TweetFollow Us on Twitter

Sep 98 Prog Challenge

Volume Number: 14 (1998)
Issue Number: 9
Column Tag: Programmer's Challenge

Sep 98 Programmer's Challenge

by Bob Boonstra, Westford, MA

Big Baby

Fifty years ago this past June, the Manchester Mark I prototype computer, also known as "Baby", became operational. Baby was the first computer to store a program electronically, and was also the first computer to store instructions and data in the same memory. Because vacuum tube technology was too immature to store memory reliably, Baby was designed to test memory based on a cathode ray tube. Not much memory, mind you. Baby boasted a full 1K bits of memory, organized as 32 words (or lines) of 32 bits each.

In celebration of the birth of the first stored program computer on June 21, 1948, the Department of Computer Science at the University of Manchester recently reconstructed Baby and ran a programming contest to write the most imaginative program for Baby. Inspired by that contest, your Challenge is to write an assembler and an emulator for an extended ("Big") version of Baby. The prototype for the code you should write is:

#if defined(__cplusplus)
pragma extern "C" {
#endif

#define kMaxInstructions 32

typedef UInt32 CRT_memory[kMaxInstructions];

pascal void AssembleBabyProgram(
   char *program,
   CRT_memory memory,
   UInt32 address_bits
);

pascal void ExecuteBabyProgram(
   CRT_memory memory,
   UInt32 address_bits
);

#if defined(__cplusplus)
}
#endif

Baby has a single general-purpose register, called the Accumulator. The program counter is called the Control Instruction, or CI. The CI is incremented just before the next instruction is fetched, which means that a jump instruction, for example, is coded with a value one less than the actual target address. Baby also has a red light that indicates the program has halted. One interesting thing about Baby is that it lacks an addition instruction - addition is done by subtraction.

Baby's instruction repertoire is listed below. The function bits (or opcode) associated with each instruction is listed in parentheses after the mnemonic.

STO (110)
Store the contents of the Accumulator in the store line.
SUB (001 or 101)
Subtract the contents of the store line from the Accumulator. There is no ADD instruction; addition is done indirectly by combining the SUB and the LDN instruction.
LDN (010)
Copy the contents of the store line, negated, to the accumulator.
JMP (000)
Copy the contents of the store line to the CI (so the store line holds the number of the line one before we want to jump to). In modern terms, this an indirect jump, which uses up an extra store line compared to a direct jump.
JRP (100)
Add the contents of the store line to the CI. This looks forward to larger machines, where it would be important to be able to load the same code in different places, and hence would need relative jumps.
CMP (011)
Skip the next instruction if the contents of the Accumulator are negative, i.e. a conditional branch.
STOP (111)
Stop the machine and turn the red light on
NUM (N/A)
An assembler mnemonic to initialize a store line to a data value.

For example, the following program computes the greatest common divisor of the number in locations 30 and 31:

22
0000 NUM 0
0001 LDN 30
0002 STO 29
0003 LDN 31
0004 STO 31
0005 LDN 31
0006 STO 30
0007 LDN 29
0008 SUB 30
0009 CMP
0010 JRP 27
0011 SUB 31
0012 STO 31
0013 SUB 28
0014 CMP
0015 JMP 00
0016 STP
0027 NUM -3
0028 NUM 2
0029 NUM 0
0030 NUM 3141593
0031 NUM 5214

Baby's instructions are assembled into a 32 bit word by placing the function code associated with the mnemonic into bits 13-15 (numbered with bit 0 as the most significant bit). In the original Baby, the store line associated with the instruction is placed in bits 0-4. Bits 5-12 and 16-31 are not used as part of the instruction, although they can be used as data. The program listed above assembles to the following:

22
0000:00000000000000000000000000000000
0001:01111000000000100000000000000000
0002:10111000000001100000000000000000
0003:11111000000000100000000000000000
0004:11111000000001100000000000000000
0005:11111000000000100000000000000000
0006:01111000000001100000000000000000
0007:10111000000000100000000000000000
0008:01111000000000010000000000000000
0009:00000000000000110000000000000000
0010:11011000000001000000000000000000
0011:11111000000000010000000000000000
0012:11111000000001100000000000000000
0013:00111000000000010000000000000000
0014:00000000000000110000000000000000
0015:00000000000000000000000000000000
0016:00000000000001110000000000000000
0027:10111111111111111111111111111111
0028:01000000000000000000000000000000
0029:00000000000000000000000000000000
0030:10011011111101111111010000000000
0031:01111010001010000000000000000000

Our contest will make one change to the original Baby: in our extended, Big Baby, machine, the store line is extended from 5 bits (0-4) to address_bits bits (0 - address_bits-1). This allows more than 32 words of memory and therefore larger programs.

Your AssembleBabyProgram routine should accept the mnemonic input listed above, pointed to by the program parameter, and assemble them into 32-bit Baby instructions in memory. Your ExecuteBabyProgram routine will be called to execute the program one or more times. Both of your routines will be provided an address_bits parameter that describes the size of memory. You will be asked to assemble more than one program, your assembled programs may be executed more than one time each, and you may be asked to execute a program that has been hand-assembled.

More information about the University of Manchester Baby programming contest can be found at http://www.cs.man.ac.uk/prog98/. Programming reference documentation for Baby can be found at http://www.cs.man.ac.uk/prog98/ssemref.html and at ftp://ftp.cs.man.ac.uk/pub/CCS-Archive/misc/progref1.doc.

The winner will be the solution that assembles and executes a set of test programs in the minimum amount of time.

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. Solutions may be coded in C, C++, Pascal or, as is our tradition in the month of September, in assembly language. Thanks to Eric Shapiro for suggesting this Challenge.

Three Months Ago Winner

Congratulations to Tom Saxton for writing the most successful simulated gambler at the blackjack table of our June Programmer's Challenge Casino. Tom beat out four other entries and was one of only two entries to actually come out ahead at the blackjack table.

Tom precomputed the expected winnings for each situation and created tables with the action that led to the best result. He uses the Hi-Lo card counting method to determine whether the remaining cards contain a disproportionate number of high-valued cards, and then uses that estimate to adjust his wager. Tom's solution is also not too greedy; it contains heuristics to quit when it has won a reasonable amount or played long enough, ensuring that it has wagered enough credits to avoid the "freeloader" penalty imposed by the problem.

A few words about our other gamblers are in order. The second-place solution, by Kevin Hewitt, also used precomputed tables, but his were based only on the initial pair of cards dealt. Kevin also spent more time at the table, quitting only when winnings or losses exceeded a threshold. JG Heithcock's solution spent the least amount of time at the table. He quit soon after the minimum total bet criterion was met. Ken Slezak kept playing until he lost 75% of his bankroll (or quadrupled his money) and Randy Boring played until he ran out of money or, as it turned out, until the house threw him out of the casino. Both of those players left with not much more than the shirts on their backs.

Here are the statistics for the entries to the Blackjack Challenge. Each player played a series of five games where the house varied the number of decks of cards used. Players were given the same number of credits at the start of each game, totaling 21000 credits for all of the games. The table below lists the total number of credits wagered by the player, the number of credits left when the player decided to quit, the number of hands played, total execution time, and the overall player score. Also listed are the code and data sizes for the entries, along with the programming language used. As usual, the number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

Name Credits Wagered Credits Left Hands Played Exec. Time Score Code Size Data Size Lang
Tom Saxton (19) 47451 25199 327 7169 25194 1496 1924 C
Kevin Hewitt 438700 23800 1833 37923 23766 996 2156 C
JG Heithcock (20) 22616 20484 769 17950 20470 1304 232 C
Ken Slezak (20) 91760 9140 1701 36911 9106 1240 172 C
Randy Boring (81) 437230 8670 15425 460099 8213 4920 353 C

Top Contestants

Here are the Top Contestants for the Programmer's Challenge, including everyone who has accumulated more than 20 points during the past two years. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

  1. Munter, Ernst 190
  2. Boring, Randy 76
  3. Cooper, Greg 54
  4. Mallett, Jeff 50
  5. Rieken, Willeke 47
  6. Nicolle, Ludovic 34
  7. Lewis, Peter 31
  8. Maurer, Sebastian 30
  9. Saxton, Tom 29
  10. Heithcock, JG 27
  11. Gregg, Xan 24
  12. Murphy, ACC 24
  13. Hart, Alan 21
  14. Antoniewicz, Andy 20
  15. Day, Mark 20
  16. Higgins, Charles 20
  17. Hostetter, Mat 20
  18. Studer, Thomas 20

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

  • 1st place 20 points
  • 2nd place 10 points
  • 3rd place 7 points
  • 4th place 4 points
  • 5th place 2 points
  • Finding bug 2 points
  • Suggesting Challenge 2 points

Here is Tom's winning solution:

Player.c
Copyright © 1998 Tom Saxton

#include "BlackJack.h"

// Naming Conventions:
//
// Without getting into the gory details of the Hungarian naming convention,
// here are some common prefixes and their meanings:
//
//      a       array
//      p       pointer
//      c       count
//      mp      map (one data type to another)
//      i       index
//
// The prefixes modify a base type. So, if FOO is a base type (like a struct,
// or an enum), the following declarations illustrate the above prefixes:
//
//      FOO     foo;
//      FOO *   pfoo;
//      FOO     afoo[10];
//      int     ifoo; // an index into an array of FOOs
//      int     cfoo; // a count of FOOs.
//
//      for (ifoo = 0; ifoo < cfoo; ++ifoo)
//         pfoo = &afoo[ifoo];
//

enum { fFalse = 0, fTrue = 1 };
#define DIM(a) (sizeof(a)/sizeof((a)[0]))

// Be sure to enable this define to pick up a couple of post-deadline bug fixes.
//
// #define BUGFIX

// disable debug code
#define Assert(f)

// The following tables determine the actions for all possible hands,
// divided into three groups: pairs, soft hands and hard hands, considered
// in that order. (A pair of aces is treated as a pair, not as a soft hand.)
//
// The tables were computed by taking the Dealer's up card and assuming
// a huge shoe with an even card distribution finding the probability
// for each of the possible final dealers scores (bust, 17, 18, 19, 20 and 21).
//
// Then, given that table, I computed the expected earnings (win, lose or
// push) for each of the possible actions, and recorded the action with
// the best result.
//
// I found the book "Best Blackjack" by Frank Scoblete (c) 1996 to be
// helpful, and my tables are close to his multi-deck tables.
// I modeled an infinite, evenly distributed shoe, he may have modeled
// a fixed number of decks.

// macros to make these tables manageable...
#define H kHitMe
#define D kDoubleDownAndHitMe
#define S kStandPat
#define X kSplitAndHitMe
#define B kClaimBlackjack

// For "hard" hands (no Aces scored as 11), plug in the dealer's up card
// (minus 1) and the hand's score to find the next action. If this isn't the
// first action of the hand, treat kDoubleDownAndHitMe as kHitMe.
Action mp_spot_score_actionHard[10][22] = 
{
//      0   - 21
   { H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,S,S,S,S,S },   /*  A */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,S,S,S,S,S,S,S,S,S },   /*  2 */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,S,S,S,S,S,S,S,S,S },   /*  3 */
   { H,H,H,H,H,H,H,H,H,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  4 */
   { H,H,H,H,H,H,H,H,H,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  5 */
   { H,H,H,H,H,H,H,H,D,D,D,D,S,S,S,S,S,S,S,S,S,S },   /*  6 */
   { H,H,H,H,H,H,H,H,H,D,D,D,H,H,H,H,H,S,S,S,S,S },   /*  7 */
   { H,H,H,H,H,H,H,H,H,H,D,D,H,H,H,H,H,S,S,S,S,S },   /*  8 */
   { H,H,H,H,H,H,H,H,H,H,D,D,H,H,H,H,H,S,S,S,S,S },   /*  9 */
   { H,H,H,H,H,H,H,H,H,H,H,D,H,H,H,H,H,S,S,S,S,S }    /*  10 */
};

// For "soft" hands (at least one Ace used as an 11), plug in the dealer's up card
// (minus 1) and the hand's "other" card (or combined score without the ace)
// to find the next action.
Action mp_spot_spot_actionSoft[10][10] = 
{
   { H, H, H, H, H, H, S, S, S, B },   /*  A */
   { H, H, H, H, H, D, S, S, S, B },   /*  2 */
   { H, H, H, H, H, D, D, S, S, B },   /*  3 */
   { H, H, H, H, D, D, D, S, S, B },   /*  4 */
   { H, H, H, D, D, D, D, S, S, B },   /*  5 */
   { H, H, H, D, D, D, D, S, S, B },   /*  6 */
   { H, H, H, H, H, D, S, S, S, B },   /*  7 */
   { H, H, H, H, H, H, S, S, S, B },   /*  8 */
   { H, H, H, H, H, H, H, S, S, B },   /*  9 */
   { H, H, H, H, H, H, H, S, S, B }    /* 10 */
};

// If dealt a pair, plug in the dealer's up card (minus 1) and the spot
// value of the pair (minus 1) to find the suggested action.
Action mp_spot_spot_actionPair[10][10] = 
{
   { X, H, H, H, H, H, H, H, S, S },   /*  A */
   { X, X, X, H, D, H, X, X, X, S },   /*  2 */
   { X, X, X, H, D, H, X, X, X, S },   /*  3 */
   { X, X, X, H, D, X, X, X, X, S },   /*  4 */
   { X, X, X, H, D, X, X, X, X, S },   /*  5 */
   { X, X, X, D, D, X, X, X, X, S },   /*  6 */
   { X, X, X, H, D, H, X, X, S, S },   /*  7 */
   { X, X, X, H, D, H, H, X, X, S },   /*  8 */
   { X, X, H, H, D, H, H, X, X, S },   /*  9 */
   { X, H, H, H, H, H, H, H, S, S }    /*  10 */
};

// undefine shortcuts used in the above tables
#undef H
#undef D
#undef S
#undef X
#undef B

// Score bust as zero.
#define scoreBust            0
// The Player's hand is limited to five cards.
#define ccardMaxPlayer       5
// The dealer can never draw more than nine cards
// (nine 2's for example).
#define ccardMaxDealer      10

// Entry in the SPOT table, used for scoring and printing card values
typedef struct ESPOT
{
   char   score;
   char   sz[3];
} ESPOT;

static const ESPOT s_dnspot[kKing+1] = 
{
   {  0, "?" },
   {  1, "A" },
   {  2, "2" },
   {  3, "3" },
   {  4, "4" },
   {  5, "5" },
   {  6, "6" },
   {  7, "7" },
   {  8, "8" },
   {  9, "9" },
   { 10, "10" },
   { 10, "J" },
   { 10, "Q" },
   { 10, "K" },
};

// game statistics...
static int s_cdeck;
static int s_ccreditStart;
static int s_ccreditMinBet;
static int s_ccreditMidBet;
static int s_ccreditMaxBet;
static int s_ccreditBalance;
static int s_ccreditTotalBet;

// callback functions
static BetProc *s_pfnMakeABet;
static HitProc *s_pfnHitMe;

// function to score a hand
static int _ScoreHand(const Card acard[], int ccard,
                              int *pcAce);

// struct for counting cards...
typedef struct DECK
{
   int acspot[10+1];
   int cspotStart;
   int cspotRemain;
   int dcount;
   int fInfinite;
} DECK;
static DECK s_deck;
// calls to reset card counters and count the cards in a hand
void _InitDeck(int cdeck, int fInfinite);
void _CountCards(const Card acard[], int ccard);
// call to compute the proper action given the player's hand and
// the dealer's up card, and whether or not this is the first action
static Action _ActionLookupHand(Spot spotDealer, Card acard[], int ccard, int fFirst);

InitBlackjack
// Call to start a game
void InitBlackjack(
   int numDecks,       /* number of decks used by the dealer, 2..10*/
   int yourBankroll,   /* number of credits you have to start */
   int minBet,         /* minimum bet for each hand */
   int maxBet,         /* maximum bet for each hand */
   BetProc pfnMakeABet,/* callback to place a wager */
   HitProc pfnHitMe    /* callback to get a card */
)
{
   s_cdeck             = numDecks;
   s_ccreditStart      = yourBankroll;
   s_ccreditMinBet     = minBet;
   s_ccreditMaxBet     = maxBet;
   s_pfnMakeABet       = pfnMakeABet;
   s_pfnHitMe          = pfnHitMe;

   s_ccreditTotalBet   = 0;
   s_ccreditBalance    = s_ccreditStart;
}

Blackjack
// Call to play a hand
Boolean Blackjack(Boolean fNewDeck)
{
   int      ccreditBet;
   Card     acardPlayer[ccardMaxPlayer], acardDealer[ccardMaxDealer];
   int      ccardPlayer, ccardDealer;
   Action   actionFirst;
   int      ccreditWin;
   Spot     spotDealer;
   int      ihand, chand;
   int      count;
   Result   result;
   
   if (fNewDeck)
      _InitDeck(s_cdeck, fFalse /*fInfinite*/);
   // normalize the card count. A positive count means that the shoe is
   // heavy in large cards, which makes it more likely for the dealer to
   // bust. A negative count means that the shoe is heavy in small cards,
   // which makes it less likely that the dealer with bust.
   count = (s_deck.dcount*52)/s_deck.cspotRemain;
   // Make a bet that is proportional to our current balance, so that losing
   // streaks don't clean us out, and winning streaks rake in extra chips.
   // Bet more when the count is high, less when it's low, but stay within
   // the stated betting limits.
   ccreditBet = (count+2)*s_ccreditBalance/50;
   if (ccreditBet < s_ccreditMinBet)
      ccreditBet = s_ccreditMinBet;
   else if (ccreditBet > s_ccreditMaxBet)
      ccreditBet = s_ccreditMaxBet;
   // Place bet, get some cards
   (*s_pfnMakeABet)(ccreditBet, acardPlayer, acardDealer);
   ccardPlayer = ccardDealer = 2;
   // store and normalize the dealer's up card
   spotDealer = acardDealer[1].spot;
   if (spotDealer > k10)
      spotDealer = k10;
   // get the first action for the hand
   actionFirst = 
            _ActionLookupHand(spotDealer, acardPlayer, 2, fTrue);
   if (actionFirst == kDoubleDownAndHitMe)
      ccreditBet *= 2;
   chand = (actionFirst == kSplitAndHitMe) ? 2 : 1;
   // play out the hand(s) (there are two hands if we kSplitAndHitMe)
   for (ihand = 0; ihand < chand; ++ihand)
   {
      Boolean   fInsurance;
      Action action = actionFirst;
      // take the "insurance" side bet when the dealer shows an Ace and there is
      // a better than one third chance of the dealer having a 10 for the other card.
      fInsurance = (spotDealer == kAce) && 
                        (3*s_deck.acspot[k10] > s_deck.cspotRemain);
      for(;;)
      {
         // play out an action
         result = 
               (*s_pfnHitMe)(action, fInsurance, acardPlayer, 
                           &ccardPlayer, acardDealer, &ccardDealer, 
                                 &ccreditWin);
         if (result != kNoResult)
            break;
         
         // If we didn't kStandPat or bust, calculate the next action
         action = _
         ActionLookupHand(spotDealer, acardPlayer, ccardPlayer, 
                                                fFalse);
      }
      
      // count the cards shown in this hand
      _CountCards(acardPlayer, ccardPlayer);
      if (ihand == chand-1)
         _CountCards(acardDealer, ccardDealer);
      
      // tally our win/loss
      s_ccreditBalance += ccreditWin;
      s_ccreditTotalBet += ccreditBet;
   }

   // If we have lost most of our money, quit
   if (s_ccreditBalance < s_ccreditStart/3)
   {
      return fFalse;
   }
   // If we have won a lot, and will avoid the freeloader penalty, quit
   if (s_ccreditBalance > 7*s_ccreditStart/4 && 
            s_ccreditTotalBet > s_ccreditStart)
   {
      return fFalse;
   }
   // If we have won some, and played for twice the freeloader requirement, quit
   if (s_ccreditBalance > 5*s_ccreditStart/4 && 
            s_ccreditTotalBet > 2*s_ccreditStart)
   {
      return fFalse;
   }
   // If we haven't lost, and played for five times the freeloader requirement, quit
   if (s_ccreditBalance > s_ccreditStart && 
            s_ccreditTotalBet > 5*s_ccreditStart)
   {
      return fFalse;
   }
   // If we've played 10 times the freeloader penalty, quit before the time penalty
   // takes it all away...
   if (s_ccreditTotalBet > 10*s_ccreditStart)
   {
      return fFalse;
   }
   return fTrue;
}

_ActionLookupHand
// Call to get the next action for this hand
static Action _ActionLookupHand(Spot spotDealer, Card acard[], int ccard, int fFirst)
{
   int score, cAce;
   Spot spot;
   Action action;
   
   // get the hand's score, and the count of Aces scored as 11
   score = _ScoreHand(acard, ccard, &cace);
   Assert(kAce <= spotDealer && spotDealer <= k10);
   if (fFirst && ccard == 2 && acard[0].spot == acard[1].spot)
   {
      // first action on a pair, check the pair's table
      if ((spot = acard[0].spot) > k10)
         spot = k10;
      action = 
         (Action)mp_spot_spot_actionPair[spotDealer-1][spot-1];
   }
   else if (cAce > 0)
   {
      // "soft" hand, check the soft table
      spot = (Spot)(score - 11);
      Assert(kAce <= spot && spot <= k10);
#ifdef DEBUG
      if (ccard == 2)
      {
         int icard = acard[0].spot == kAce ? 1 : 0;
         Assert(spot == acard[icard].spot || 
                        (spot == k10 && acard[icard].spot > k10));
      }
#endif
      action = 
         (Action)mp_spot_spot_actionSoft[spotDealer-1][spot-1];
   }
   else
   {
      // "hard" hand, chech the hard table
      action = 
         (Action)mp_spot_score_actionHard[spotDealer-1][score];
   }
   
   // If it's not the first play of the hand, we can only kStandPat or kHitMe
#ifdef BUGFIX
   // Another Bug Fix: be careful trying to catch illegal actions...
   if (action == kClaimBlackjack && ccard != 2)
      action = kStandPat;
   if (!fFirst && (action == kDoubleDownAndHitMe || 
                                    action == kSplitAndHitMe))
      action = kHitMe;
#else
   // This code is wrong, it incorrectly returns kHitMe in two cases:
   //  1. If a pair of 10s or Aces is split, then one of them turned into a blackjack
   //  2. A score of 21 is reached with an Ace and two or more cards.
   if (!fFirst && action != kStandPat)
      action = kHitMe;
#endif
   return action;
}

_InitDeck
// reset the counts for a fresh set of decks
static void _InitDeck(int cdeck, int fInfinite)
{
   Spot spot;
   int cspot = 4*cdeck;
   for (spot = kAce; spot < k10; ++spot)
      s_deck.acspot[spot] = cspot;
   Assert(spot == k10);
   s_deck.acspot[k10] = 4*cspot;
   s_deck.cspotRemain = s_deck.cspotStart = 52*cdeck;
   s_deck.dcount = 0;
   s_deck.fInfinite = fInfinite;
}

_CountCards
// This is the counting method used by the couple of people I've talked
// who have actually counted cards playing Blackjack. It's call "Hi-Lo"
// in "Best Blackjack". I tried several other counting models listed
// in that book, and this performed the best. It gives a simple assessment
// of how far off balance the shoe is with respect to small and large cards.
static const int s_mp_spot_dcount[k10+1] =
//    A  2  3  4  5  6  7  8  9  10
{ 0, -1, 1, 1, 1, 1, 1, 0, 0, 0, -1 };

// Remove the specified set of cards from the shoe
void _CountCards(const Card acard[], int ccard)
{
   if (s_deck.fInfinite)
      return;
      
   while (ccard- > 0)
   {
      Spot spot = acard[ccard].spot;
// Bug Fix: we shouldn't count hidden cards...
#ifdef BUGFIX
      if (spot == kHiddenSpot)
         continue;
#endif
      if (spot > k10)
         spot = k10;
      -s_deck.acspot[spot];
      -s_deck.cspotRemain;
      
      s_deck.dcount += s_mp_spot_dcount[spot];
   }
}

_ScoreHand
// Determine the score for the given cards. When possible, score
// Aces at 11, and return the number of aces thusly scored.
static int _ScoreHand(const Card acard[], int ccard, int *pcAce)
{
   int cAceDummy;
   int score = 0;
   int cAce = 0;

   if (pcAce == NULL)
      pcAce = &cAceDummy;
   *pcAce = 0;
   while (ccard- > 0)
   {
      if (acard[ccard].spot == kAce)
         ++cAce;
      score += s_dnspot[acard[ccard].spot].score;
   }
   
   if (score > 21)
      return scoreBust;
   while (score + 10 <= 21 && cAce > 0)
   {
      score += 10;
      -cAce;
      ++*pcAce;
   }

   return score;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Firetask Pro 4.2.2 - Innovative task man...
Firetask Pro uniquely combines the advantages of classical priority-and-due-date-based task management with GTD. Stay focused and on top of your commitments - Firetask Pro's "Today" view shows all... Read more
Bookends 13.4.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
LibreOffice 6.4.5.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Thunderbird 68.10.0 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Firefox 78.0.1 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
BetterTouchTool 3.389 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom)... Read more
Slack 4.7.0 - Collaborative communicatio...
Slack brings team communication and collaboration into one place so you can get more work done, whether you belong to a large enterprise or a small business. Check off your to-do list and move your... Read more
OsiriX Lite 11.0.3 - 3D medical image pr...
OsiriX Lite is an image processing software dedicated to DICOM images (".dcm" / ".DCM" extension) produced by medical equipment (MRI, CT, PET, PET-CT, ...) and confocal microscopy (LSM and BioRAD-PIC... Read more
Wireshark 3.2.5 - Network protocol analy...
Wireshark is one of the world's foremost network protocol analyzers, and is the standard in many parts of the industry. It is the continuation of a project that started in 1998. Hundreds of... Read more
Dabble 1.6.1 - Organize your manuscript,...
Dabble organizes your manuscript, story notes, and plot. Dabble simplifies the story, leaving more room in your brain to create, which is what being a writer is really about. Organize your story.... Read more

Latest Forum Discussions

See All

Pokemon Go's July Community Day wil...
Pokemon Go developers have announced the details concerning the upcoming Gastly Community Day. This particular event was selected by the players of the game after the Gas Pokemon came in second place after a poll that decided which Pokemon would... | Read more »
Clash Royale: The Road to Legendary Aren...
Supercell recently celebrated its 10th anniversary and their best title, Clash Royale, is as good as it's ever been. Even for lapsed players, returning to the game is as easy as can be. If you want to join us in picking the game back up, we've put... | Read more »
Detective Di is a point-and-click murder...
Detective Di is a point-and-click murder mystery set in Tang Dynasty-era China. You'll take on the role of China's best-known investigator, Di Renjie, as he solves a series of grisly murders that will ultimately lead him on a collision course with... | Read more »
Dissidia Final Fantasy Opera Omnia is se...
Dissidia Final Fantasy Opera Omnia, one of Square Enix's many popular mobile RPGs, has announced a plethora of in-game events that are set to take place over the summer. This will include several rewards, Free Multi Draws and more. [Read more] | Read more »
Sphaze is a neat-looking puzzler where y...
Sphaze is a neat-looking puzzler where you'll work to guide robots through increasingly elaborate mazes. It's set in a visually distinct world that's equal parts fantasy and sci-fi, and it's finally launched today for iOS and Android devices. [... | Read more »
Apple Arcade is in trouble
Yesterday, Bloomberg reported that Apple is disappointed in the performance of Apple Arcade and will be shifting their approach to the service by focusing on games that can retain subscribers and canceling other upcoming releases that don't fit... | Read more »
Pixel Petz, an inventive platform for de...
Pixel Petz has built up a sizeable player base thanks to its layered, easy-to-understand creative tools and friendly social experience. It revolves around designing, trading, and playing with a unique collection of pixel art pets, and it's out now... | Read more »
The King of Fighters Allstar's late...
The King of Fighters ALLSTAR, Netmarble's popular action RPG, has once again been updated with a plethora of new content. This includes battle cards, events and 21 new fighters, which increases the already sizeable roster even more. [Read more] | Read more »
Romancing SaGa Re;univerSe, the mobile s...
Square Enix latest mobile spin-off Romancing SaGa Re;univerSe is available now globally for both iOS and Android. It initially launched in Japan back in 2018 where it's proven to be incredibly popular, so now folks in the West can finally see what... | Read more »
Away: Journey to the Unexpected is a sto...
Away: Journey to the Unexpected looks really quite lovely. Stylish, cute, and clearly heavily inspired by Japanese animation, it's amongst the best-looking mobile games on the horizon. Developed by a two-person team, this story-driven rogue-lite... | Read more »

Price Scanner via MacPrices.net

July 4th Sale: Woot offers wide range of Macs...
Amazon-owned Woot is blowing out a wide range of Apple Macs and iPads for July 4th staring at $279 and ranging up to just over $1000. Models vary from older iPads and 11″ MacBook Airs to some newer... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Abt Electronics has Apple’s new 32″ Pro Display XDR model with the nano-texture glass in stock and on sale today for up to $144 off MSRP. Shipping is free: – Pro Display XDR (nano-texture glass): $... Read more
New 2020 Mac mini on sale for up to $100 off...
Amazon has Apple’s new 2020 Mac minis on sale today for $40-$100 off MSRP with prices starting at $759. Shipping is free: – 2020 4-Core Mac mini: $759 $40 off MSRP – 2020 6-Core Mac mini: $998.99 $... Read more
July 4th Sale: $100 off every 2020 13″ MacBoo...
Apple resellers have new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP as part of their July 4th sales. Starting at $899, these are the cheapest new 2020 MacBooks for sale anywhere: (1) B... Read more
This hidden deal on Apple’s site can save you...
Are you a local, state, or federal government employee? If so, Apple offers special government pricing on their products, including AirPods, for you as well as immediate family members. Here’s how... Read more
Apple Watch Series 3 models on sale for new l...
Amazon has Apple Watch Series 3 GPS models on sale for $30 off MSRP, starting at only $169. Their prices are the lowest available for these models from any Apple reseller. Choose Amazon as the seller... Read more
Deal Alert! Get these refurbished 2018 13″ Ma...
Apple has restocked and lowered prices on select Certified Refurbished 2018 13″ MacBook Airs, starting at only $679. Each MacBook features a new outer case, comes with a standard Apple one-year... Read more
July 4th Sale: 13″ 2.0GHz MacBook Pros for $2...
B&H Photo has new 2020 13″ 2.0GHz MacBook Pros on sale for $200 off Apple’s MSRP as part of their July 4th sale. Prices start at $1599. These are the same MacBook Pros sold by Apple in their... Read more
July 1 only: $100 off Apple iPhone 11, 11 Pro...
Boost Mobile is offering Apple iPhone 11, 11 Pro, and iPhone 11 Pro Max models for $100 off MSRP with service. Their discount reduces the cost of an iPhone 11/64GB to $599, iPhone 11 Pro to $899 for... Read more
Apple offers $50-$100 Education discount on i...
Purchase a new 12.9″ or 11″ iPad Pro at Apple using your Education discount, and Apple will take $50-$100 off their MSRP. All teachers, students, and staff of any educational institution with a .edu... Read more

Jobs Board

Operating Room Assistant, *Apple* Hill Surg...
Operating Room Assistant, Apple Hill Surgical Center - Full Time, Day Shift, Monday - Saturday availability required Tracking Code 62363 Job Description Operating Read more
Perioperative RN - ( *Apple* Hill Surgical C...
Perioperative RN - ( Apple Hill Surgical Center) Tracking Code 60593 Job Description Monday - Friday - Full Time Days Possible Saturdays General Summary: Under the Read more
Product Manager, *Apple* Commercial Sales -...
Product Manager, Apple Commercial Sales Austin, TX, US Requisition Number:77652 As an Apple Product Manager for the Commercial Sales team at Insight, you Read more
*Apple* Mac Product Engineer - Barclays (Uni...
Apple Mac EngineerWhippany, NJ Support the development and delivery of solutions, products, and capabilities into the Barclays environment working across technical Read more
Blue *Apple* Cafe Student Worker - Pennsylv...
…enhance your work experience. Student positions are available at the Blue Apple Cafe. Employee meal discount during working hours. Duties include food preparation, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.