TweetFollow Us on Twitter

The Knight's Tour

Volume Number: 14 (1998)
Issue Number: 11
Column Tag: Programming Puzzles

The Knight's Tour

by F.C. Kuechmann

A seemingly simple problem with thousands of solutions

There is a class of problems that, though seemingly simple in concept, involve numbers so large that the time or material required for solution renders them effectively impossible to solve manually within a human lifetime. The "grains of wheat on a chessboard" described by Gamow [1988] is one of the simpler and more easily explained examples of this sort of problem. We start with a single grain of wheat on the first square of the board, two grains on the second, four on the third, eight on the fourth, and so on. Each square receiving twice the number of grains as the previous square, until all 64 squares are occupied. Simple enough, right? Gamow suggests that it would take the entire world's wheat production for 2000 years to fill the board! In this article we're going to look at a similar challenge and show how to solve it with your Macintosh.

The Problem

The "knight's tour" is another chessboard problem that involves deceptively large numbers (this one is simpler though - we don't need any wheat). In the game of chess the knight can move only in L-shaped patterns consisting of two squares one direction and a single square perpendicular to the direction of the first two. There are eight possible moves from any given starting square, shown in Figure 1. From the 16 squares at the middle of a chessboard all eight moves can be executed without leaving the board; Away from the center fewer moves are executable because the knight would end up off the board entirely. In general, a knight in row 1 or 8, or column 1 or 8, can execute only 4 moves. A knight in row 2 or 7, or column 2 or 7, can execute 6 moves. A knight on a corner square has only two executable moves.

Figure 1. The eight possible moves of a knight.

The object of the knight's tour is, from a given starting square, to visit each square on the board exactly once.

From many of the 64 possible starting squares no complete tours are possible, whereas others offer thousands. My experiments have shown that, if there is at least one complete tour from a given starting square, there is a large number of complete tours from that square.

Starting at square one, we test eight possible moves. Each time a move is executed, we must test another eight moves, then another eight, and another, until we have either visited all 64 squares or exhausted the possible moves. At square 63, eight moves must be considered. At square 62, 8^2 moves must be tested. More generally, at any given square n, the number of moves to be tested is 8^(64-n), with a significantly smaller number of executable moves. If the knight's tour were as straightforward as the grains of wheat problem, determining all possible solutions from any given starting square would be described by a geometric progression of 8+(8^2)+(8^3)..+(8^62)+(8^63) - or 8^64 tests. That is not a small number! In fact, we get eight new tests only when we actually execute a move, so the number of required tests is somewhat smaller.

A human with a chessboard, a knight, and a pad of paper to record moves, together with a well-conceived systematic method and fast hands, would require so much time to derive even a single solution that it is practically if not theoretically impossible using hand methods.

1 38 59 36 43 48 57 52
60 35 2 49 58 51 44 47
39 32 37 42 3 46 53 56
34 61 40 27 50 55 4 45
31 10 33 62 41 26 23 54
18 63 28 11 24 21 14 5
9 30 19 16 7 12 25 22
64 17 8 29 20 15 6 13

Figure 2. One complete knight's tour.

Niklaus Wirth [1976,1986] describes a trial-and-error approach to the problem using recursion and backtracking, with soucecode in Pascal [1976] and Modula-2 [1986]. Unlike a human, a computer can find solutions quite easily, although it can still take a great deal of time. With Wirth's method and CodeWarrior Pascal, the solution shown in Figure 2 requires 66,005,601 possible moves to be considered, 8,250,732 moves to be executed, and occupies 35 seconds of time on a PPC Mac 6500/225. A total of 107 solutions for the same starting square were found in just under two hours with 16,114,749,106 total position tests and 2,014,343,776 moves; 12 hours got more than a thousand solutions without testing more than a fraction of the possible moves. At that rate finding all solutions for the entire board would take a very long time. Because of symmetries, however, we could simply divide the board into four 16-square quadrants, Figure 3, and find the solutions for any quadrant, then calculate the solutions for the remaining quadrants by mirroring.

1

2

3

4

Figure 3. The board as quadrants.

Solutions for quadrant 2 mirror those for quadrant 1 on the vertical axis. Quadrants 3 and 4 mirror quadrants 1 and 2 on the horizontal axis.

The Program

The chess board occupies the leftmost 2/3 of the window, with a control panel on the right. Top left of the control panel are three times...

  1. total time
  2. time on current starting square
  3. time since the most recent solution was found.

Tour 1 has only number 1; Tour 2 has numbers 1 and 3.

Top right is the current rotation pattern for testing possible moves; the patterns are toggled between 1 and 2 by clicking the Pat button, and the position is selected by clicking the Rot button. Below the time are statistics on move tests, moves, backtracks, and the maximum backtrack level.

Buttons for starting, pausing, pattern and rotation selection, update board status, tour selection [eight options], and speed 1-9 follow at bottom right.

The EvUp/SolUp button toggles update status. In the default EvUp mode the board is updated whenever the events are tested, and those intervals are determined by the speed setting; in SolUp mode the board is updated only if and when a complete tour is achieved. Since testing for events and updating the board require large amounts of time relative to calculating the knight's moves, higher execution speeds offer less frequent event testing and board updating.

The Tours

The eight tour options are:

  • Tour 1 - finds one solution from the starting square and terminates; starting square selected by clicking on it.
  • Tour 2 - finds all solutions from starting square; starting square selected by clicking on it.
  • Tour 3 - starts at row 1, column 1 and moves through the entire board; if a solution is found, the next square becomes the starting square.
  • Tour 4 - starts at row 1, column 1 and moves through the entire board; finds all solutions for each square.
  • Quad 1 - finds all solutions for upper left quadrant.
  • Quad 2 - finds all solutions for upper right quadrant.
  • Quad 3 - finds all solutions for lower left quadrant.
  • Quad 4 - finds all solutions for lower right quadrant.

Menus

Several program options are selected by menu.

  • The File menu offers Run and Quit options.
  • The Delay menu allows selection of the pause after each complete tour. The minimum is no pause, the maximum 30 seconds, the default 1 second.
  • The Time menu determines the maximum time spent touring from a given starting square. In the cases of tours 1 and 2, pursuit of solutions ceases at that point; with the other six tours execution continues at the next square. The minimum selection is 2 minutes; the maximum specific interval 4 weeks. The default in no time limit.
  • The Save menu offers options of No save, Save as text, and Save as records. The default is No save.

Drawing the Chess Board

The empty chess board is drawn and optionally initialized by calling the procedure in Listing 1. It calls the code in Listing 2 64 times, passing row, column and flag values. The flag determines whether the global array ggChessBd, which stores the current moves, is affected. If the flag is TRUE, the array location ggChessBd[row,column] is set to zero. The flag is TRUE during initialization, FALSE during all other updates.

Listing 1.

ClearTheBoard
   procedure ClearTheBoard(flag:boolean);
         {clear the board by drawing blank squares at}
         {all 64 positions}
   var
      row,column:integer;
   begin
      for column:=1 to ggN do
         for row:=1 to ggN do
            SnuffKnight(row,column,flag);
   end;

The SnuffKnight procedure in Listing 2 erases the square at the location given by row and column by drawing a light or dark empty square.

Listing 2.

SnuffKnight
   procedure SnuffKnight (row,column:integer;flag:boolean);
      {erases the move number at the specified row and column}
      {position by drawing an empty square there}
   var
      vOffset,hOffset,height,width:integer;
      pictureRect:Rect;
      thePicture:PicHandle;
   begin
      SetPort(ggKnightWindow);
      ggTourRect:=ggKnightWindow^.portRect;

      if column mod 2=0 then
         begin
               {even # columns}
            if row mod 2=0 then
               thePicture:=GetPicture(ggcDK_ERASE_ID)
            else
               thePicture:=GetPicture(ggcLT_ERASE_ID);
         end
      else
         begin
               {odd # columns}
            if row mod 2>0 then
               thePicture:=GetPicture(ggcDK_ERASE_ID)
            else
               thePicture:=GetPicture(ggcLT_ERASE_ID);
         end;

      pictureRect:=thePicture^^.picFrame;
      hOffset:=(column-1) * ggcSQUARE_SIZE;
      vOffset:=(row-1) * ggcSQUARE_SIZE;
      height:=pictureRect.bottom-pictureRect.top;
      width:=pictureRect.right-pictureRect.left;
      PlacePict(ggTourRect,vOffset,hOffset,height,width);
      DrawPicture(thePicture,ggTourRect);
      if flag then
         ggChessBd[row,column]:=0;
   end;

Listing 3 shows how the board is refreshed after an update event. If the value in location ggChessBd[row,column] is non-zero (i.e. it holds a move number for the knight), that number is drawn by calling the DrawKnight code in Listing 4; Otherwise Listing 2 is called with a flag value of FALSE.

Listing 3.

UpDateBoard
   procedure UpDateBoard;
   var
      row,column,index:integer;
   begin
      for row:=1 to ggN do
         for column:=1 to ggN do
            begin
               index:=ggChessBd[row,column];
               if index>0 then
                  DrawKnight(row,column,index)
               else
                  SnuffKnight(row,column,FALSE);
            end;
   end;

Listing 4.

DrawKnight
   procedure DrawKnight(row,column,index:integer);
      {draws a square with a knight move # at the specified row}
      {and column}
   var
      vOffset,hOffset,height,width:integer;
      S:Str255;
   begin
      SetPort(ggKnightWindow);
      ggTourRect:=ggKnightWindow^.portRect;
      hOffset:=(column-1) * ggcSQUARE_SIZE;
      vOffset:=(row) * ggcSQUARE_SIZE;
      NumToString(index,S);
      if index<10 then
         begin
               {selectively erase squares with 1-9 when backtracking}
            if (ggIndex<10) and (ggMaxBak<ggNsqr) then
               SnuffKnight(row,column,FALSE);
            MoveTo(hOffset+20,vOffset);
         end
      else
         MoveTo(hOffset+14,vOffset);
      TextSize(20);
      ForeColor(blackColor);
      
      if column mod 2=0 then
         begin
            if row mod 2=0 then
               BackColor(redColor)
            else
               BackColor(whiteColor);
         end
      else
         begin   
            if row mod 2>0 then
               BackColor(redColor)
            else
               BackColor(whiteColor);
         end;      
      
      TextMode(srcCopy);
      DrawString(S);
      BackColor(whiteColor);
   end;

The Core Procedure

Most of the work in Knight's Tour is accomplished in Listing 5a. Testing for events, tracking the time, updating the board and statistics is accomplished by calling Listing 5b. The variable index holds the move number, x and y the column and row numbers. Variable k counts the possible moves 1-8. The global arrays gDeltaX and gDeltaY hold the number of squares to be moved on the X and Y axes to get to the position to be tested. Those values are added to the current row and column values to get the position to be tested. If the new position is on the board (i.e. both row and column in the 1..8 range, Listing 5c) and that board location unoccupied (Listing 5d), the move is made (Listing 5e); then if we don't have a complete tour (Listing 5f) the code in Listing 5a calls itself to make the next move. If the tested move can't be executed, the next possible move is tested. When no more possibilities exist, we drop out of loop and backtrack.

Listing 5a.

Try
   procedure Try(index,x,y:integer;var q:boolean);
   var
      k,column,row,dX,dY:integer;
      q1:boolean;
   begin
       k:=0;
       ggIndex:=index;
       q1:=FALSE;
       repeat
        Inc(gLoopCount);
        if gLoopCount>=ggUpdateInterval then
               DoUpdates(index:integer);
        Inc(gTests);
        if gTests>=ggcTenTo7th then
              begin
                 gTests:=0;
                 Inc(gTestOvr);
                 EraseTestCount;
                 UpdateTests(gTests,gTestOvr);
                 end;
        Inc(k);
        dX:=gDeltaX[k];
        dY:=gDeltaY[k];
        column:=x+dX;
        row:=y+dY;
        if SquareIsOnBoard(row,column) and
                           SquareNotOccupied(row,column) then
           begin
              MakeTheMove(row,column,index);
              Inc(gMoves);
              if gMoves>=ggcTenTo7th then
                 begin
                    gMoves:=0;
                    Inc(gMoveOvr);
                     EraseMoveCount;
                     UpdateMoves(gMoves,gMoveOvr);
                 end;

              if not CompleteTour(index) then
                 begin
                    Try(index+1,column,row,q1);

                     if (not q1) and (not ggQuitFlag) then
                        begin
                          ggChessBd[row,column]:=0;
                          Inc(gBakTrax);
                          if gBakTrax>=ggcTenTo7th then
                             begin
                                gBakTrax:=0;
                                  EraseBakTrax; 
                                Inc(gBakOvr);
                                UpDateBakTrax(gBakTrax,gBakOvr);
                             end;

                          if index<gLowestSoFar then
                             begin
                                gLowestSoFar:=index;
                                ggMaxBak:=index;
                                UpdateLowestRecurse(gLowestSoFar);
                             end;
                       end;
                 end
              else if ggTourNum in [1,3] then
                 begin
                    q1:=TRUE;
                    DoSolution(index,q1);
                    GetTime(gStime);
                     Inc(ggSolNum);
                     Inc(gSolNum);
                    UpdateSolNum(gSolNum);
                    DoTime;
                 end
              else
                 begin
                    DoTime;
                    DoSolution(index,TRUE);
                    if ggTourNum>3 then
                       DrawElapsed(0,3);
                    ggChessBd[row,column]:=0;
                    GetTime(gStime);
                     Inc(ggSolNum);
                     Inc(gSolNum);
                    UpdateSolNum(gSolNum);
                    DoTime;           
                 end;
           end;
      until (k>=ggcNumKnightMoves) or ggQuitFlag 
                             or ggErrFlag or gTimeFlag or q1;
      q:=q1;
   end;

Listing 5b.

DoUpdates
   procedure DoUpdates(index:integer);
   begin
      gLoopCount:=0;
      repeat
       if ggUpdateFlag or ggRedrawFlag then
          begin
              UpDateBoard;
              UpdateStats(index);
              Stall(ggStallVal);
              ggRedrawFlag:=FALSE;
           end;
         HandleEvent;
         DoTime;
      until (not ggPauseFlag) or gTimeFlag;
   end;

Listing 5c.

SquareIsOnBoard
   function SquareIsOnBoard(row,column:integer):boolean;
   begin
      If (column in [1..ggN]) and (row in [1..ggN]) then
         SquareIsOnBoard:=TRUE
      else
         SquareIsOnBoard:=FALSE;
   end; 

Listing 5d.

SquareNotOccupied
   function SquareNotOccupied(row,column:integer):boolean;
   begin     
      if ggChessBd[row,column]=0 then
          SquareNotOccupied:=TRUE
      else
          SquareNotOccupied:=FALSE;
   end;

Listing 5e.

MakeTheMove
   procedure MakeTheMove(row,column,index:integer);
   begin
      ggChessBd[row,column]:=index;
   end;

Listing 5f.

CompleteTour
   function CompleteTour(index:integer):boolean;
   begin
      if index<ggNsqr then
         CompleteTour:=FALSE
      else
         CompleteTour:=TRUE;
   end;

Initializing the Offsets

The values in arrays gDeltaX and gDeltaY are initialized to -2,-1,1 or 2 by passing them to the procedure in Listing 6. Two conditions must be accomodated in the initialization: the move pattern 1-2 held in the variable ggPattern, and the rotation 1-8 of that pattern held in ggRot. The move values are held in two, two-by-eight integer constant arrays, cDeltaX and cDeltaY. Using ggPattern and ggRot as indices, the values are transfered from the constant arrays to the proper locations in deltaX and deltaY.

Listing 6.

InitDelta
            {x value increases left-to-right}
            {y value increases top-to-bottom}
   procedure InitDelta(var deltaX,deltaY:ggDeltaType);
   type
      knightMoves=array[1..2,1..8] of integer;
   const
      cDeltaX:knightMoves=((-2,-1,1,2,2,1,-1,-2),
                                     (2,1,-1,-2,-2,-1,1,2));
      cDeltaY:knightMoves=((-1,-2,-2,-1,1,2,2,1),
                                     (-1,-2,-2,-1,1,2,2,1));
   var
      n,m,p:integer;
   begin
      n:=ggRot;
      m:=ggPattern;
      for p:=1 to 8 do
         begin
            deltaX[p]:=cDeltaX[m,n];
            deltaY[p]:=cDeltaY[m,n];
            Inc(n);
            if n>8 then
               n:=1;
         end;
   end;

Displaying the Test Pattern

Displaying the testing order for possible moves in the upper right corner of the window and changing that display as the Pat and Rot buttons are clicked is handled by the code in Listing 7. Pattern 1 tests begin at 10 o'clock and rotate clockwise. Pattern 2 tests begin at 2 o'clock and rotate counter-clockwise. Listing 7a copies the test position numbers from integer constant array cPat1 or cPat2 into the display position array gRotPos. Display positions are numbered 1-8 starting at ten o'clock and moving clockwise. The value of rotation variable ggRot is used to index into the appropriate constant array, determined by the value of ggPattern. Listing 7b is then called.

Listing 7a.

DrawPattern
   procedure DrawPattern;
   type
      patArray=array[1..15] of integer;
   const
      cPat1:patArray=(2,3,4,5,6,7,8,1,2,3,4,5,6,7,8);
      cPat2:patArray=(4,3,2,1,8,7,6,5,4,3,2,1,8,7,6);
   var
      n,p:integer;
   begin
      p:=ggRot-1;
      case ggPattern of
         1:
            begin   
               for n:=1 to 8 do
                  gRotPos[n]:=cPat1[n+(7-p)];
            end;
         2:
            begin   
               for n:=1 to 8 do
                  gRotPos[n]:=cPat2[n+p];
            end;
      end; {case}
      DrawPat;
   end;

Listing 7b sets the text size and colors, then calls Listing 7c to clear the display rectangle. Next it calls Listing 7d to draw the grid of white lines. Finally, using the values stored in array gRotPos, it draws the test order numbers on the grid.

Listing 7b.

DrawPat

   procedure DrawPat;
   var
      leftEdge,topEdge,squareSize,x,y,z,n:integer;
      S:Str255;
   const
      cXoff:integer=6;
      cYoff:integer=15;
   begin
      TextSize(gcPatSize);
      ForeColor(whiteColor);
      BackColor(blackColor);
      ClearRotRect;
      DrawMatrix;
      BackColor(whiteColor);
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      TextMode(srcOr);
      squareSize:=20;
      S:='K';
      x:=(2*squareSize)+cXoff;
      y:=(2*squareSize)+cYoff;
      MoveTo(leftEdge+x,topEdge+y);
      DrawString(S);
      
      for n:=1 to 8 do
         begin
            z:=gRotPos[n];
            NumToString(z,S);
            case n of
               1:
                  begin
                        {position 1}
                     x:=cXoff;
                     y:=(squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               2:
                  begin
                        {pos 2}
                     x:=(squareSize)+cXoff;
                     y:=cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               3:
                  begin
                        {pos 3}
                     x:=(3*squareSize)+cXoff;
                     y:=cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               4:
                  begin
                        {pos 4}
                     x:=(4*squareSize)+cXoff;
                     y:=(squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               5:
                  begin
                        {pos 5}
                     x:=(4*squareSize)+cXoff;
                     y:=(3*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               6:
                  begin
                        {pos 6}
                     x:=(3*squareSize)+cXoff;
                     y:=(4*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               7:
                  begin
                        {pos 7}
                     x:=(squareSize)+cXoff;
                     y:=(4*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
               8:
                  begin
                        {pos 8}
                     x:=cXoff;
                     y:=(3*squareSize)+cYoff;
                     MoveTo(leftEdge+x,topEdge+y);
                     DrawString(S);
                  end;
            end;
         end;
      ForeColor(blackColor);
      TextMode(srcCopy);   
   end;

Listing 7c calls Listing 7e to set the boundaries of the display rectangle and clears it to black, then adds the pattern and rotation numbers at the bottom.

Listing 7c.

ClearRotRect
   procedure ClearRotRect;
   var
      width,height,leftEdge,topEdge:integer;
      myRect:Rect;
      S:Str255;
   begin
      SetPort(ggKnightWindow);
      myRect:=ggKnightWindow^.portRect;
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      width:=100;
      height:=100;
      SetRect(myRect,leftEdge,topEdge,width,height);   
      EraseRect(myRect);
      NumToString(ggPattern,S);
      S:=concat('Pattern #',S);
      MoveTo(leftEdge+10,topEdge+height+gcPatSize+5);
      DrawString(S);
      NumToString(ggRot,S);
      S:=concat('Rotation ',S);
      MoveTo(leftEdge+10,topEdge+height+(gcPatSize*2)+10);
      DrawString(S);      
   end;

Listing 7d.

DrawMatrix
   procedure DrawMatrix;
   var
      leftEdge,topEdge,n:integer;
   begin
      leftEdge:=ggcClockLeft+gcPatLeft;
      topEdge:=10;
      for n:=1 to 4 do
         begin
            MoveTo(leftEdge+(20*n),topEdge);
            Line(0,100);
         end;
      for n:=1 to 4 do
         begin
            MoveTo(leftEdge,(20*n)+topEdge);
            Line(100,0);   
         end;
   end;

Listing 7e.

SetRect
   procedure SetRect(var myRect:Rect;
                      leftEdge,topEdge,width,height:integer);
   begin
      myRect.top:=topEdge+myRect.top;
      myRect.bottom:=myRect.top+height+2;
      myRect.left:=leftEdge+myRect.left;
      myRect.right:=myRect.left+width;
   end;

Running the Program

There are four options that cannot be changed once a tour is underway, although three can be used at default values. The three that can be used at defaults are whether or not to save solutions (Save menu), move test pattern (Pat button), and the rotation of that pattern (Rot button). The fourth, mandatory option, is the tour number. The amount of additional housekeeping required depends on your choice of tour. Tours 1 and 2 require selection of the starting square by clicking on it. The other six tours have fixed starting squares as described previously. Once a sufficient number of selections have been made, the Run button becomes active. Clicking on it starts the search for solutions.

The default speed, button 2, is deliberately rather slow, with frequent board updates and every move displayed. As speeds are increased by clicking higher-numbered buttons, updates and event tests come less frequently.

If you want to see some solutions as rapidly as possible, select Tour 2, pattern 1, rotation 5, speed 8, starting square row 1, column 8.

For additional information, see the operating manual with the aps.

Source Code

Source code for a Macified implementation of Wirth's algorithm for the knight's tour is supplied for CodeWarrior Professional Pascal. Those readers familiar with Dave Mark's books may notice some resemblances between the sourcecode and some of that found in Dave's books - things like some of the names of constants and general structure of the event loop. I used the Timer project from the Macintosh Pascal Programming Primer, Vol. 1, by Dave Mark and Cartwright Reed, as a "skeleton". Most of the overlying code is mine, but underneath there's a bit of Mark and Reed code doing some of the housekeeping.

Bibliography and References

  • Gamow, George, One Two Three...Infinity, (New York: Dover Books, 1988).
  • Wirth, Niklaus, Algorithms + Data Structures = Programs, (Englewood Cliffs NJ: Prentice-Hall, 1976).
  • Wirth, Niklaus, Algorithms and Data Structures, (Englewood Cliffs NJ: Prentice-Hall, 1986).

F.C. Kuechmann is a hardware designer, programmer and consultant with degrees from the University of Illinois at Chicago and Clark College who is currently trying to find the time to do the soldering required to make the programmers' clock that he has designed so that he can read the time in hexadecimal. You can reach him at fk@aone.com.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Dropbox 193.4.5594 - Cloud backup and sy...
Dropbox is a file hosting service that provides cloud storage, file synchronization, personal cloud, and client software. It is a modern workspace that allows you to get to all of your files, manage... Read more
Google Chrome 122.0.6261.57 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Skype 8.113.0.210 - Voice-over-internet...
Skype is a telecommunications app that provides HD video calls, instant messaging, calling to any phone number or landline, and Skype for Business for productive cooperation on the projects. This... Read more
Tor Browser 13.0.10 - Anonymize Web brow...
Using Tor Browser you can protect yourself against tracking, surveillance, and censorship. Tor was originally designed, implemented, and deployed as a third-generation onion-routing project of the U.... Read more
Deeper 3.0.4 - Enable hidden features in...
Deeper is a personalization utility for macOS which allows you to enable and disable the hidden functions of the Finder, Dock, QuickTime, Safari, iTunes, login window, Spotlight, and many of Apple's... Read more
OnyX 4.5.5 - Maintenance and optimizatio...
OnyX is a multifunction utility that you can use to verify the startup disk and the structure of its system files, to run miscellaneous maintenance and cleaning tasks, to configure parameters in the... Read more
Hopper Disassembler 5.14.1 - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
WhatsApp 24.3.78 - Desktop client for Wh...
WhatsApp is the desktop client for WhatsApp Messenger, a cross-platform mobile messaging app which allows you to exchange messages without having to pay for SMS. WhatsApp Messenger is available for... Read more
War Thunder 2.33.0.135 - Multiplayer war...
In War Thunder, aircraft, attack helicopters, ground forces and naval ships collaborate in realistic competitive battles. You can choose from over 1,500 vehicles and an extensive variety of combat... Read more
Iridient Developer 4.2 - Powerful image-...
Iridient Developer (was RAW Developer) is a powerful image-conversion application designed specifically for OS X. Iridient Developer gives advanced photographers total control over every aspect of... Read more

Latest Forum Discussions

See All

A Legitimate Massage Parlor, I Swear – T...
In this week’s Episode of The TouchArcade Show we talk about some of the major new releases on mobile this week including Warframe, we go over all the major news that came out from the Nintendo Direct Partner Showcase on Wednesday, we read our one... | Read more »
TouchArcade Game of the Week: ‘Rainbow S...
I feel like I am in a fever dream right now. What is this game that I’m playing? It’s a Rainbow Six game? But it’s all cutesy, and cartoony, and also kind of psychedelic? How is this a real thing? Well, it’s no fever dream, it is indeed a real thing... | Read more »
SwitchArcade Round-Up: ‘Promenade’, ‘Cho...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for February 23rd, 2024. It’s Friday, so we have to check out the remaining releases of the week. Not so many big ones today, but a healthy crop nonetheless. After summarizing all the... | Read more »
Steam Deck Weekly: Gundam Breaker 4 and...
Welcome to this week’s slightly shorter edition of the Steam Deck Weekly. I was a bit unwell this week so no reviews in this edition, but there is a lot of news and new Steam Deck Verified and Playable games to catch up on. I have something special... | Read more »
The 10 Best Run-And-Gun Games for Ninten...
The year 2024 is a rare one, because it is a year with a brand-new Contra game. Contra: Operation Galuga might be the freshest face on the block when it comes to Nintendo Switch run-and-gun action games, but it’s hardly fighting that war alone.... | Read more »
Version 1.4 of Reverse: 1999 will be lan...
Free up your diary for February 29th, as Bluepoch has announced the impending release of the award-winning Reverse: 1999s Version 1.4 update. The Prisoner in the Cave is an Ancient Greece-themed update with new recruits, gameplay modes, and plenty... | Read more »
Premium Mobile RPG ‘Ex Astris’ From ‘Ark...
Arknights developer Hypergryph’s premium RPG Ex Astris () recently had its release date confirmed, and we finally have an extended gameplay showcase. | Read more »
Apple Arcade Weekly Round-Up: Updates fo...
Following yesterday’s big Hello Kitty Island Adventure update, a few more notable game updates and events have gone live on Apple Arcade. Cypher 007 () has gotten its first content update in a few months taking you to Egypt for five new levels... | Read more »
‘Thunder Ray’ and ‘Hime’s Quest’ Are Now...
Crunchyroll has pushed two new games into the Crunchyroll Game Vault including Purple Tree Studio’s Thunder Ray which was already on iOS before as a premium release. Shaun even reviewed it last year. Read his review here. The second game is Poppy... | Read more »
Adorable Kitty-Collector Sequel ‘Neko At...
Ya’ll. This October will mark the ten-year anniversary of Hit Point launching Neko Atsume, the adorable kitty collecting sim that has become a runaway success and essentially created a sub-genre of cozy pet-collecting life sim games. Sure, the... | Read more »

Price Scanner via MacPrices.net

16-inch M3 Max MacBook Pro on sale for $300 o...
Amazon is offering a $300 instant discount on one of Apple’s 16″ M3 Max MacBook Pros today. Shipping is free: – 16″ M3 Max MacBook Pros (36GB/1TB/Space Black): $3199, $300 off MSRP Their price is the... Read more
Apple M2 Mac minis on sale for $100 off MSRP...
B&H Photo has Apple’s M2-powered Mac minis in stock and on sale for $100 off MSRP this weekend with prices available starting at $499. Free 1-2 day shipping is available to most US addresses: –... Read more
Apple Watch SE on sale for $50 off MSRP this...
Best Buy has all Apple Watch SE models on sale this weekend for $50 off MSRP on their online store. Sale prices available for online orders only, in-store prices may vary. Order online, and choose... Read more
Deal Alert! Apple 15-inch M2 MacBook Airs on...
Looking for the lowest sale price on a new 15″ M2 MacBook Air? Best Buy has Apple 15″ MacBook Airs with M2 CPUs in stock and on sale today for $300 off MSRP on their online store. Prices valid for... Read more
Amazon discounts iPad mini 6 models up to $12...
Amazon is offering Apple’s 8.3″ WiFi iPad minis for $100-$120 off MSRP, including free shipping, for a limited time. Prices start at $399. Amazon’s prices are among the lowest currently available for... Read more
Apple AirPods Pro with USB-C discounted to $1...
Walmart has Apple’s 2023 AirPods Pro with USB-C in stock and on sale for $199.99 on their online store. Their price is $50 off MSRP, and it’s currently one the lowest prices available for new AirPods... Read more
Apple has 14-inch M3 MacBook Pro with 16GB of...
Apple has 14″ M3 MacBook Pros with 16GB of RAM, Certified Refurbished, available for $270-$300 off MSRP. Each model features a new outer case, shipping is free, and an Apple 1-year warranty is... Read more
Save $318-$432 on 16-inch M3 Max MacBook Pros...
Apple retailer Expercom has 16″ M3 Max MacBook Pros on sale for $318-$432 off MSRP when bundled with a 3-year AppleCare+ Protection Plan. Discounts are available for Silver models as well a Space... Read more
New today at Apple: 16-inch M3 Pro/M3 Max Mac...
Apple is now offering 16″ M3 Pro and M3 Max MacBook Pros, Certified Refurbished, starting at $2119 and ranging up to $530 off MSRP. Each model features a new outer case, shipping is free, and an... Read more
Apple is now offering $300-$480 discounts on...
Apple is now offering 14″ M3 Pro and M3 Max MacBook Pros, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is free, and an... Read more

Jobs Board

Part-time *Apple* and Peach Research Assist...
…and minimum qualifications: + Assist with planting, pruning, and harvesting of apple and peach trees + Conduct regular maintenance tasks to ensure optimal Read more
Housekeeper, *Apple* Valley Villa - Cassia...
Apple Valley Villa, part of a senior living community, is hiring entry-level Full-Time Housekeepers to join our team! We will train you for this position and offer a Read more
Sublease Associate Optometrist- *Apple* Val...
Sublease Associate Optometrist- Apple Valley, CA- Target Optical Date: Feb 22, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92307 **Requisition Read more
Sublease Associate Optometrist- *Apple* Val...
Sublease Associate Optometrist- Apple Valley, CA- Target Optical Date: Jan 24, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92307 **Requisition Read more
Housekeeper, *Apple* Valley Village - Cassi...
Apple Valley Village Health Care Center, a senior care campus, is hiring a Part-Time Housekeeper to join our team! We will train you for this position! In this role, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.