or BB(n), has some interesting properties. For example, by reasoning about the Halting Problem, one can show that BB(n) grows faster than any computable sequence.

An internet search shows that the Busy Beaver problem continues to attract interest. Until 1985, the largest value for a 5-state busy beaver produced 501 1s. Then George Uhing found a 5-state machine that produced 1915 1s before halting. And in 1987, Heiner Marxen (and Jürgen Buntrock showed that BB(5) is at least 4098.

For reference, you can start with the following URLs: Marxen's page at <http://www.drb.insel.de/~heiner/BB/index.html>, and <http://grail.cba.csuohio.edu/~somos/bb.html>

The prototype for the code you should write is:

typedef unsigned long ulong;

typedef enum {kMoveLeft=-1,kHalt=0, kMoveRight=1} MoveDir;

typedef struct TMRule {   /* Turing Machine rule */
  ulong oldState;         /* this rule applies when the machine state is oldState */
  Boolean inputSymbol;   /*   and the current input symbol is inputSymbol */
  ulong newState;         /* set current state to newState when this rule fires */
  Boolean outputSymbol;   /* write outputSymbol to tape when this rule fires */
  char moveDirection;    /* kMoveLeft, kMoveRight, or kHalt */
} TMRule;

ulong /* return number of rules */ BusyBeaver5(
   TMRule theTMRules[],
      /* preallocated storage, return the rules for your BB machine */
);

Boolean /* return true for success */ RunTuringMachine(
   TMRule theTMRules[],
      /* preallocated storage, return the rules for your BB machine */
   ulong numberOfTMRules,
      /* the number of rules in theTMRules */
   ulong numBytesInHalfTape,
      /* half-size of the "infinite" Turing Machine tape */
   unsigned char *tmTape,
      /* pointer to preallocated Turing Machine tape storage */
      /* Each byte contains 8 tape symbols, each symbol is 0 or 1. */
      /* The tape extends from tmTape[-numBytesInHalfTape] to 
                                       tmTape[numBytesInHalfTape -1] */
      /* Tape position 0 is (tmTape[0] & 0x80), 
         tape position 1 is (tmTape[0] & 0x40) 
         tape position -1 is (tmTape[-1] & 0x01), etc. */
   ulong *numberOf1sGenerated,
      /* return the number of 1s placed on the tape */
   ulong *numberOfRulesExecuted
   /* return the number of rules executed when running BB, including the halt rule */
   
);

The first thing you need to do is to select the 5-state Busy Beaver Turing Machine that you will simulate in your RunTuringMachine routine. Since scoring is based on how busy your beaver is, that is, on how many 1s it produces on the simulated Turing Machine tape, you want to give some careful thought to this selection. This Turing Machine should returned by your BusyBeaver5 using the TMRule data structure. BusyBeaver5 may return a hard-coded Turing Machine; it does not need to identify the busy beaver at run time.

My test code will then provide the output of BusyBeaver5 to your RunTuringMachine routine, which should simulate the execution of the input Turing Machine. RunTuringMachine will be provided with a blank (zero-filled) tape tmTape that is 2*numBytesInHalfTape in size. The "read head" of the Turing Machine is initially positioned over position [0] of the tape. On exit, tmTape should contain the output of the Turing Machine being simulated. In addition, you should return in the appropriate output parameters the number of 1s on the output tape and the number of state transitions that occurred during your execution of the Turing Machine. RunTuringMachine should return TRUE if it was able to successfully execute the Turing Machine, and FALSE if it failed for some reason, such as running out of simulated tape. (It is not my intention to provide a simulated tape that is too short, but your code should fail gracefully if that happens during testing.)

RunTuringMachine must provide a general Turing Machine simulation, not dependent on the Busy Beaver problem or on the content of the initial input tape. I may choose to verify correctness of your RunTuringMachine code against other input besides that produced by BusyBeaver5.

The winner will be the solution that identifies the 5-state Busy Beaver generating the most 1s on the output tape. Among solutions with equal numbers of 1s, the solution that produces the output in the fewest number of Turing Machine steps will be the winner. And, for solutions that produce the same output in the same number of steps, the winner will be the solution that executes the Turing Machine in the least execution time. While my hope is that one of you might break new ground in the field of busy beaver research, my expectation is that the winning solution will be determined by the execution time criterion.

This will be a native PowerPC Challenge, using the CodeWarrior Pro 5 environment. Solutions may be coded in C, C++, or Pascal. As is our tradition for the September Column, we'll also allow solutions that are completely or partially coded in assembly language. And, yes, this time you can take advantage of the AltiVec features of the G4.

Three Months Ago Winner

Congratulations to Willeke Rieken (The Netherlands) for submitting the winning solution to the June Rub*k Rotation Programmer's Challenge. Readers may recall that the Rub*k Rotation Challenge required contestants to display an image of the famous puzzle and respond to commands to rotate the entire cube or individual cube faces. Scoring was based on correctness of the solution, in this case the smoothness of the displayed rotations, and on execution time.

The fact that Willeke was the only person to submit an entry does not detract from his solution in the slightest, although it did significantly increase his chances of winning. (You can't win if you don't play!) Willeke elected to use QuickDraw3D to implement his solution, motivated by a desire to gain some experience with the QD3D API. His code creates 26 individual cubies (the center cubie is never visible) using the AddCubie routine. Although it might look like a lot of work to set up the cube, the effort pays off in the simplicity with which one can rotate the cube (RotateCube), turn a face of the cube (QuarterTurn), and draw the entire cube (DrawCube), regardless of orientation.

With only one entry, I'll omit the usual table describing the parameters of the solution, and simply observe that this victory vaults Willeke into 4th place in the overall Challenge standings. And remember, you can't win if you don't ...., oh, I'm repeating myself.

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
1. Munter, Ernst 245
2. Saxton, Tom 126
3. Maurer, Sebastian 78
4. Rieken, Willeke 65
5. Boring, Randy 50
6. Shearer, Rob 47
7. Taylor, Jonathan 26
8. Brown, Pat 20
9. Heathcock, JG 16
10. Downs, Andrew 12
11. Jones, Dennis 12
12. Day, Mark 10
13. Duga, Brady 10
14. Fazekas, Miklos 10
15. Murphy, ACC 10
16. Selengut, Jared 10
17. Strout, Joe 10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Willeke's winning Rub*k Rotation solution:

RubikRotation.c
Copyright © 2000
Willeke Rieken

/*
   draws (a simplified version of) Rubik's cube and animates
   rotations of the cube and of the faces of the cube.
   I'm using QD3D because I never used it and it seemed
   more fun than a diy method and drowning in sin and cos
   and I still think it is.
   
   the model object for the cube consists of 26 group objects
   for each cubie and a rotation object. the rotation object
   contains all previous rotations of the whole cube added together.
   each cubie object contains a box object and a rotation object.
   a cubie rotation object contains all previous rotations of the
   cubie that was caused by rotating a face of the cube.
   
   during rotation of the cube an extra rotation object is
   submitted. after the rotation the rotation object of the cube
   is adjusted.
   during rotation of a face an exta rotation object is added to
   every cubie in the face. after the rotation the extra rotation
   object is removed and the rotation object of the cubie is adjusted.
   
   references to the rotation object of the cube and to the cubie objects
   are kept in globals.
*/

#include <QD3D.h>
#include <QD3DDrawContext.h>
#include <QD3DRenderer.h>
#include <QD3DShader.h>
#include <QD3DCamera.h>
#include <QD3DLight.h>
#include <QD3DGeometry.h>
#include <QD3DGroup.h>
#include <QD3DMath.h>
#include <QD3DTransform.h>
#include <QD3DView.h>
#include <QD3DAcceleration.h>
#include <QD3DErrors.h>

#include "RubikRotation.h"

TQ3ViewObject   gView;   // the view for the scene
TQ3StyleObject   gInterpolation;
         // interpolation style used when rendering
TQ3StyleObject   gBackFacing;
         // whether to draw shapes that face away from the camera
TQ3StyleObject   gFillStyle;
         // whether drawn as solid filled object or decomposed to components
TQ3GroupObject   gCubeModel;   // the cube
TQ3GroupObject   gCubies[3][3][3];
         // the cubies
TQ3TransformObject   gCubeRotation;
         // cumulation of every rotation of the whole cube until now
TQ3TransformObject   gTempCubeRotation;
         // used during rotation of the cube
float   gStepSize;

static TQ3DrawContextObject MyNewDrawContext(CWindowPtr theWindow)
// create context
{
   TQ3DrawContextData   myDrawContextData;
   TQ3MacDrawContextData   myMacDrawContextData;
   TQ3ColorARGB   clearColor;
   TQ3DrawContextObject   myDrawContext ;
   
   //   Set the background color
   clearColor.a = 1.0;
   clearColor.r = 1.0;
   clearColor.g = 1.0;
   clearColor.b = 1.0;
   
   //   Fill in draw context data
   myDrawContextData.clearImageMethod = kQ3ClearMethodWithColor;
   myDrawContextData.clearImageColor = clearColor;
   myDrawContextData.paneState = kQ3False;
   myDrawContextData.maskState = kQ3False;
   myDrawContextData.doubleBufferState = kQ3True;
   myMacDrawContextData.drawContextData = myDrawContextData;
   myMacDrawContextData.window = theWindow;
   myMacDrawContextData.library = kQ3Mac2DLibraryNone;
   myMacDrawContextData.viewPort = 0;
   myMacDrawContextData.grafPort = 0;
   
   //   Create draw context
   myDrawContext = Q3MacDrawContext_New(&myMacDrawContextData) ;
   return myDrawContext ;
}

static TQ3CameraObject MyNewOrthographicCamera(CWindowPtr theWindow, short cubeWidth)
// create orthographic camera
{
   TQ3OrthographicCameraData   orthographicData;
   TQ3CameraObject   camera;
   TQ3Point3D   from = {0.0, 1.5, 7.0};
   TQ3Point3D   to = {0.0, 0.0, 0.0};
   TQ3Vector3D   up = {0.0, 1.0, 0.0};

   orthographicData.cameraData.placement.cameraLocation = from;
   orthographicData.cameraData.placement.pointOfInterest = to;
   orthographicData.cameraData.placement.upVector = up;
   orthographicData.cameraData.range.hither = 1.0;
   orthographicData.cameraData.range.yon = 1000.0;
   orthographicData.cameraData.viewPort.origin.x = -1.0;
   orthographicData.cameraData.viewPort.origin.y = 1.0;
   orthographicData.cameraData.viewPort.width = 2.0;
   orthographicData.cameraData.viewPort.height = 2.0;

   // calculate view plane, size of the cube is 3.0 in QD3Points
   orthographicData.left = -1.5 * 
         ((float)(theWindow->portRect.right - 
                     theWindow->portRect.left)) / 
               (float)(cubeWidth + 1);
  orthographicData.top = orthographicData.left;
  orthographicData.right = -orthographicData.left;
  orthographicData.bottom = orthographicData.right;

   camera = Q3OrthographicCamera_New(&orthographicData);
   return camera;
}

static TQ3CameraObject MyNewViewPlaneCamera(CWindowPtr theWindow, short cubeWidth)
{
// create perspective camera
   TQ3ViewPlaneCameraData   viewPlaneData;
   TQ3CameraObject   camera;
   TQ3Point3D   from = {0.0, 0.0, 7.0};
   TQ3Point3D   to = {0.0, 0.0, 1.5};
   TQ3Vector3D   up = {0.0, 1.0, 0.0};

   viewPlaneData.cameraData.placement.cameraLocation = from;
   viewPlaneData.cameraData.placement.pointOfInterest = to;
   viewPlaneData.cameraData.placement.upVector = up;
   viewPlaneData.cameraData.range.hither = 1.0;
   viewPlaneData.cameraData.range.yon = 1000.0;
   viewPlaneData.cameraData.viewPort.origin.x = -1.0;
   viewPlaneData.cameraData.viewPort.origin.y = 1.0;
   viewPlaneData.cameraData.viewPort.width = 2.0;
   viewPlaneData.cameraData.viewPort.height = 2.0;

   // calculate view plane, size of the cube is 3.0 in QD3Points
   viewPlaneData.viewPlane = 5.5;
  viewPlaneData.halfWidthAtViewPlane = 1.5 * 
         ((float)(theWindow->portRect.right - 
                     theWindow->portRect.left)) / 
               (float)(cubeWidth + 1);
  viewPlaneData.halfHeightAtViewPlane = 
         viewPlaneData.halfWidthAtViewPlane;
  viewPlaneData.centerXOnViewPlane = 0.0;
  viewPlaneData.centerYOnViewPlane = 0.0;

   camera = Q3ViewPlaneCamera_New(&viewPlaneData);
   return camera;
}

static TQ3GroupObject MyNewAmbientOnlyLights()
{
   TQ3GroupObject   myLightList;
   TQ3LightData   myLightData;
   TQ3LightObject   myAmbientLight;
   TQ3ColorRGB   whiteLight = {1.0, 1.0, 1.0};
   
   //   Set up light data for ambient light.
   myLightData.isOn = kQ3True;
   myLightData.color = whiteLight;
   
   //   Create ambient light.
   myLightData.brightness = 1.0;
   myAmbientLight = Q3AmbientLight_New(&myLightData);

   //   Create light group and add each of the lights into the group.
   myLightList = Q3LightGroup_New();
   Q3Group_AddObject(myLightList, myAmbientLight);
   Q3Object_Dispose(myAmbientLight) ;
   return myLightList;
}

static TQ3GroupObject MyNewLights()
{
   TQ3GroupObject   myLightList;
   TQ3LightData   myLightData;
   TQ3PointLightData   myPointLightData;
   TQ3DirectionalLightData   myDirectionalLightData;
   TQ3LightObject   myAmbientLight, myPointLight, myFillLight;
   TQ3Point3D   pointLocation = {-10.0, 0.0, 10.0};
   TQ3Vector3D   fillDirection = {10.0, 0.0, 10.0};
   TQ3ColorRGB   whiteLight = {1.0, 1.0, 1.0};
   
   //   Set up light data for ambient light.
   //   This light data will be used for point and fill light also.
   myLightData.isOn = kQ3True;
   myLightData.color = whiteLight;
   
   //   Create ambient light.
   myLightData.brightness = 0.25;
   myAmbientLight = Q3AmbientLight_New(&myLightData);
   
   //   Create point light.
   myLightData.brightness = 1.0;
   myPointLightData.lightData = myLightData;
   myPointLightData.castsShadows = kQ3False;
   myPointLightData.attenuation = kQ3AttenuationTypeNone;
   myPointLightData.location = pointLocation;
   myPointLight = Q3PointLight_New(&myPointLightData);

   //   Create fill light.
   myLightData.brightness = 0.2;
   myDirectionalLightData.lightData = myLightData;
   myDirectionalLightData.castsShadows = kQ3False;
   myDirectionalLightData.direction = fillDirection;
   myFillLight = Q3DirectionalLight_New(&myDirectionalLightData);

   //   Create light group and add each of the lights into the group.
   myLightList = Q3LightGroup_New();
   Q3Group_AddObject(myLightList, myAmbientLight);
   Q3Group_AddObject(myLightList, myPointLight);
   Q3Group_AddObject(myLightList, myFillLight);

   Q3Object_Dispose(myAmbientLight);
   Q3Object_Dispose(myPointLight);
   Q3Object_Dispose(myFillLight);

   return myLightList;
}

static TQ3ViewObject MyNewView(CWindowPtr theWindow, short cubeWidth)
{
   TQ3ViewObject   myView;
   TQ3DrawContextObject   myDrawContext;
   TQ3RendererObject   myRenderer;
   TQ3CameraObject   myCamera;
   TQ3GroupObject   myLights;
   
   myView = Q3View_New();
   
   //   Create and set draw context.
   myDrawContext = MyNewDrawContext(theWindow);
   Q3View_SetDrawContext(myView, myDrawContext);
   Q3Object_Dispose(myDrawContext) ;
   
   //   Create and set renderer.
   // use the interactive software renderer
   myRenderer = 
      Q3Renderer_NewFromType(kQ3RendererTypeInteractive);
   Q3View_SetRenderer(myView, myRenderer);
   // these two lines set us up to use the best possible renderer,
   // including  hardware if it is installed.
   Q3InteractiveRenderer_SetDoubleBufferBypass(myRenderer, 
         kQ3True);                  
   Q3InteractiveRenderer_SetPreferences(myRenderer, 
         kQAVendor_BestChoice, 0);
   /* for software renderer, without hardware accelleration, replace with:
   Q3InteractiveRenderer_SetPreferences(myRenderer, kQAVendor_Apple, 
         kQAEngine_AppleSW);
   */
   Q3Object_Dispose(myRenderer);
   
   //   Create and set camera.
   myCamera = MyNewViewPlaneCamera(theWindow, cubeWidth);
   /* for an orthographic camera, replace with:
   myCamera = MyNewOrthographicCamera(theWindow, cubeWidth);
   */
   Q3View_SetCamera(myView, myCamera);
   Q3Object_Dispose(myCamera) ;
   
   //   Create and set lights.
   myLights = MyNewAmbientOnlyLights();
   /* for better looking lights, replace with:
   myLights = MyNewLights();
   */
   Q3View_SetLightGroup(myView, myLights);
   Q3Object_Dispose(myLights);

   return myView;
}

static void DrawCube()
{   
   TQ3ViewStatus   myStatus;
   Q3View_StartRendering(gView);
   do
   {
      Q3Style_Submit(gInterpolation, gView);
      Q3Style_Submit(gBackFacing, gView);
      Q3Style_Submit(gFillStyle, gView);
      if (gTempCubeRotation)
         Q3Transform_Submit(gTempCubeRotation, gView);
      Q3DisplayGroup_Submit(gCubeModel, gView);
      myStatus = Q3View_EndRendering(gView);
   } while (myStatus == kQ3ViewStatusRetraverse);
}

static void AddCubie(TQ3GroupObject theGroup, long theX, long theY, long theZ,
                  TQ3ColorRGB *theLeftColor, TQ3ColorRGB *theRightColor, TQ3ColorRGB *theFrontColor,
                  TQ3ColorRGB *theBackColor, TQ3ColorRGB *theTopColor, TQ3ColorRGB *theBottomColor)
{
   TQ3GeometryObject   myBox;
   TQ3BoxData   myBoxData;
   TQ3SetObject   faces[6];
   TQ3GroupObject   aCubie;
   TQ3TransformObject   aTransformation;
   TQ3Matrix4x4   aMatrix;
   short   face;

   // create a rotation object, it doesn't rotate yet
   // but it will be adjusted after rotating the face
   aCubie = Q3DisplayGroup_New();
   Q3Matrix4x4_SetIdentity(&aMatrix);
   aTransformation = Q3MatrixTransform_New(&aMatrix);
   Q3Group_AddObject(aCubie, aTransformation);
   Q3Object_Dispose(aTransformation);
   
   // create the box itself
   myBoxData.faceAttributeSet = faces;
   myBoxData.boxAttributeSet = nil;
   myBoxData.faceAttributeSet[0] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[0], 
         kQ3AttributeTypeDiffuseColor, theLeftColor);
   myBoxData.faceAttributeSet[1] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[1], 
         kQ3AttributeTypeDiffuseColor, theRightColor);
   myBoxData.faceAttributeSet[2] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[2], 
         kQ3AttributeTypeDiffuseColor, theFrontColor);
   myBoxData.faceAttributeSet[3] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[3], 
         kQ3AttributeTypeDiffuseColor, theBackColor);
   myBoxData.faceAttributeSet[4] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[4], 
         kQ3AttributeTypeDiffuseColor, theTopColor);
   myBoxData.faceAttributeSet[5] = Q3AttributeSet_New();
   Q3AttributeSet_Add(myBoxData.faceAttributeSet[5], 
         kQ3AttributeTypeDiffuseColor, theBottomColor);
   Q3Point3D_Set(&myBoxData.origin, -1.5 + theX, 0.5 - theY, 
         0.5 - theZ);
   Q3Vector3D_Set(&myBoxData.orientation, 0, 1, 0);
   Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 1);   
   Q3Vector3D_Set(&myBoxData.minorAxis, 1, 0, 0);   
   myBox = Q3Box_New(&myBoxData);
   for (face = 0; face < 6; face++)
      if (myBoxData.faceAttributeSet[face] != 0)
         Q3Object_Dispose(myBoxData.faceAttributeSet[face]);
   Q3Group_AddObject(aCubie, myBox);
   Q3Object_Dispose(myBox);
   Q3Group_AddObject(theGroup, aCubie);
   gCubies[theX][theY][theZ] = aCubie;
}

static TQ3GroupObject MyNewModel(const RGBColor cubeColors[6],   
         const short cubieColors[6][3][3])
{
   TQ3GroupObject   myGroup = 0;
   TQ3ShaderObject   myIlluminationShader ;
   TQ3Matrix4x4   aMatrix;
   TQ3ColorRGB   Q3CubeColors[6];
   TQ3ColorRGB   aGray = {0.25, 0.25, 0.25};
   long   face;
      
   // convert RGBColor to TQ3ColorRGB
   for (face = 0; face < 6; face++)
   {
Q3CubeColors[face].r = (float)cubeColors[face].red / 0xffff;
Q3CubeColors[face].g = (float)cubeColors[face].green / 0xffff;
Q3CubeColors[face].b = (float)cubeColors[face].blue / 0xffff;
   }
   // Create a group for the complete model.
   if ((myGroup = Q3DisplayGroup_New()) != 0)
   {
      // Define a shading type for the group
      // and add the shader to the group
      myIlluminationShader = Q3NULLIllumination_New();
      /* for a better looking cube, replace with
      myIlluminationShader = Q3LambertIllumination_New();
      or
      myIlluminationShader = Q3PhongIllumination_New();
      */
      Q3Group_AddObject(myGroup, myIlluminationShader);
      Q3Object_Dispose(myIlluminationShader);   

   // create a rotation object, it doesn't rotate yet
   // but it will be adjusted after rotating the cube
      Q3Matrix4x4_SetIdentity(&aMatrix);
      gCubeRotation = Q3MatrixTransform_New(&aMatrix);
      Q3Group_AddObject(myGroup, gCubeRotation);
      
      // add boxes for the cubies
         // left top front
      AddCubie(myGroup, 0, 0, 0,
               &Q3CubeColors[cubieColors[kLeft][2][0]], &aGray, 
               &Q3CubeColors[cubieColors[kFront][0][0]],
         &aGray, &Q3CubeColors[cubieColors[kUp][0][2]], &aGray);
         // middle top front
      AddCubie(myGroup, 1, 0, 0,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kFront][1][0]],
         &aGray, &Q3CubeColors[cubieColors[kUp][1][2]], &aGray);
         // right top front
      AddCubie(myGroup, 2, 0, 0,
               &aGray, &Q3CubeColors[cubieColors[kRight][0][0]], 
               &Q3CubeColors[cubieColors[kFront][2][0]],
         &aGray, &Q3CubeColors[cubieColors[kUp][2][2]], &aGray);

         // left top middle
      AddCubie(myGroup, 0, 0, 1,
      &Q3CubeColors[cubieColors[kLeft][1][0]], &aGray, &aGray,
         &aGray, &Q3CubeColors[cubieColors[kUp][0][1]], &aGray);
         // middle top middle
      AddCubie(myGroup, 1, 0, 1,
               &aGray, &aGray, &aGray,
         &aGray, &Q3CubeColors[cubieColors[kUp][1][1]], &aGray);
         // right top middle
      AddCubie(myGroup, 2, 0, 1,
      &aGray, &Q3CubeColors[cubieColors[kRight][1][0]], &aGray,
         &aGray, &Q3CubeColors[cubieColors[kUp][2][1]], &aGray);

         // left top back
      AddCubie(myGroup, 0, 0, 2,
      &Q3CubeColors[cubieColors[kLeft][0][0]], &aGray, &aGray,
               &Q3CubeColors[cubieColors[kBack][2][0]], 
               &Q3CubeColors[cubieColors[kUp][0][0]], &aGray);
         // middle top back
      AddCubie(myGroup, 1, 0, 2,
               &aGray, &aGray, &aGray,
               &Q3CubeColors[cubieColors[kBack][1][0]], 
               &Q3CubeColors[cubieColors[kUp][1][0]], &aGray);
         // right top back
      AddCubie(myGroup, 2, 0, 2,
      &aGray, &Q3CubeColors[cubieColors[kRight][2][0]], &aGray,
               &Q3CubeColors[cubieColors[kBack][0][0]], 
               &Q3CubeColors[cubieColors[kUp][2][0]], &aGray);

         // left middle front
      AddCubie(myGroup, 0, 1, 0,
               &Q3CubeColors[cubieColors[kLeft][2][1]], &aGray, 
               &Q3CubeColors[cubieColors[kFront][0][1]],
               &aGray, &aGray, &aGray);
         // middle middle front
      AddCubie(myGroup, 1, 1, 0,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kFront][1][1]],
               &aGray, &aGray, &aGray);
         // right middle front
      AddCubie(myGroup, 2, 1, 0,
               &aGray, &Q3CubeColors[cubieColors[kRight][0][1]], 
               &Q3CubeColors[cubieColors[kFront][2][1]],
               &aGray, &aGray, &aGray);

         // left middle middle
      AddCubie(myGroup, 0, 1, 1,
      &Q3CubeColors[cubieColors[kLeft][1][1]], &aGray, &aGray,
               &aGray, &aGray, &aGray);
         // middle middle middle
      /* invisible
      AddCubie(myGroup, 1, 1, 1,
               &aGray, &aGray, &aGray,
               &aGray, &aGray, &aGray);
      */
         // right middle middle
      AddCubie(myGroup, 2, 1, 1,
      &aGray, &Q3CubeColors[cubieColors[kRight][1][1]], &aGray,
               &aGray, &aGray, &aGray);

         // left middle back
      AddCubie(myGroup, 0, 1, 2,
      &Q3CubeColors[cubieColors[kLeft][0][1]], &aGray, &aGray,
      &Q3CubeColors[cubieColors[kBack][2][1]], &aGray, &aGray);
         // middle middle back
      AddCubie(myGroup, 1, 1, 2,
               &aGray, &aGray, &aGray,
      &Q3CubeColors[cubieColors[kBack][1][1]], &aGray, &aGray);
         // right middle back
      AddCubie(myGroup, 2, 1, 2,
      &aGray, &Q3CubeColors[cubieColors[kRight][2][1]], &aGray,
      &Q3CubeColors[cubieColors[kBack][0][1]], &aGray, &aGray);

         // left bottom front
      AddCubie(myGroup, 0, 2, 0,
               &Q3CubeColors[cubieColors[kLeft][2][2]], &aGray, 
               &Q3CubeColors[cubieColors[kFront][0][2]],
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][0][0]]);
         // middle bottom front
      AddCubie(myGroup, 1, 2, 0,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kFront][1][2]],
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][1][0]]);
         // right bottom front
      AddCubie(myGroup, 2, 2, 0,
               &aGray, &Q3CubeColors[cubieColors[kRight][0][2]], 
               &Q3CubeColors[cubieColors[kFront][2][2]],
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][2][0]]);

         // left bottom middle
      AddCubie(myGroup, 0, 2, 1,
      &Q3CubeColors[cubieColors[kLeft][1][2]], &aGray, &aGray,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][0][1]]);
         // middle bottom middle
      AddCubie(myGroup, 1, 2, 1,
               &aGray, &aGray, &aGray,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][1][1]]);
         // right bottom middle
      AddCubie(myGroup, 2, 2, 1,
      &aGray, &Q3CubeColors[cubieColors[kRight][1][2]], &aGray,
      &aGray, &aGray, &Q3CubeColors[cubieColors[kDown][2][1]]);

         // left bottom back
      AddCubie(myGroup, 0, 2, 2,
      &Q3CubeColors[cubieColors[kLeft][0][2]], &aGray, &aGray,
               &Q3CubeColors[cubieColors[kBack][2][2]], &aGray, 
               &Q3CubeColors[cubieColors[kDown][0][2]]);
         // middle bottom back
      AddCubie(myGroup, 1, 2, 2,
               &aGray, &aGray, &aGray,
               &Q3CubeColors[cubieColors[kBack][1][2]], &aGray, 
               &Q3CubeColors[cubieColors[kDown][1][2]]);
         // right bottom back
      AddCubie(myGroup, 2, 2, 2,
      &aGray, &Q3CubeColors[cubieColors[kRight][2][2]], &aGray,
               &Q3CubeColors[cubieColors[kBack][0][2]], &aGray, 
               &Q3CubeColors[cubieColors[kDown][2][2]]);

   }
   return myGroup;
}

void InitCube(
  CWindowPtr cubeWindow,         
  const RGBColor cubeColors[6],   
  const short cubieColors[6][3][3], 
  short cubeWidth,  
  short stepSize    
) {
   long   x, y, z;

   for (x = 0; x < 3; x++)
      for (y = 0; y < 3; y++)
         for (z = 0; z < 3; z++)
            gCubies[x][y][z] = 0;

   SetPort((GrafPtr)cubeWindow);

   gStepSize = stepSize;
   gTempCubeRotation = 0;
   gCubeRotation = 0;
   
   Q3Initialize();

   // sets up the 3d data for the scene
   // Create view for QuickDraw 3D.
   gView = MyNewView(cubeWindow, cubeWidth);

   // the main display group:
   gCubeModel = MyNewModel(cubeColors, cubieColors);

   // the drawing styles:
   gInterpolation = 
         Q3InterpolationStyle_New(kQ3InterpolationStyleNone);
   gBackFacing = Q3BackfacingStyle_New(kQ3BackfacingStyleRemove);
   gFillStyle = Q3FillStyle_New(kQ3FillStyleFilled);

   DrawCube();      
}

void QuarterTurn(
  CubeFace face,
  TurnDirection direction
) {
   long   i, x, y, z;
   long   aFirstX, aLastX, aFirstY, aLastY, aFirstZ, aLastZ;
   TQ3Matrix4x4   aCubieMatrix, aRotationMatrix;
   TQ3RotateAboutAxisTransformData   aRotationdata;
   TQ3TransformObject   aFaceRotation;
   TQ3GroupPosition   aPos;
   TQ3GroupObject   aCubie;
   long   stepsToTurn;

   aFirstX = 0;
   aLastX = 3;
   aFirstY = 0;
   aLastY = 3;
   aFirstZ = 0;
   aLastZ = 3;

   // create a rotation object
   switch(face)
   {
      case kFront:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, -1.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, 1.0);
         aLastZ = 1;
         break;
      }
      case kBack:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, 1.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, -1.0);
         aFirstZ = 2;
         break;
      }
      case kLeft:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 1.0, 0.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, -1.0, 0.0, 0.0);
         aLastX = 1;
         break;
      }
      case kRight:
      {
   if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, -1.0, 0.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 1.0, 0.0, 0.0);
         aFirstX = 2;
         break;
      }
      case kUp:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, -1.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 1.0, 0.0);
         aLastY = 1;
         break;
      }
      case kDown:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 1.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, -1.0, 0.0);
         aFirstY = 2;
         break;
      }
   }
   Q3Point3D_Set(&aRotationdata.origin, 0.0, 0.0, 0.0);
   aRotationdata.radians = 0.0;
   
   aFaceRotation = Q3RotateAboutAxisTransform_New(&aRotationdata);
   // add the rotation object to each cubie in the face
   for (x = aFirstX; x < aLastX; x++)
      for (y = aFirstY; y < aLastY; y++)
         for (z = aFirstZ; z < aLastZ; z++)
         {
            Q3Group_GetFirstPosition(gCubies[x][y][z], &aPos);
            Q3Group_AddObjectBefore(gCubies[x][y][z], aPos, 
                  aFaceRotation);
         }
   // draw and adjust the angle
   stepsToTurn = gStepSize / 4;
   for (i = 1; i < stepsToTurn; i++)
   {
      Q3RotateAboutAxisTransform_SetAngle(aFaceRotation, 
               (2.0 * kQ3Pi * i / gStepSize));
      DrawCube();
   }
   
   // set the angle to 90° and adjust the rotation of each cubie
   Q3RotateAboutAxisTransform_SetAngle(aFaceRotation, 
               (kQ3Pi / 2.0));
   Q3Transform_GetMatrix(aFaceRotation, &aRotationMatrix);
   if (aFaceRotation)
      Q3Object_Dispose(aFaceRotation);
   for (x = aFirstX; x < aLastX; x++)
      for (y = aFirstY; y < aLastY; y++)
         for (z = aFirstZ; z < aLastZ; z++)
         {
            Q3Group_GetFirstPosition(gCubies[x][y][z], &aPos);
         aFaceRotation = Q3Group_RemovePosition(gCubies[x][y][z], 
                  aPos);
            if (aFaceRotation)
               Q3Object_Dispose(aFaceRotation);
            Q3Group_GetFirstPositionOfType(gCubies[x][y][z], 
                  kQ3TransformTypeMatrix, &aPos);
            Q3Group_GetPositionObject(gCubies[x][y][z], aPos, 
                  &aFaceRotation);
            if (aFaceRotation)
            {
            Q3MatrixTransform_Get(aFaceRotation, &aCubieMatrix);
         Q3Matrix4x4_Multiply(&aCubieMatrix, &aRotationMatrix, 
                  &aCubieMatrix);
            Q3MatrixTransform_Set(aFaceRotation, &aCubieMatrix);
               Q3Object_Dispose(aFaceRotation);
            }
         }
   DrawCube();

   // rotate cubies in gCubies
   switch(face)
   {
      case kFront:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[0][0][0];
            gCubies[0][0][0] = gCubies[0][2][0];
            gCubies[0][2][0] = gCubies[2][2][0];
            gCubies[2][2][0] = gCubies[2][0][0];
            gCubies[2][0][0] = aCubie;
            aCubie                = gCubies[1][0][0];
            gCubies[1][0][0] = gCubies[0][1][0];
            gCubies[0][1][0] = gCubies[1][2][0];
            gCubies[1][2][0] = gCubies[2][1][0];
            gCubies[2][1][0] = aCubie;
         }
         else
         {
            aCubie                = gCubies[0][2][0];
            gCubies[0][2][0] = gCubies[0][0][0];
            gCubies[0][0][0] = gCubies[2][0][0];
            gCubies[2][0][0] = gCubies[2][2][0];
            gCubies[2][2][0] = aCubie;
            aCubie                = gCubies[1][2][0];
            gCubies[1][2][0] = gCubies[0][1][0];
            gCubies[0][1][0] = gCubies[1][0][0];
            gCubies[1][0][0] = gCubies[2][1][0];
            gCubies[2][1][0] = aCubie;
         }
         break;
      }
      case kBack:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[0][2][2];
            gCubies[0][2][2] = gCubies[0][0][2];
            gCubies[0][0][2] = gCubies[2][0][2];
            gCubies[2][0][2] = gCubies[2][2][2];
            gCubies[2][2][2] = aCubie;
            aCubie                = gCubies[1][2][2];
            gCubies[1][2][2] = gCubies[0][1][2];
            gCubies[0][1][2] = gCubies[1][0][2];
            gCubies[1][0][2] = gCubies[2][1][2];
            gCubies[2][1][2] = aCubie;
         }
         else
         {
            aCubie                = gCubies[0][0][2];
            gCubies[0][0][2] = gCubies[0][2][2];
            gCubies[0][2][2] = gCubies[2][2][2];
            gCubies[2][2][2] = gCubies[2][0][2];
            gCubies[2][0][2] = aCubie;
            aCubie                = gCubies[1][0][2];
            gCubies[1][0][2] = gCubies[0][1][2];
            gCubies[0][1][2] = gCubies[1][2][2];
            gCubies[1][2][2] = gCubies[2][1][2];
            gCubies[2][1][2] = aCubie;
         }
         break;
      }
      case kLeft:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[0][0][2];
            gCubies[0][0][2] = gCubies[0][2][2];
            gCubies[0][2][2] = gCubies[0][2][0];
            gCubies[0][2][0] = gCubies[0][0][0];
            gCubies[0][0][0] = aCubie;
            aCubie                = gCubies[0][0][1];
            gCubies[0][0][1] = gCubies[0][1][2];
            gCubies[0][1][2] = gCubies[0][2][1];
            gCubies[0][2][1] = gCubies[0][1][0];
            gCubies[0][1][0] = aCubie;
         }
         else
         {
            aCubie                = gCubies[0][2][2];
            gCubies[0][2][2] = gCubies[0][0][2];
            gCubies[0][0][2] = gCubies[0][0][0];
            gCubies[0][0][0] = gCubies[0][2][0];
            gCubies[0][2][0] = aCubie;
            aCubie                = gCubies[0][2][1];
            gCubies[0][2][1] = gCubies[0][1][2];
            gCubies[0][1][2] = gCubies[0][0][1];
            gCubies[0][0][1] = gCubies[0][1][0];
            gCubies[0][1][0] = aCubie;
         }
         break;
      }
      case kRight:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[2][2][2];
            gCubies[2][2][2] = gCubies[2][0][2];
            gCubies[2][0][2] = gCubies[2][0][0];
            gCubies[2][0][0] = gCubies[2][2][0];
            gCubies[2][2][0] = aCubie;
            aCubie                = gCubies[2][2][1];
            gCubies[2][2][1] = gCubies[2][1][2];
            gCubies[2][1][2] = gCubies[2][0][1];
            gCubies[2][0][1] = gCubies[2][1][0];
            gCubies[2][1][0] = aCubie;
         }
         else
         {
            aCubie                = gCubies[2][0][2];
            gCubies[2][0][2] = gCubies[2][2][2];
            gCubies[2][2][2] = gCubies[2][2][0];
            gCubies[2][2][0] = gCubies[2][0][0];
            gCubies[2][0][0] = aCubie;
            aCubie                = gCubies[2][0][1];
            gCubies[2][0][1] = gCubies[2][1][2];
            gCubies[2][1][2] = gCubies[2][2][1];
            gCubies[2][2][1] = gCubies[2][1][0];
            gCubies[2][1][0] = aCubie;
         }
         break;
      }
      case kUp:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[0][0][2];
            gCubies[0][0][2] = gCubies[0][0][0];
            gCubies[0][0][0] = gCubies[2][0][0];
            gCubies[2][0][0] = gCubies[2][0][2];
            gCubies[2][0][2] = aCubie;
            aCubie                = gCubies[1][0][2];
            gCubies[1][0][2] = gCubies[0][0][1];
            gCubies[0][0][1] = gCubies[1][0][0];
            gCubies[1][0][0] = gCubies[2][0][1];
            gCubies[2][0][1] = aCubie;
         }
         else
         {
            aCubie                = gCubies[2][0][2];
            gCubies[2][0][2] = gCubies[2][0][0];
            gCubies[2][0][0] = gCubies[0][0][0];
            gCubies[0][0][0] = gCubies[0][0][2];
            gCubies[0][0][2] = aCubie;
            aCubie                = gCubies[1][0][2];
            gCubies[1][0][2] = gCubies[2][0][1];
            gCubies[2][0][1] = gCubies[1][0][0];
            gCubies[1][0][0] = gCubies[0][0][1];
            gCubies[0][0][1] = aCubie;
         }
         break;
      }
      case kDown:
      {
         if (direction == kClockwise)
         {
            aCubie                = gCubies[2][2][2];
            gCubies[2][2][2] = gCubies[2][2][0];
            gCubies[2][2][0] = gCubies[0][2][0];
            gCubies[0][2][0] = gCubies[0][2][2];
            gCubies[0][2][2] = aCubie;
            aCubie                = gCubies[1][2][2];
            gCubies[1][2][2] = gCubies[2][2][1];
            gCubies[2][2][1] = gCubies[1][2][0];
            gCubies[1][2][0] = gCubies[0][2][1];
            gCubies[0][2][1] = aCubie;
         }
         else
         {
            aCubie                = gCubies[0][2][2];
            gCubies[0][2][2] = gCubies[0][2][0];
            gCubies[0][2][0] = gCubies[2][2][0];
            gCubies[2][2][0] = gCubies[2][2][2];
            gCubies[2][2][2] = aCubie;
            aCubie                = gCubies[1][2][2];
            gCubies[1][2][2] = gCubies[0][2][1];
            gCubies[0][2][1] = gCubies[1][2][0];
            gCubies[1][2][0] = gCubies[2][2][1];
            gCubies[2][2][1] = aCubie;
         }
         break;
      }
   }
}

void RotateCube(
  CubeAxis axis,
  TurnDirection direction,  
  short stepsToTurn
) {
   TQ3RotateAboutAxisTransformData aRotationdata;
   TQ3Matrix4x4   aCubeRotationMatrix, aTempMatrix;
   long i;
   
   // create a rotation object
   switch (axis)
   {
      case kFrontBack:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, -1.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 0.0, 1.0);
         break;
      }
      case kLeftRight:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 1.0, 0.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, -1.0, 0.0, 0.0);
         break;
      }
      case kUpDown:
      {
         if (direction == kClockwise)
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, -1.0, 0.0);
         else
   Q3Vector3D_Set(&aRotationdata.orientation, 0.0, 1.0, 0.0);
         break;
      }
   }
   Q3Point3D_Set(&aRotationdata.origin, 0.0, 0.0, 0.0);
   aRotationdata.radians = 0.0;
   // the cube has been rotated, rotate the orientation of the rotation
   Q3MatrixTransform_Get(gCubeRotation, &aCubeRotationMatrix);
   Q3Vector3D_Transform(&aRotationdata.orientation, 
         &aCubeRotationMatrix, &aRotationdata.orientation);
   gTempCubeRotation = 
         Q3RotateAboutAxisTransform_New(&aRotationdata);
   // draw and adjust the angle
   for (i = 1; i < stepsToTurn; i++)
   {
      Q3RotateAboutAxisTransform_SetAngle(gTempCubeRotation, 
            (2.0 * kQ3Pi * i / gStepSize));
      DrawCube();
   }
   // set the angle to 90° and adjust the rotation object of the cube
   Q3RotateAboutAxisTransform_SetAngle(gTempCubeRotation, 
            (2.0 * kQ3Pi * stepsToTurn / gStepSize));
   Q3Transform_GetMatrix(gTempCubeRotation, &aTempMatrix);
   Q3MatrixTransform_Get(gCubeRotation, &aCubeRotationMatrix);
   Q3Matrix4x4_Multiply(&aCubeRotationMatrix, &aTempMatrix, 
            &aCubeRotationMatrix);
   Q3MatrixTransform_Set(gCubeRotation, &aCubeRotationMatrix);
   // don't need gTempCubeRotation anymore, dispose it
   if (gTempCubeRotation)
      Q3Object_Dispose(gTempCubeRotation);
   gTempCubeRotation = 0;
   DrawCube();
}

void TermCube(void) {
   long   x, y, z;

   Q3Object_Dispose(gView);
   Q3Object_Dispose(gCubeModel);   // object in the scene being modelled
   Q3Object_Dispose(gCubeRotation);
   for (x = 0; x < 3; x++)
      for (y = 0; y < 3; y++)
         for (z = 0; z < 3; z++)
         {
            if (gCubies[x][y][z])
               Q3Object_Dispose(gCubies[x][y][z]);            // object in the scene being modelled
         }
Q3Object_Dispose(gInterpolation);   // interpolation style used when rendering
   Q3Object_Dispose(gBackFacing);
         // whether to draw shapes that face away from the camera
   Q3Object_Dispose(gFillStyle);   
         // whether drawn as solid filled object or decomposed to components
   Q3Exit();
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.