TweetFollow Us on Twitter

May 00 Challenge

Volume Number: 16 (2000)
Issue Number: 5
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

BigNum Math

Back in September, 1995, we conducted an RSA Challenge that involved raising large integers to integral powers, modulo a third integer. The representation we used for those large integers was a BigNum type, where each digit of the large integer was stored in a byte. That representation and the operations on it were not particularly efficient, and this month we will belatedly recitfy that situation. Your Challenge is to implement a new BigNum type, of your own design, along with a number of arithmetic operations on these BigNums..

The prototype for the code you should write is:

typedef struct BigNum {
	long lengthInDigits;	/* length of the BigNum in digits */
	void *bigNumData;			/* pointer to BigNum data */
} BigNum;

BigNum NewBigNum (			/* create a BigNum */
	char sign,						/* +1 or -1 */
	char digits[],				/* digits to be made into a BigNum */
	long numDigits				/* number of digits */
);

void DisposeBigNum (		/* dispose of a BigNum */
	BigNum theBigNum			/* the BigNum to be disposed of */
);

BigNum AddBigNums (			/* sum two BigNums, returning a new one */
	BigNum bigNumA,				/* return the sum A+B */
	BigNum bigNumB
);

BigNum SubtractBigNums (	/* subtract two BigNums, returning a new one */
	BigNum bigNumA,				/* return the difference A-B */
	BigNum bigNumB
);

BigNum MultiplyBigNums (	/* multiply two BigNums, returning a new one */
	BigNum bigNumA,				/* return the product A*B */
	BigNum bigNumB
);

BigNum DivideBigNums (		/* divide two BigNums, returning a new one */
	BigNum bigNumA,				/* return the quotient A/B, discarding the remainder */
	BigNum bigNumB
);

BigNum ModBigNums (			/* divide two BigNums, returning a new one */
	BigNum bigNumA,				/* return the remainder A%B, discarding the quotient */
	BigNum bigNumB
);

BigNum PowerBigNums (		/* calculate one Bignum to the power of another, returning a new one */
	BigNum bigNumA,				/* return A raised to the power B, discarding the quotient */
	BigNum bigNumB
);

BigNum SqrtBigNum (			/* find the sqrt of a BigNum, returning a new one */
	BigNum bigNumA				/* return the square root of A */
);

long /* numDigits */ BigNumToDigits( /* convert a bigNum to decimal digits */
	BigNum bigNumA,				/* bigNum to be converted to decimal digits 0-9 */
	char *sign,						/* return +1 or -1 */
	char digits[]					/* decimal digits of bigNumA, preceeded by '-' if negative */
									/* storage for digits preallocated based on bigNumA.lengthInDigits */
);

The first thing you need to do is decide on an internal representation for BigNums. Then you need to write a NewBigNum routine that will create a BigNum from a sequence of numDigits digits and a sign value. Your NewBigNum code is responsible for allocating memory for the BigNumData. The DisposeBigNum routine is responsible for deallocating that memory. The caller of your code is responsible for pairing every NewBigNum call with a DisposeBigNum call, and the two routines should be implemented so as not to create any memory leaks. In addition to these allocation and deallocation routines, you need to write code to perform addition (AddBigNums), subtraction (SubtractBigNums), multiplication (MultiplyBigNums), division (DivideBigNums), remainders (ModBigNums), and exponentiation (PowerBigNums). Each of these routines takes two arguments, calculates the result, and returns the result in a new BigNum allocated by your code. Each of these returned BigNums will also be disposed of by a call to DisposeBigNum before the test is over, although they might be used for calculations in the interim.

Just to spice things up, you also need to provide a SqrtBigNum routine that calculates and returns the integer square root of a BigNum, the largest BigNum whose square is no larger than the original number.

And finally, to help me decipher your BigNums, you need to provide a BigNumToDigits conversion routine that converts your private BigNum data structure into a sequence of digits, along with a sign, and returns the number of digits in the decimal representation of the BigNum.

I'm not providing information on the distribution of calls to the various routines, except to say that the arithmetic routines will significantly outnumber the allocation and deallocation routines. The winner will be the solution that correctly completes a sequence of arithmetic operations on BigNums in the least amount of time. You are strongly encouraged to adequately comment the code in your submissions. Not only does that make your code more understandable if it is published as the winning solution, but it also helps me track down any minor problems that might occur.

I'll close with a plug for the Challenge mailing list, where you can receive notice of the problems before the hard-copy magazine reaches your mailbox, and where any post-publication clarifications are distributed. Subscription instructions can be found at www.mactech.com/progchallenge/. This will be a native PowerPC Challenge, using the CodeWarrior Pro 5 environment. Solutions may be coded in C, C++, or Pascal.

Three Months Ago Winner

The February Challenge required readers to calculate a minimal Latin square of a given order. Latin Squares are nxn arrays of integers, where each row and each column contains each integer from 1 to n exactly once. Congratulations to Willeke Rieken (The Netherlands) for coming up with the winning solution to the Latin Squares Challenge.

Eleven readers submitted entries to this Challenge, and their performance varied widely in efficiency. My test scenario was based on 28 test cases, consisting of the Latin Squares of orders 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, and 45. I selected those numbers because they formed a regular pattern that could be continued as far as the solutions would allow, and because they contained a mix of odd numbers, even numbers, perfect squares, prime numbers, and powers of two. My original intent was to test even larger numbers, but even the best solutions took too long to calculate some of the larger numbers.

Even limiting the tests to these cases, some of the solutions took a long time to execute, so I divided the tests into three sets. The first set consisted of the first ten test cases, and I ran all of the entries against that set. Three of the entries either did not complete all of the cases, or calculated a Latin Square that was larger than the squares calculated by other solutions. Three of the entries had fast execution times for the ten cases, and one more had an execution time within roughly two orders of magnitude of the best ones. So I ran the top four solutions against the next six test cases. Two of the entries completed those cases correctly, so I ran those cases against the final six test cases. The second place solution by Ernst Munter was by far the faster of the two, but unfortunately, it did not compute the minimal solution for the square of order 37. Where Ernst calculated a solution that included the following as the 28th row:

 28 27 26 25 32 31 30 35 36 37 33 34 19 20 17 21 7 8 9 5 6 4 ...

... Willeke's entry produced the following smaller value:

 28 27 26 25 32 31 30 35 36 37 33 34 19 20 17 21 7 8 9 5 6 3 ...

I decided not to disqualify solutions that produced suboptimal Latin Squares, or that failed to produce a result in a reasonable time. Instead, I ranked solutions by how many test cases they were able to complete, then how many they completed correctly, and then in order of increasing execution time. The problem statement called for the use of execution time only for correct solutions, but I felt that it was fairest to allow solutions that produced a suboptimal result to compete based on how well they did.

Willeke's algorithm takes advantage of the fact that squares whose size is a power of two can be generated with a systematic pattern of switching pairs of numbers in row n to create rows a power of 2 away from row n. He accomplishes this in his FillSquare2 routine. Squares of other sizes are filled by first filing the largest subsquare of size k (k a power of 2), filling the top right n-k square optimally, filling the diagonal, and then completing the square by trial and error. Ernst's entry makes more efficient use of information about which digits are forced into use before a particular column in a given row because the digit has already been used in subsequent columns. Ernst observes in his entry that execution time does not grow with problem size, and that problems of certain sizes (e.g., 41) take much longer to execute than one might expect based on the time required for squares of dimensions close in value.

The first table below lists, for each of the entries submitted, the final ranking based on all test cases completed, total execution time for the first ten cases, the number of test cases completed, the number completed incorrectly, and the code size, data size, and language parameters. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one. The second and third tables provide the results for the remaining twelve test cases.

Note that while the top four positions in this Challenge were won by four of our top contestants in the points standing (the fifth did not compete), there are a number of new names in the list of contestants. Keep trying, folks, I know from personal experience that it takes a while to become good at this, but it is possible to knock the leaders from their perches.

Cases 1-10

Name Rank Time (msec) Completed Cases Incorrect Cases Code Size Data Size Lang
Willeke Rieken 68) 1 4.1 10 0 3976 8 C++
Ernst Munter (557) 2 2.4 10 0 3224 96 C++
Randy Boring (116) 3 3.7 10 0 3828 42 C++
Sebastian Maurer (97) 4 524.5 10 0 1336 52 C++
Claes Wihlborg 5 5271.1 10 0 2596 73 C
Bjorn Davidsson (6) 6 141740.7 10 0 2232 120 C++
Michael Lewis 7 155346.4 10 0 5112 207 C++
Paul Russell 8 1436033.6 10 0 1660 8 C
Jonny Taylor (24) 9 4.3 9 0 5788 156 C
Derek Ledbetter (4) 10 1917.3 10 2 13088 312 C++
S. S. (withdrawn) 11 2.4 7 0 592 8 C++

Cases 11-16

Name Time (msec) Completed Cases Incorrect Cases
Ernst Munter 6.1 6 0
Willeke Rieken 1968.2 6 0
Randy Boring 40604.8 3 0
Sebastian Maurer N/A 0 0

Cases 17-22

Name Time (msec) Completed Cases Incorrect Cases
Ernst Munter 3200253.1 6 1
Willeke Rieken 13013297.2 6 0

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 10 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points
1. Munter, Ernst 215
2. Saxton, Tom 139
3. Maurer, Sebastian 91
4. Rieken, Willeke 61
5. Boring, Randy 50
6. Heathcock, JG 43
7. Shearer, Rob 43
8. Taylor, Jonathan 24
9. Brown, Pat 20
9. Hostetter, Mat 20
10. Downs, Andrew 12
11. Jones, Dennis 12
12. Hart, Alan 11
13. Duga, Brady 10
14. Hewett, Kevin 10
15. Murphy, ACC 10
16. Selengut, Jared 10
17. Strout, Joe 10

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points
2nd place 10 points
3rd place 7 points
4th place 4 points
5th place 2 points
finding bug 2 points
suggesting Challenge 2 points

Here is Willeke's winning Latin Squares solution:

LatinSquares.cp
Copyright © 2000
Welleke Rieken

/*
	After generating several squares a pattern emerged.
	If n is even, every second row can be generated by
	switching pairs of numbers of the row above.
	If n can be divided by 4, every third and fourth
	row can be generated by switching squares of 2 by 2
	numbers of the 2 rows above.
	Example: n = 12 is generated by generating
	n = 3 and replacing every number by a square with
	n = 4.
	Other n's are generated by generating the biggest
	power of n that fits in the square and generating
	a square of n - 2^x at the top right. This square can
	be repeated to the bottom left till the first square ends.
	the numbers in the first column are in ascending order.
	the diagonal from top rigth to bottom left is filled with n.
	Example: n = 7
	1234567
	2143675
	3412756
	4567xxx
	5x7xxxx
	67xxxxx
	7xxxxxx
	The remaining numbers are generated by trial and error.
*/

#include "LatinSquares.h"

FillSquare2
static void FillSquare2(long n, short *latinSquare,
												long theDim,
												long theStartRow, long theStartCol,
												long theStartVal, long theNrOfRows)
// n is a power of 2. fill the first row with ascending numbers
// and switch them around to generate the other rows.
{
	short *aFrom1, *aTo1, *aFrom2, *aTo2;
	long 	aValue = theStartVal + 1, aRowsDone, aMultiple;
	short	*aStartSquare = latinSquare + (theStartRow * n) + 
			theStartCol;
	
	// fill first row
	aFrom1 = aStartSquare;
	for (long aCol = 0; aCol < theDim; aCol++)
	{
		*aFrom1  = aValue;
		aValue++;
		aFrom1++;
	}
	aRowsDone = 1;
	aMultiple = 1;
	while (aRowsDone < theNrOfRows)
	{
		for (long aRow = 0; aRow < aMultiple; aRow++)
		{
			if (aRow >= theNrOfRows)
				break;
			for (long anOffset = 0; anOffset < theDim; anOffset += 
							(aMultiple * 2))
			{
				aFrom2 = aStartSquare + (aRow * n) + anOffset;
				aFrom1 = aFrom2 + aMultiple;
		aTo1 = aStartSquare + ((aMultiple + aRow) * n) + anOffset;
				aTo2 = aTo1 + aMultiple;
				for (long aCol = 0; aCol < aMultiple; aCol++)
				{
					*aTo1 = *aFrom1;
					aFrom1++;
					aTo1++;
					*aTo2 = *aFrom2;
					aFrom2++;
					aTo2++;
				}
			}
		}
		aRowsDone += aMultiple;
		aMultiple <<= 1;
	}
}

CopySquare
static inline void CopySquare(long n, short *theFrom, short *theTo,
															long theDim)
{
// copy a square of size theDim from theFrom to theTo
	short *aFrom, *aTo;
	
	for (long aRow = 0; aRow < theDim; aRow++)
	{
		aFrom = theFrom + (aRow * n);
		aTo = theTo + (aRow * n);
		for (long aCol = 0; aCol < theDim; aCol++)
		{
			*aTo = *aFrom;
			aFrom++;
			aTo++;
		}
	}
}

CantFillRow
static short CantFillRow(long theDim, short *theValInCol,
													short *theValInRow, long theCol,
													long *theValue)
// check if there are numbers that can't be placed and if there
// are enough columns for the bigger numbers
{
	long	aGreaterPlacesNeeded = 0;
	short	aValOK = 0;
	for (long i = *theValue + 1; i < theDim; i++)
		if (!theValInRow[i])
		{
			aGreaterPlacesNeeded++;
			aValOK = 0;
			for (long j = theCol + 1; j < theDim; j++)
				if (!theValInCol[j * theDim + i])
				{
					aValOK = 1;
					break;
				}
			if (!aValOK)
			{
				*theValue = i - 1;
				return 1;
			}
		}
	for (long j = theCol + 1; j < theDim; j++)
	{
		aValOK = 0;
		for (long i = *theValue + 1; i < theDim; i++)
			if (!(theValInRow[i] || theValInCol[j * theDim + i]))
			{
				aValOK = 1;
				break;
			}
		if (aValOK)
			aGreaterPlacesNeeded-;
	}
	if (aGreaterPlacesNeeded > 0)
		return 1;
	return 0;	
}

CompleteSquare
static void CompleteSquare(long n, short *latinSquare,
						long theDim, long theSubDim,
						long theStartRow, long theStartCol,
						long theStartVal)
// fill remaining numbers by trial and error
{
	short	*aStartSquare = latinSquare +
												((theStartRow * n) << theSubDim) +
												(theStartCol << theSubDim);
	short	*aValInRow = new short[theDim];
	short	*aValInCol = new short[theDim * theDim];
	short	*aToBeFilled = new short[theDim * theDim];
	long	aRow, aCol, aValue, aSubDimvalue;
	short	*p, *q;

	aSubDimvalue = 1 << theSubDim;
	// fill left row and diagonal
	p = aStartSquare + ((n + theDim - 2) << theSubDim);
	q = aStartSquare + (n << theSubDim);
	for (aCol = 1; aCol < theDim; aCol++)
	{
		CopySquare(n, aStartSquare + ((theDim - 1) << theSubDim),
								p, aSubDimvalue);
		p += ((n - 1) << theSubDim);
		CopySquare(n, aStartSquare + (aCol << theSubDim),
								q, aSubDimvalue);
		q += (n << theSubDim);
	}
	// which numbers are used and which numbers have to be filled in
	for (aCol = 0; aCol < theDim * theDim; aCol++)
	{
		aValInCol[aCol] = 0;
		aToBeFilled[aCol] = 1;
	}
	for (aRow = 0; aRow < theDim; aRow++)
	{
		p = aStartSquare + ((aRow * n) << theSubDim);
		for (aCol = 0; aCol < theDim; aCol++)
		{
			if (*p)
			{
				aValue = aCol * theDim +
									(((*p - 1) >> theSubDim) - theStartVal);
				aValInCol[aValue] = 1;
				aToBeFilled[aValue] = 0;
			}
			p += (aSubDimvalue);
		}
	}

	// which numbers are in this row
	for (aValue = 0; aValue < theDim; aValue++)
		aValInRow[aValue] = 0;
	aValue = 0;
	aRow = 1;
	aCol = 0;
	p = aStartSquare + (n << theSubDim);
	while (1)
	{
		// find next place to ve filled
		while (*p)
		{
			aValInRow[((*p - 1) >> theSubDim) - theStartVal] = 1;
			aCol++;
			p += (aSubDimvalue);
			if (aCol >= theDim)
			{
				aCol = 0;
				aRow++;
				p = aStartSquare + ((aRow * n) << theSubDim);
				for (aValue = 0; aValue < theDim; aValue++)
					aValInRow[aValue] = 0;
				aValue = 0;
			}
		}
		// find next posible value
		while ((aValue < theDim) &&
						(aValInCol[aCol * theDim + aValue] ||
							aValInRow[aValue] ||
							CantFillRow(theDim, aValInCol, aValInRow,
													aCol, &aValue)))
			aValue++;
		if (aValue < theDim)
		{
			// place value
			aValInCol[aCol * theDim + aValue] = 1;
			aValInRow[aValue] = 1;
			CopySquare(n, aStartSquare + (aValue << theSubDim),
									p, aSubDimvalue);
			
			// next column
			aCol++;
			p += (aSubDimvalue);
			if (aCol >= theDim)
			{
				// next row
				aRow++;
				if (aRow < theDim)
				{
					p = aStartSquare + ((aRow * n) << theSubDim);
					for (aValue = 0; aValue < theDim; aValue++)
						aValInRow[aValue] = 0;
					for (aCol = 0; aCol < theDim; aCol++)
					{
						aValInRow[aValue] = 0;
						if (*p)
					aValInRow[((*p - 1) >> theSubDim) - theStartVal] = 1;
						p += (aSubDimvalue);
					}
					aCol = 0;
					p = aStartSquare + ((aRow * n) << theSubDim);
				}
				else
				{
					return;
				}
			}
			aValue = 0;
		}
		else
		{
			// undo
			aCol-;
			p -= (aSubDimvalue);
			aValue = ((*p - 1) >> theSubDim) - theStartVal;
			while (aCol >= 0 && !aToBeFilled[aCol * theDim + aValue])
			{
				aCol-;
				if (aCol >= 0)
				{
					p -= (aSubDimvalue);
					aValue = ((*p - 1) >> theSubDim) - theStartVal;
				}
			}
			if (aCol < 0)
			{
				aRow-;
				p = aStartSquare +
						(((aRow * n) + theDim - 1) << theSubDim);
				aCol = theDim - 1;
				for (aValue = 0; aValue < theDim; aValue++)
					aValInRow[aValue] = 1;
			}
			aValue = ((*p - 1) >> theSubDim) - theStartVal;
			*p = 0;
			aValInCol[aCol * theDim + aValue] = 0;
			aValInRow[aValue] = 0;
			aValue++;
		}
	}
	delete[] aValInCol;
	delete[] aValInRow;
	delete[] aToBeFilled;
}

FillSquare
static void FillSquare(long n, short *latinSquare,
						long theDim, long theSubDim,
						long theStartRow, long theStartCol,
						long theStartVal, long theNrOfRows)
// fill latin square
// if n can be divided by a power of 2,
// theSubDim is 2^x, theDim is n/(2^x)
{
	if (theDim == 1)	// n is a power of 2
		FillSquare2(n, latinSquare, 1 << theSubDim,
				theStartRow << theSubDim, theStartCol << theSubDim,
				theStartVal << theSubDim, theNrOfRows << theSubDim);
	else
	{
		long	aMaxPower2, aNrOfRows, aStartCol, aStartRow;
		short	*aStartSquare = latinSquare +
												((theStartRow * n) << theSubDim) +
															(theStartCol << theSubDim);
		aMaxPower2 = 1;
		while (aMaxPower2 <= theDim) aMaxPower2 <<= 1;
		aMaxPower2 >>= 1;
		// fill top left of the square with a square with n = 2^aMaxPower2
		FillSquare2(n, latinSquare, aMaxPower2 << theSubDim,
				theStartRow << theSubDim, theStartCol << theSubDim,
				theStartVal << theSubDim, aMaxPower2 << theSubDim);
		aNrOfRows = theDim - aMaxPower2;
		if (aNrOfRows > theNrOfRows) aNrOfRows = theNrOfRows;
		// fill top right of the square with a square with n = theDim - 2^aMaxPower2
		FillSquare(n, latinSquare, theDim - aMaxPower2, theSubDim,
								theStartRow, theStartCol + aMaxPower2,
								theStartVal + aMaxPower2, aNrOfRows);
		// copy the square from the top right along the diagonal to the bottom left
		aStartCol = aMaxPower2 - aNrOfRows;
		aStartRow = aNrOfRows;
		while (aStartCol >= 0 && aStartRow < theNrOfRows)
		{
			if (aStartRow + aNrOfRows > theNrOfRows)
				aNrOfRows = theNrOfRows - aStartRow;
			if (aNrOfRows > aStartCol && aStartCol > 0)
				aNrOfRows = aStartCol;
	for (long aRow = 0; aRow < (aNrOfRows << theSubDim); aRow++)
			{
				short	*aFrom = aStartSquare + (aRow * n) +
												(aMaxPower2 << theSubDim);
				short	*aTo = aStartSquare +
									(((aStartRow << theSubDim) + aRow) * n) +
											(aStartCol << theSubDim);
				for (long aCol = 0; aCol < ((theDim - aMaxPower2) << 
							theSubDim); aCol++)
				{
					*aTo = *aFrom;
					aFrom++;
					aTo++;
				}
			for (long aCol = ((aStartCol + (theDim - aMaxPower2)) <<
				theSubDim); aCol < (aMaxPower2 << theSubDim); aCol++)
				{
					*aTo = 0;
					aTo++;
				}
			}
			aStartCol -= (theDim - aMaxPower2);
			aStartRow += (theDim - aMaxPower2);
		}
		// generate the remaning numbers
		CompleteSquare(n, latinSquare, theDim, theSubDim,
										theStartRow, theStartCol, theStartVal);
	}
}

LatinSquares
void LatinSquares(
  short n, /* dimension of the latin square to be generated */
  short *latinSquare /* set latinSquare[c + r*n] to square value row r, col c */
) {
	short	*p = latinSquare;
	long	aSubDim = 0;
	// init
	for (long i = 0; i < n * n; i++, p++)
		*p = 0;
	// can n be divided by a power of 2
	while (!(n & (1 << aSubDim))) aSubDim++;
	FillSquare(n, latinSquare, n >> aSubDim, aSubDim,
							0, 0, 0, n >> aSubDim);
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.