TweetFollow Us on Twitter

Apr 99 Challenge

Volume Number: 15 (1999)
Issue Number: 4
Column Tag: Programmer's Challenge

Apr 99 Challenge

by Bob Boonstra, Westford, MA

Shortest Network

This month's problem was suggested by Michael Kennedy, who wins two Challenge points for making the suggestion. The problem is to find the shortest network of line segments interconnecting a specified set of points. Shortest network algorithms have obvious practical application in constructing transportation and communications networks. In a January 1989, Scientific American article, Marshall Bern and Ronald Graham discussed the shortest network "Steiner" problem as one of a class of NP-hard problems. While no polynomial-time algorithm is known, the article (which, unfortunately, I have not been able to find online) discusses practical algorithms that produce networks slightly longer than the optimal one. Your Challenge for this month is to produce a near-optimal network in minimum time. Fortunately, we have been granted unlimited power of eminent domain, so there are no restrictions on where intermediate nodes may be placed or where connections may be routed.

The prototype for the code you should write is:

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct Node {   /* node coordinates */
   double x;
   double y;
} Node;

typedef struct Connection {
         /* connection between Node[index1] and Node[index2] */
   long index1;
   long index2;
} Connection;

long /* numConnections */ ShortestNetwork(
   long numInitialNodes,         /* number of nodes to connect */
   long *numIntermediateNodes,   /* number of nodes added by ShortestNetwork */
   Node nodes[], 
      /* Nodes 0..numInitialNodes-1 are initialized on entry. */
      /* Nodes numInitialNodes..numInitialNodes+*numIntermediateNodes 
                  are added by ShortestNetwork */
   Connection connections[],   /* connections between nodes */
   long maxNodes,        /* number of entries allocated for nodes */
   long maxConnections   /* number of entries allocated for connections */
);

#if defined(__cplusplus)
}
#endif

Your ShortestNetwork routine will be given a list of numInitialNodes nodes to connect. You may add intermediate nodes to help you form a shorter network, and must produce as output a list of connections between pairs of nodes. The connections must provide a path between any pair of the initial nodes.

Your solution must return the number of intermediate nodes added to the network in *numIntermediateNodes, while storing the location of those nodes in nodes[numInitialNodes+k], k=0..*numIntermediateNodes-1. A connection is specified by storing the indices of the two nodes being connected into the connection array. Your ShortestNetwork routine should return the number of connections created.

The maxNodes and maxConnections parameters indicate how much storage has been allocated for nodes and connections. It is my intention to allocate enough storage for all the nodes and connections your solution might create, but if it turns out that there is not enough storage, your solution should return a value of -1 to indicate that storage was exhausted.

The winner will be the solution that generates the shortest network in the minimum amount of time. Specifically, your solution will be assigned a cost equal to the sum of the distances between nodes in your list of connections, plus a penalty of 10% for each second of execution time. Solutions that do not connect all of the initial nodes will be penalized with a very large cost. The solution with the lowest total cost over a series of networking problems will be the winner.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Thanks to Michael for suggesting this Challenge.

Three Months Ago Winner

Congratulations to Tom Saxton for submitting the winning solution to the January Sphere Packing Challenge. You may recall that this Challenge was to pack a set of spheres of varying size into a box with minimum volume, and to do so in the shortest amount of time possible. Tom submitted one of only two solutions received for this Challenge, and his was the only one that performed correctly.

Tom's approach is to decide on a footprint for the box to contain the spheres, "drop" the spheres individually into the box until they hit another sphere or the bottom of the box, while attempting to move the dropped sphere around the obstacle without going outside the box footprint. The solution then iterates with random movements to try to converge to a better solution. Tom observed in his submission that the time penalty for this problem (1% per millisecond of execution time) was very severe, making it unproductive to let his algorithm iterate very long. Every tenth of a second of execution time requires a factor of 2 reduction in volume to be productive, a rate of improvement smaller than what Tom was able to achieve.

I evaluated the solutions using six test cases with between 200 and 2000 spheres per test case. As one might expect, execution time grew exponentially with the number of spheres. A test case with 1000 spheres took about 20 times as long to solve as a 200-sphere case, and a 2000-sphere case took about 4 times longer than the 1000-sphere case. Tom's solution generated solutions that, in aggregate, occupied between 1.3 and 3.9 times the volume of individual cubes containing the individual spheres, which suggests that better solutions could be achieved with a more relaxed time penalty.

The table below lists, for each of the solutions submitted, the total volume of the boxes containing the spheres, the total execution time, and the total score including the time penalty, as well as the code and data sizes for each entry. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges prior to this one.

Name Volume (x1.0E12) Time (secs) Score (x1.0e12) Code Size Data Size
Tom Saxton (79)65.3142.310107.25796372
A. D.***820104

Top Contestants

Listed here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated 20 or more points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 200
  2. Saxton, Tom 99
  3. Boring, Randy 56
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Maurer, Sebastian 40
  7. Heithcock, JG 37
  8. Cooper, Greg 34
  9. Murphy, ACC 34
  10. Lewis, Peter 31
  11. Nicolle, Ludovic 27
  12. Brown, Pat 20
  13. Day, Mark 20
  14. Higgins, Charles 20
  15. Hostetter, Mat 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place20 points
2nd place10 points
3rd place7 points
4th place4 points
5th place2 points
finding bug2 points
suggesting Challenge2 points

Here is Tom's winning Sphere Packing solution:

Spheres.cpp
Copyright © 1999 Tom Saxton

#include "Spheres.h"
#include "VecUtil.h"

#include <math.h>
#include <stdlib.h>

enum {
   fFalse = 0,
   fTrue = 1
};

typedef unsigned long ulong;

// disable asserts
#define Assert(f)

// hard iteration limit
#define cIterLim   10000

// scoring an accepting solutions
#define _FAccept(volNew, volBest) ((volNew) < (volBest))
#define _Score(vol, dtick)      ((vol) * (1.0 + (dtick)*10.0/60.0))

// define this to ignore the time penalty
// #define KEEP_GOING

// time checking parameters
#define dtickSec         60
#define dtickCheckScore      (dtickSec/30)
#define dtickFirstCheck      (dtickSec/30)
#define dtickLastCheck      (10*dtickSec)

static const Position s_normalX = { 1.0, 0.0, 0.0 };
static const Position s_normalY = { 0.0, 1.0, 0.0 };
static const Position s_normalZ = { 0.0, 0.0, 1.0 };
static const Position s_normalXNeg = { -1.0, 0.0, 0.0 };
static const Position s_normalYNeg = { 0.0, -1.0, 0.0 };
static const Position s_normalZNeg = { 0.0, 0.0, -1.0 };

static void _InitStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[]);
static void _TweakStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[]);
static void _DropSpheres(
   long csphere,
   const long *paisphere,
   const double aradius[],
   const Position *paposStart,
   Position apos[],
   double base,
   double *pvolume);
static void _DropOneSphere(
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit);
static int _FFindObstruction(
   const Position normalMove,
   int fNear,
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit);

PackSpheres
void PackSpheres(
  long csphere,        /* input: number of spheres to pack */
  double aradius[],    /* input: radius of each of numSpheres spheres */
  Position aposBest[]  /* output: location of center of each sphere */
)
{
   int isphere;
   double volGuess, vol, volBest;
   double base, baseMin, baseMax, baseBest;
   double radiusLarge, radiusSum;
   ulong tickStart, tickCur;
   
   tickStart = LMGetTicks();
   radiusLarge = radiusSum = 0.0;
   for (isphere = 0, volGuess = 0.0; isphere < csphere; ++isphere)
   {
      double radius = aradius[isphere];
      volGuess += 8.0 * radius * radius * radius;
      
      if (radius > radiusLarge)
         radiusLarge = radius;
      radiusSum += radius;
   }
   
   baseMin = 2.0 * radiusLarge;
   baseMax = 2.0 * radiusSum;
   Assert(baseMin <= baseMax);
   
   baseBest = baseMin;
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            baseBest, &volBest);
   
   base = baseMax;
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            base, &vol);
   if (vol < volBest)
   {
      volBest = vol;
      baseBest = base;
   }
   
   base = sqrt(baseMin * baseMax);
   _DropSpheres(csphere, NULL, aradius, NULL, aposBest, 
            base, &vol);
   if (vol < volBest)
   {
      volBest = vol;
      baseBest = base;
   }
   
   char * pbBlock = NewPtr(csphere * sizeof(Position) + 
                  csphere * sizeof(Position) + csphere * sizeof(long));
   
   if (pbBlock != NULL)
   {
      long iIter;

      Position * aposStart = (Position *)pbBlock;
      Position * aposEnd = &aposStart[csphere];
      long * aisphere = (long *)&aposEnd[csphere];
      long tickNext = tickStart + dtickCheckScore;
   double scorePrev = _Score(volBest, LMGetTicks() - tickStart);
#ifdef KEEP_GOING
      double scoreBest = scorePrev;
      int iIterBest = 0;
#endif   
      
      for (iIter = 0; iIter < cIterLim; ++iIter)
      {
         tickCur = LMGetTicks();
         if (tickCur >= tickNext)
         {
            ulong dtickCur = tickCur - tickStart;
            if (dtickCur >= dtickFirstCheck)
            {
               if (dtickCur >= dtickLastCheck)
                  break;
                  
               double score = _Score(volBest, dtickCur);
#ifdef KEEP_GOING
               if (score < scoreBest)
               {
                  scoreBest = score;
                  iIterBest = iIter;
               }
#else
               if (score > scorePrev)
                  break;
#endif
               scorePrev = score;
            }
            while (tickNext < tickCur)
               tickNext += dtickCheckScore;
         }
         
         // pick a new scenario
         if (iIter == 0)
            _InitStartingPos(csphere, aisphere, aradius, 
                  baseMin, baseBest, baseMax, &base, aposStart);
         else
            _TweakStartingPos(csphere, aisphere, aradius, 
               baseMin, baseBest, baseMax, &base, aposStart);
         
         // try the new scenario
         _DropSpheres(csphere, aisphere, aradius, aposStart, 
               aposEnd, base, &vol);
         if (_FAccept(vol, volBest))
         {
            volBest = vol;
            baseBest = base;
         BlockMove(aposEnd, aposBest, csphere * sizeof(Position));
         }
         
         // if the largest sphere determined the height, then reduce baseMax
      if (vol <= 2.0 * (radiusLarge + epsilon) * base * base)
         {
            Assert(base <= baseMax);
            baseMax = base;
         }
      }
   }
   
   if (pbBlock != NULL)
      DisposePtr((Ptr) pbBlock);
}

_InitStartingPos
static void _InitStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[])
{
   long isphereCur;
   
   *pbase = baseBest;
   for (isphereCur = 0; isphereCur < csphere; ++isphereCur)
   {
      Position *ppos = &aposStart[isphereCur];
      double radiusCur = aradius[isphereCur];
      
      aisphere[isphereCur] = isphereCur;
      ppos->coordinate[0] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[1] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[2] = csphere * *pbase;
   }
}

_TweakStartingPos
static void _TweakStartingPos(
   const long csphere,
   long aisphere[],
   const double aradius[],
   double baseMin,
   double baseBest,
   double baseMax,
   double *pbase,
   Position aposStart[])
{
   long isphereCur;
   double dbase;
   
   // change the base size?
   if (GRandInRange(0.0, 1.0) < 0.1)
   {
      dbase = GRandInRange(-1.0, 1.0);
      dbase *= fabs(dbase);
      dbase *= 0.25 * (baseMax - baseMin);
      *pbase = baseBest + dbase;
      *pbase = fmax(baseMin, *pbase);
      *pbase = fmin(baseMax, *pbase);
   }
   
   // rearrange the drop order?
   if (GRandInRange(0.0, 1.0) < 4.0)
   {
      for (long index = csphere; - index > 0; )
      {
         long indexSwap;
         long isphereSav;
         
         indexSwap = ((unsigned long)LRand()) % index;
         Assert(0 <= indexSwap && indexSwap < index);
         isphereSav = aisphere[index];
         aisphere[index] = aisphere[indexSwap];
         aisphere[indexSwap] = isphereSav;
      }
   }
   
   // change the starting positions
   for (isphereCur = 0; isphereCur < csphere; ++isphereCur)
   {
      Position *ppos = &aposStart[isphereCur];
      double radiusCur = aradius[isphereCur];
      
      ppos->coordinate[0] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[1] = 
            GRandInRange(radiusCur, *pbase - radiusCur);
      ppos->coordinate[2] = csphere * *pbase;
   }
}

_DropSpheres
static void _DropSpheres(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position *paposStart,
   Position aposEnd[],
   double base,
   double *pvol)
{
   long csphereDone;
   
   for (csphereDone = 0; csphereDone < csphere; ++csphereDone)
   {
      Position posStart, posLand;
      double radiusCur;
      long isphereHit;
      long isphereCur;

      isphereCur = paisphere == NULL ? csphereDone : 
            paisphere[csphereDone];

      radiusCur = aradius[isphereCur];
      
      // pick a starting point for the current sphere
      Assert(base >= radiusCur*2.0);
      if (paposStart == NULL)
      {
         posStart.coordinate[0] = 
            GRandInRange(radiusCur, base - radiusCur);
         posStart.coordinate[1] = 
            GRandInRange(radiusCur, base - radiusCur);
      }
      else
      {
         posStart.coordinate[0] = 
               paposStart[isphereCur].coordinate[0];
         posStart.coordinate[1] = 
               paposStart[isphereCur].coordinate[1];
      }
      
      // drop it
   _DropOneSphere(posStart, radiusCur, csphereDone, paisphere, 
         aradius, aposEnd, &aposEnd[isphereCur], &isphereHit);
      
      // try to move it around the sphere it hit
   for (int cIter = 0; isphereHit != -1 && cIter < isphereCur; 
            ++cIter)
      {
         Position vecMove, vecMoveXY, normalMove;
         Position posHit;
         double distH, distMove;
         int icoord;
         
         posHit = aposEnd[isphereHit];
         SubVec(aposEnd[isphereCur], posHit, &vecMove);
         vecMoveXY = vecMove;
         vecMoveXY.coordinate[2] = 0;
         distH = LengthVec(vecMoveXY);
         
         if (distH < epsilon)
            break;
            
         ScaleVec(1.0/distH, vecMoveXY, &normalMove);
         distMove = radiusCur + aradius[isphereHit];
         Assert(distMove > distH - epsilon);
         
         // don't move out of the box
         for (icoord = 0; icoord <= 1; ++icoord)
         {
            if (normalMove.coordinate[icoord] < -epsilon)
            {
               if (posHit.coordinate[icoord] + 
         distMove * normalMove.coordinate[icoord] < radiusCur)
            distMove = (radiusCur - posHit.coordinate[icoord]) / 
                     normalMove.coordinate[icoord];
            }
            else if (normalMove.coordinate[icoord] > epsilon)
            {
               if (posHit.coordinate[icoord] + distMove * 
               normalMove.coordinate[icoord] > base - radiusCur)
                  distMove = (base - radiusCur - 
                                             posHit.coordinate[icoord]) / 
                                          normalMove.coordinate[icoord];
            }
         }
         
         Assert(distMove >= distH - epsilon);
         if (distMove < distH + epsilon)
            break;
            
         AddScaleVec(posHit, distMove, normalMove, &posStart);
         
   _DropOneSphere(posStart, radiusCur, csphereDone, paisphere, 
                  aradius, aposEnd, &posLand, &isphereHit);
         
         if (posLand.coordinate[2] > 
                  aposEnd[isphereCur].coordinate[2] - epsilon)
            break;
         
         aposEnd[isphereCur] = posLand;
      
      }

      // try move it toward the edges
      int fImproved, cIter;
      for (fImproved = fTrue, cIter = 1; fImproved; ++cIter)
      {
         Assert(cIter < 15);
         fImproved = fFalse;
         for (int dir = 0; dir < 4; ++dir)
         {
            Position normalMove;
            int fHit;
            double sEdge;
            Position aposStart[2];
            int cposStart;
            
            switch (dir)
            {
            case 0:
               normalMove = s_normalX;
               sEdge = base - radiusCur;
               break;
            case 1:
               normalMove = s_normalY;
               sEdge = base - radiusCur;
               break;
            case 2:
               normalMove = s_normalXNeg;
               sEdge = -radiusCur;
               break;
            case 3:
               normalMove = s_normalYNeg;
               sEdge = -radiusCur;
               break;
            }
            
            fHit = _FFindObstruction(
                     normalMove,
                     fTrue/*fNear*/,
                     aposEnd[isphereCur],
                     radiusCur,
                     csphereDone,
                     paisphere,
                     aradius,
                     aposEnd,
                     &posLand,
                     &isphereHit);
            
            cposStart = 0;
            if (!fHit || DotVec(posLand, normalMove) > sEdge)
            {
               posLand = aposEnd[isphereCur];
               AddScaleVec(posLand, sEdge - 
                        DotVec(posLand, normalMove), normalMove, 
                                    &aposStart[cposStart++]);
               cposStart = 1;
            }
            else
            {
         LinearComboVec(0.5, posLand, 0.5, aposEnd[isphereCur], 
                                 &aposStart[cposStart++]);
               aposStart[cposStart++] = posLand;
            }
            
for (int iposStart = 0; iposStart < cposStart; ++iposStart)
            {
               _DropOneSphere(aposStart[iposStart], radiusCur, 
            csphereDone, paisphere, aradius, aposEnd, &posLand, 
                     &isphereHit);
               
               if (posLand.coordinate[2] < 
                     aposEnd[isphereCur].coordinate[2] + epsilon)
               {
                  if (aposEnd[isphereCur].coordinate[2] - 
                           posLand.coordinate[2] > radiusCur * 0.05)
                     fImproved = fTrue;
                  aposEnd[isphereCur] = posLand;
            
               }
            }
         }
      }
   }
   
   ComputeVol(csphere, NULL, aradius, aposEnd, base, pvol);
}

_DropOneSphere
static void _DropOneSphere(
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit)
{
   Position posBase;
   int fHit;
   
   posBase = posStart;
   posBase.coordinate[2] = 0.0;
   
   *pposResult = posBase;

   fHit = _FFindObstruction(
            s_normalZ,
            fFalse, /* fNear */
            posBase,
            radius,
            csphere,
            paisphere,
            aradius,
            apos,
            pposResult,
            pisphereHit
            );
   
   if (!fHit || pposResult->coordinate[2] < radius)
   {
      *pisphereHit = -1;
      pposResult->coordinate[2] = radius;
   }

   // add some fudge
   pposResult->coordinate[2] += epsilon;
   
#ifdef DEBUG
   for (long csphereChecked = 0; csphereChecked < csphere; 
               ++csphereChecked)
   {
      Position vecT;
      double dist, distGap;
      int isphere;
      
      isphere = paisphere == NULL ? csphereChecked : 
                                                paisphere[csphereChecked];
      
      SubVec(apos[isphere], *pposResult, &vecT);
      dist = LengthVec(vecT);
      distGap = dist - (radius + aradius[isphere]);
      Assert(distGap >= 0.0);
   }
#endif
}

_FFindObstruction
// moving a sphere with specifed radius from posStart in the direction normalMove,
// find the nearest or farthest obstruction
// If there is an obstruction, return the index to the obstructing sphere
// and the position to which the object can move.
static int _FFindObstruction(
   const Position normalMove,
   int fNear,
   const Position &posStart,
   double radius,
   int csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   Position * pposResult,
   long * pisphereHit)
{
   double zBest;
   
   *pisphereHit = -1;

   for (int csphereChecked = 0; csphereChecked < csphere; 
               ++csphereChecked)
   {
      Position vecToOther, vecPerp, vecParallel;
      double distPerpSq, distSep, distSepSq;
      double z, dz;
      int isphere;
      
      isphere = paisphere == NULL ? csphereChecked : 
                                                paisphere[csphereChecked];
      SubVec(apos[isphere], posStart, &vecToOther);
      ProjectVec(vecToOther, normalMove, &vecParallel);
      SubVec(vecToOther, vecParallel, &vecPerp);
      
      distPerpSq = DotVec(vecPerp, vecPerp);
      distSep = radius + aradius[isphere];
      distSepSq = distSep * distSep;
      
      if (distPerpSq > distSepSq)
         continue;
      
      dz = sqrt(distSepSq - distPerpSq);
      if (fNear)
         dz = -dz;
      z = DotVec(vecParallel, normalMove) + dz;
      
      if (z >= 0.0 && (*pisphereHit == -1 || 
                                    (fNear ? z < zBest : z > zBest)))
      {
         zBest = z;
         *pisphereHit = isphere;
      }
   }
   
   if (*pisphereHit == -1)
      return fFalse;
      
   *pposResult = posStart;
   AddScaleVec(posStart, zBest, normalMove, pposResult);
   
   return fTrue;
}

VecUtil.cpp
#include "Spheres.h"
#include "VecUtil.h"

#include <math.h>
#include <stdlib.h>

enum {
   fFalse = 0,
   fTrue = 1
};

// disable asserts
#define Assert(f)

// math utilities

double GRandInRange(double gLow, double gHigh)
{
   double g;
   
   g = gLow + rand() * (gHigh - gLow) / RAND_MAX;
   Assert(gLow <= g && g <= gHigh);
   return g;
}

// return a long's worth of randomness
long LRand()
{
   long lw;
   
   Assert(RAND_MAX > 256);
   
   lw = 0;
   for (int ib = 0; ib < sizeof(long); ++ib)
      lw = (lw << 8) + (rand() & 0xFF);
   return lw;
}

// vector utilities

void SubVec(const Position &pos1, const Position &pos2, 
      Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = pos1.coordinate[i] - 
                                                         pos2.coordinate[i];
}

double DotVec(const Position &pos1, const Position &pos2)
{
   double g = 0.0;
   for (int i = 0; i < 3; ++i)
      g += pos1.coordinate[i] * pos2.coordinate[i];
   return g;
}

double LengthVec(const Position &pos)
{
   return sqrt(DotVec(pos, pos));
}

void ScaleVec(double g, const Position &pos, 
   Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = g * pos.coordinate[i];
}

void AddScaleVec(const Position &posBase, double g, 
   const Position &posAdd, Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = posBase.coordinate[i] + 
                                                g * posAdd.coordinate[i];
}

void LinearComboVec(double g1, const Position &pos1, double g2, 
      const Position &pos2, Position *pposResult)
{
   for (int i = 0; i < 3; ++i)
      pposResult->coordinate[i] = g1 * pos1.coordinate[i] + 
                                                g2 * pos2.coordinate[i];
}

// project "vec" onto a "normal" vector
void ProjectVec(const Position &vec, const Position &normal, 
      Position *pvecResult)
{
   ScaleVec(DotVec(vec, normal), normal, pvecResult);
}

// sphere stuff

void ComputeVol(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   double base,
   double *pvol)
{
   Position posMin, posMax;
   long index;
   int icoord;
   double radius;
   const Position * ppos;

   posMin = posMax = apos[0];

   for (index = 0; index < csphere; ++index)
   {
      long isphere;
      
      isphere = paisphere == NULL ? index : paisphere[index];
      ppos = &apos[isphere];
      radius = aradius[isphere];
      for (icoord = 0; icoord < 3; ++icoord)
      {
         if (ppos->coordinate[icoord] - radius < 
                  posMin.coordinate[icoord])
            posMin.coordinate[icoord] = ppos->coordinate[icoord] - 
                                                            radius;

         if (ppos->coordinate[icoord] + radius > 
                  posMax.coordinate[icoord])
            posMax.coordinate[icoord] = ppos->coordinate[icoord] + 
                                                            radius;
      }
   }

   *pvol = 1.0;
   
   for (icoord = 0; icoord < 3; ++icoord)
   {
      Assert(posMin.coordinate[icoord] >= -epsilon);
   Assert(base == 0 || posMax.coordinate[icoord] <= base+epsilon 
                                       || icoord == 2);
      *pvol *= posMax.coordinate[icoord] - 
                        posMin.coordinate[icoord];
   }
}

Spheres.h

#if defined(__cplusplus)
extern "C" {
#endif

typedef struct Position {
  double coordinate[3];  /* coordinate[0]==X position, [1]==Y, [2]==Z */
} Position;

void PackSpheres(
  long numSpheres,       /* input: number of spheres to pack */
  double radius[],       /* input: radius of each of numSpheres spheres */
  Position location[]    /* output: location of center of each sphere */
);

#if defined (__cplusplus)
}
#endif

VecUtil.h
// error tolerance

const double epsilon (1.0e-10);

// math utilities

double GRandInRange(double gLow, double gHigh);
long LRand();

// vector utilities

void SubVec(const Position &pos1, const Position &pos2, 
   Position *pposResult);
double DotVec(const Position &pos1, const Position &pos2);
double LengthVec(const Position &pos);
void ScaleVec(double g, const Position &pos, 
   Position *pposResult);
void AddScaleVec(const Position &posBase, double g, 
   const Position &posAdd, Position *pposResult);
void ProjectVec(const Position &vec, const Position &normal, 
   Position *pvecResult);
void LinearComboVec(double g1, const Position &pos1, 
   double g2, const Position &pos2, Position *pposResult);

// sphere stuff

void ComputeVol(
   const long csphere,
   const long *paisphere,
   const double aradius[],
   const Position apos[],
   double base,
   double *pvol);
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Six fantastic ways to spend National Vid...
As if anyone needed an excuse to play games today, I am about to give you one: it is National Video Games Day. A day for us to play games, like we no doubt do every day. Let’s not look a gift horse in the mouth. Instead, feast your eyes on this... | Read more »
Old School RuneScape players turn out in...
The sheer leap in technological advancements in our lifetime has been mind-blowing. We went from Commodore 64s to VR glasses in what feels like a heartbeat, but more importantly, the internet. It can be a dark mess, but it also brought hundreds of... | Read more »
Today's Best Mobile Game Discounts...
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Nintendo and The Pokémon Company's...
Unless you have been living under a rock, you know that Nintendo has been locked in an epic battle with Pocketpair, creator of the obvious Pokémon rip-off Palworld. Nintendo often resorts to legal retaliation at the drop of a hat, but it seems this... | Read more »
Apple exclusive mobile games don’t make...
If you are a gamer on phones, no doubt you have been as distressed as I am on one huge sticking point: exclusivity. For years, Xbox and PlayStation have done battle, and before this was the Sega Genesis and the Nintendo NES. On console, it makes... | Read more »
Regionally exclusive events make no sens...
Last week, over on our sister site AppSpy, I babbled excitedly about the Pokémon GO Safari Days event. You can get nine Eevees with an explorer hat per day. Or, can you? Specifically, you, reader. Do you have the time or funds to possibly fly for... | Read more »
As Jon Bellamy defends his choice to can...
Back in March, Jagex announced the appointment of a new CEO, Jon Bellamy. Mr Bellamy then decided to almost immediately paint a huge target on his back by cancelling the Runescapes Pride event. This led to widespread condemnation about his perceived... | Read more »
Marvel Contest of Champions adds two mor...
When I saw the latest two Marvel Contest of Champions characters, I scoffed. Mr Knight and Silver Samurai, thought I, they are running out of good choices. Then I realised no, I was being far too cynical. This is one of the things that games do best... | Read more »
Grass is green, and water is wet: Pokémo...
It must be a day that ends in Y, because Pokémon Trading Card Game Pocket has kicked off its Zoroark Drop Event. Here you can get a promo version of another card, and look forward to the next Wonder Pick Event and the next Mass Outbreak that will be... | Read more »
Enter the Gungeon review
It took me a minute to get around to reviewing this game for a couple of very good reasons. The first is that Enter the Gungeon's style of roguelike bullet-hell action is teetering on the edge of being straight-up malicious, which made getting... | Read more »

Price Scanner via MacPrices.net

Take $150 off every Apple 11-inch M3 iPad Air
Amazon is offering a $150 discount on 11-inch M3 WiFi iPad Airs right now. Shipping is free: – 11″ 128GB M3 WiFi iPad Air: $449, $150 off – 11″ 256GB M3 WiFi iPad Air: $549, $150 off – 11″ 512GB M3... Read more
Apple iPad minis back on sale for $100 off MS...
Amazon is offering $100 discounts (up to 20% off) on Apple’s newest 2024 WiFi iPad minis, each with free shipping. These are the lowest prices available for new minis among the Apple retailers we... Read more
Apple’s 16-inch M4 Max MacBook Pros are on sa...
Amazon has 16-inch M4 Max MacBook Pros (Silver and Black colors) on sale for up to $410 off Apple’s MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather than a third-party... Read more
Red Pocket Mobile is offering a $150 rebate o...
Red Pocket Mobile has new Apple iPhone 17’s on sale for $150 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Switch to Verizon, and get any iPhone 16 for...
With yesterday’s introduction of the new iPhone 17 models, Verizon responded by running “on us” promos across much of the iPhone 16 lineup: iPhone 16 and 16 Plus show as $0/mo for 36 months with bill... Read more
Here is a summary of the new features in Appl...
Apple’s September 2025 event introduced major updates across its most popular product lines, focusing on health, performance, and design breakthroughs. The AirPods Pro 3 now feature best-in-class... Read more
Apple’s Smartphone Lineup Could Use A Touch o...
COMMENTARY – Whatever happened to the old adage, “less is more”? Apple’s smartphone lineup. — which is due for its annual refresh either this month or next (possibly at an Apple Event on September 9... Read more
Take $50 off every 11th-generation A16 WiFi i...
Amazon has Apple’s 11th-generation A16 WiFi iPads in stock on sale for $50 off MSRP right now. Shipping is free: – 11″ 11th-generation 128GB WiFi iPads: $299 $50 off MSRP – 11″ 11th-generation 256GB... Read more
Sunday Sale: 14-inch M4 MacBook Pros for up t...
Don’t pay full price! Amazon has Apple’s 14-inch M4 MacBook Pros (Silver and Black colors) on sale for up to $220 off MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather... Read more
Mac mini with M4 Pro CPU back on sale for $12...
B&H Photo has Apple’s Mac mini with the M4 Pro CPU back on sale for $1259, $140 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – Mac mini M4 Pro CPU (24GB/512GB): $1259, $... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.