TweetFollow Us on Twitter

Conway’s Game of Life

Volume Number: 14 (1998)
Issue Number: 3
Column Tag: Programming Techniques

Conway's Game of Life

by F.C. Kuechmann, Vancouver, WA

Another look at a familiar recreation

The Game

The Game of Life is a "cellular automaton'" invented by British mathematician John Horton Conway. It first became widely known when it was featured in Martin Gardner's column in Scientific American in October 1970 and February 1971. Since then it has taken on a life of its own (groan...), so to speak. It's been discussed in that publication numerous times and elsewhere, including several books targeted for audiences ranging from popular to professional scientific and in articles of publications ranging from the popular audience oriented Omni to obscure mathematics journals. Byte has ventured into the subject on several occasions, as have other computer magazines. See the references for a partial list.

On the Internet, information on the game and versions in languages ranging from C to Java are widely available for online execution or download. A web search on the phrase "conway's game of life" will turn up numerous links to follow and explore. There's also a six generation life editor, with THINK Pascal sourcecode, on Celestin's Apprentice 5 CD-ROM, that's useful for exploring simple patterns of cell placement.

The Life game field is a two-dimensional matrix on which cells live, die or multiply in accordance with a small number of simple rules. The cells form various patterns as the rules are repeatedly applied to the matrix. It is these patterns that make the Game of Life interesting.

The Rules

For a matrix location that is occupied by a living cell:

  1. Each cell with fewer than two neighbors dies from isolation.
  2. Each cell with four or more neighbors dies from overcrowding.
  3. Each cell with two or three neighbors survives.

For a location that is empty:

  1. Each cell with three neighbors births a living cell.

This Version

I implemented Conway's game in CodeWarrior Pro Pascal on a PowerPC Mac 6500 using a 60 by 100 two-dimensional Boolean array. This array is mapped to a 300 pixel high, 500 pixel wide area with a cell size of 5 pixels square, as shown in Figure 1. The Figure 1 screenshot was taken after 18 generations in Random-Static mode with 500 live cells to start.

Figure 1. The game field.

At the lower left of Figure 1 is a quad, 3-cell oscillator, and in several places we see single, 3-cell oscillators, and static 4-cell blocks and 6-cell groups. The 3-cell binary (2-state) oscillator and 4-cell block are perhaps the most common regular patterns formed in the Game of Life when the field is initially randomly populated with a sufficiently large number of cells. Another common pattern is the 5-cell, 4-state glider whose states are shown in Figure 2.

Figure 2. The states of the 5-cell, 4-state glider.

The 5-cell, 4-state glider eventually becomes a static, 4-cell block at the edge of the field if enough generations are allowed to elapse.

Figure 3 shows the stages of development of the quad, three-cell binary oscillator. Starting from a block of either nine or ten cells (the center position can be either populated or unpopulated) at left, the generations proceed rightward. The sixth and seventh (two rightmost) generations alternate indefinitely.

Figure 3. Stages of the quad, three-cell binary oscillator.

Another interesting starting cell pattern is a straight vertical or horizontal line several cells long -- ten is a good number to start with and evolves into an oscillator with 15 states. "H" patterns also give interesting results, five cells to each vertical line, three to five cells in the crossbar.

Some Source Code Conventions

The use of descriptive names for constants, variables, functions and procedures makes the CodeWarrior Pascal sourcecode largely self-documenting. Constants and variables that are global to the entire program begin with the letters "ggc" (constants) or "gg" (variables), followed by at least one uppercase alpha or numeric character. They are defined in the globals unit. Constants and variables global to a single unit begin with "gc" or "g", followed by at least one uppercase alpha or numeric character. The MenuStuff unit holds menu routines, EventStuff the event handlers, etc.

Running Life

On the menu bar are the standard Apple, File and (inactive) Edit menus, plus menus for Speed, Generations, Cells, Color and Delay. The File menu offers only the Quit option. The Speed menu offers Wait Go button, Very Slow, Slow, Medium and Fast.

Speed is varied by changing the amount of delay invoked between generations. The Wait Go button option enables stepping a single generation at a time.

The Generations menu allows selection of the maximum number of generations executed per cycle. Default is 25, with options of 1, 5, 10, 25, 50, 75, 100 and 200. A cycle terminates if a static condition is reached, regardless of the generations setting. In random mode, the play field clears after the selected number of generations have passed. The field is then randomly repopulated and, after a two second pause, the generations cycle repeats.

In manual mode, operation pauses and can be restarted by clicking the Go button. During pauses, you can add or remove living cells by clicking their locations with the mouse.

The Cells menu allows selection of the number of initial live cells in random mode. Default is 500, with options of 175 to 525 in 25 cell increments.

The Color menu allows selection of live cell color. The options are Random, plus the eight standard Macintosh colors -- White, Black, Yellow, Magenta, Red, Cyan, Green and Blue.

The Delay menu sets the delay after each cycle. Default is 5 seconds, with options ranging from None to 30 Seconds in 5 second increments, plus Wait (for the Go button to be pushed).

The Modes

Life has four basic operating modes -- manual, random, static and dynamic -- that are invoked in pairs of manual or random with static or dynamic. In manual mode, living cells are birthed or killed by clicking their locations on the game field, then processed by Conway's rules when the Go button is clicked. Listing 1 shows the mouse button-processing code from the EventStuff unit. The code first tests for routine mouse locations like the menu, system window and close box via a case-statement. The last case-statement option, inContent, tests first to see if a button has been clicked. If so, it calls the DoButtons procedure to process, otherwise it tests to see if the mouse pointer is in the active game field. If it is, the code that births or clears the cells is executed.

Listing 1. HandleMouseDown.

HandleMouseDown

   procedure HandleMouseDown;
   var
      whichWindow: WindowPtr;
      thePart, X, Y, row, col : integer;
      menuChoice: longint;
      thePoint : Point;
      theControl : ControlHandle;
   begin
      ggButtonFlag := TRUE;
      thePart := FindWindow(gTheEvent.where, whichWindow);
      case thePart of
         inMenuBar: 
            begin
               menuChoice := MenuSelect(gTheEvent.where);
               HandleMenuChoice(menuChoice);
            end;
         inSysWindow: 
            SystemClick(gTheEvent, whichWindow);
         inDrag: 
            begin
               DragWindow(whichWindow, gTheEvent.where,
                                                    qd.screenBits.bounds);
               ggInBkGndFlag := TRUE;   {force redraw}
               RedrawBoard;
            end;
         inGoAway: 
            ggDoneFlag := TRUE;
         inContent: 
            begin
               GetMouse(thePoint);
               thePart := FindControl(thePoint, 
                                                whichWindow,theControl);
               if thePart <> 0 then                     
                  DoButtons(theControl)
               else
                  begin      
                        {locate mouse pointer; if it's in the}
                        {playing field, birth or kill cell at}
                        {the mouse pointer}
                     with thePoint do
                        begin
                           Y := v;
                           X := h;
                        end;
                        
                     if (X < ggWindRect.right) and
                           (X > ggWindRect.left) and
                           (Y < ggWindRect.bottom) and
                                          (Y > ggWindRect.top) then
                        begin
                           Y := Y + 5;
                           X := X + 3;
                           row := Y div ggcLifeSize;
                           col := X div ggcLifeSize;
                           if ggLifeBoard[row, col] = FALSE then
                              begin
                                 MakeLiveCell(row, col);
                                 ggLifeBoard[row, col] := TRUE;
                                 Inc(ggCellCount);
                                 UpdateCellCount;
                              end
                           else
                              begin
                                 KillCell(row, col);
                                 ggLifeBoard[row, col] := FALSE;
                                 Dec(ggCellCount);
                                 UpdateCellCount;
                              end;
                        end;
                  end;
            end;      {inContent}
      end;            {case}
      ggButtonFlag := FALSE;

   end;

In random mode, cells are birthed randomly by the program at the start of each cycle (length set via the Generations menu). That code is shown in Listing 2.

Listing 2. NewCell and FillRandom.

NewCell
   Procedure NewCell;
      {generates a pair of random integers 1..60 and 1..100
      then tests the matrix location defined by those numbers 
      to see if it is already occupied by a cell. The process 
      continues until the necessary cells are created}
   var+
      X, Y, tryCount : longint;
      row, col: integer;
   begin
      tryCount := 0;
      repeat   
            {divisors 218 and 131 determined by experiment}
         Y := (Random + 32768) div 218;
         X := (Random + 32768) div 131;

         row := Y div ggcLifeSize;
         col := X div ggcLifeSize;
         if row < 2 then
            row := 2
         else if row > 59 then
            row := 59;
            
         if col < 2 then
            col := 2
         else if col > 99 then
            col := 99;
         LongInc(tryCount);
      until (ggLifeBoard[row, col] = FALSE) or
                                          (tryCount > 10000000);
      
      if ggLifeBoard[row, col] = FALSE then
         begin
            ggLifeBoard[row, col] := TRUE;
            MakeLiveCell(row, col);
            Inc(ggCellCount);
            UpdateCellCount;
         end;

   end;   { NewCell }

FillRandom
   procedure FillRandom;
      {births starting number of cells by repeatedly calling NewCell}
   begin
         {erase just count nums}
      ClearCellCountRect;   
      repeat
         NewCell;
      until ggCellCount > (ggStartCellCount - 1);
   end;

The FillRandom procedure calls the NewCell procedure in a loop until the required number of randomly-located cells have been birthed. NewCell generates two random integers, scales and converts them to a location in the 60 by 100 matrix, then tests to see if that location holds a live cell. If so, the selection process is repeated; otherwise a new cell is birthed at the selected location and the matrix location marked TRUE.

Once Life begins applying Conway's rules the program can be paused at any time by clicking the Pause button. During pauses cells can be killed or birthed by clicking their locations regardless of the manual/random mode setting.

In applying Conway's rules to the matrix, there is a choice of two approaches: static and dynamic. Both methods count the number of live cell neighbors had by each location in the 6000-cell matrix using the code in Listing 3 from the Action unit.

Listing 3. CountNeighbors.

CountNeighbors
   procedure CountNeighbors(row, col :integer;
                                             var neighbors: integer);
      {counts the number of live cell neighbors of matrix location
      defined by row and column; returns count in integer neighbors.}
   begin
      neighbors := 0;
         {up}
      if row > 1 then
         if ggLifeBoard[row - 1, col] then   
            Inc(neighbors);               
         {down}
      if row < ggcMaxRow then
         if ggLifeBoard[row + 1, col] then   
            Inc(neighbors);
         {left}
      if col > 1 then
         if ggLifeBoard[row, col - 1] then   
            Inc(neighbors);
         {right}
      if col < ggcMaxCol then
         if ggLifeBoard[row, col + 1] then   
            Inc(neighbors);
         {downright}
      if (row < ggcMaxRow) and (col < ggcMaxCol) then
         if ggLifeBoard[row + 1, col + 1] then   
            Inc(neighbors);
         {upleft}
      if (row > 1) and (col > 1) then
         if ggLifeBoard[row - 1, col - 1] then   
            Inc(neighbors);
         {downleft}
      if (row < ggcMaxRow) and (col > 1) then
         if ggLifeBoard[row + 1, col - 1] then   
            Inc(neighbors);
         {upright}
      if (row > 1) and (col < ggcMaxCol) then
         if ggLifeBoard[row - 1, col + 1] then   
            Inc(neighbors);
   end;

The code uses a series of conditionals to test matrix positions neighboring the location passed by row and column numbers, while accounting for boundary conditions.

The static mode code that calls the code in Listing 3 is given in Listing 4. A local array is used to store changes until the scan of the matrix is completed. Then the field is updated, along with the global array. The SetMaxCol and SetMaxRow procedures called near the beginning of Listing 4 set local variables maxCol and maxRow equal to global constants ggcMaxCol and ggcMaxRow. CodeWarrior Pascal won't let me use the global constants directly in the for loop statements, demanding local variables or constants. CodeWarrior Pascal also won't allow a simple assignment such as: maxCol := ggcMaxCol. I wrote procedures, included in the Misc unit, to do the assignments by incrementing or decrementing the variable passed to it in a loop until it equals the global constant.

Listing 4. CheckStaticNeighborhood.

CheckStaticNeighborhood
   procedure CheckStaticNeighborhood;
      {Tests the 60 row, 100 col grid by first copying the global
      boolean array to a samesize local array. CountNeighbors 
      is called for each matrix position. When cells need
      to be birthed or killed, changes are flagged in the local
      array only until the entire board has been scanned. Then
      the two arrays are compared and the board updated. The
      local array is copied to the global to update it.}
   var
      neighbors, col, row, maxRow, maxCol : integer;
      lifeBoard : array[1..60, 1..100] of boolean;
   begin
      SetMaxCol(maxCol);   {set maxCol = ggcMaxCol}
      SetMaxRow(maxRow);   {set maxRow = ggcMaxRow}

         {copy global array into local array}
      for col := 1 to maxCol do
         for row := 1 to maxRow do
            lifeBoard[row, col] := ggLifeBoard[row, col];
            
      gChangeFlag := FALSE;
      for col := 1 to maxCol do
         for row := 1 to maxRow do
            begin
               CountNeighbors(row, col, neighbors);
                  {update local array from neighbor count}
               if (neighbors > ggcMaxNeighbors) and
                                                ggLifeBoard[row, col] then
                  begin               
                     lifeBoard[row, col] := FALSE;
                     gChangeFlag := TRUE;
                  end
               else if (neighbors < ggcMinNeighbors) and
                                                ggLifeBoard[row, col] then
                  begin
                     lifeBoard[row, col] := FALSE;
                     gChangeFlag := TRUE;
                  end
               else if (ggLifeBoard[row, col] = FALSE) and
                                 (neighbors = ggcBirthNeighbors) then
                  begin
                     lifeBoard[row, col] := TRUE;
                     gChangeFlag := TRUE;
                  end;
            end;
   
         {update the play field}
      for col := 1 to maxCol do
         for row := 1 to maxRow do
            begin
               if (lifeBoard[row, col] = TRUE) and 
                        (ggLifeBoard[row, col] = FALSE) then
                  begin
                        {birth a new cell in an unoccupied location}
                     Inc(ggCellCount);
                     MakeLiveCell(row, col);         
                  end
               else if (lifeBoard[row, col] = FALSE) and 
                        (ggLifeBoard[row, col] = TRUE) then
                  begin
                     KillCell(row, col);
                     Dec(ggCellCount);
                  end;
               
               ggLifeBoard[row, col] := lifeBoard[row, col];
            end;
      ClearCellCountRect;   {erase just count nums}
      UpdateCellCount;
   end;

Listing 5 and Listing 6 perform similar functions for the dynamic mode, the key differences being that, in dynamic mode, the relative positions of the row and column loops is significant, whereas in static mode the order makes no difference. The global boolean variable ggColumnIndexFlag, toggled by clicking the Row/Column button, determines the execution order of the loops.

In dynamic mode, the matrix is updated immediately after counting neighbors. Listing 5 calls Listing 3 to do the count, then calls Listing 6 to perform the update.

Listing 5. CheckDynamicNeighborhood.

CheckDynamicNeighborhood
   procedure CheckDynamicNeighborhood;
      {calls CountNeighbors for each matrix location
      and then calls UpDateBoard to make changes immediately;
      results vary with the relative positions of the row and
      column loops.}
   var
      neighbors, col, row, maxRow, maxCol : integer;
      ticks : longint;
   begin
      SetMaxCol(maxCol);   {set maxCol = ggcMaxCol}
      SetMaxRow(maxRow);   {set maxRow = ggcMaxRow}

      gChangeFlag := FALSE;
      if ggColumnIndexFlag then
         begin
            for col := 1 to maxCol do
               for row := 1 to maxRow do
                  begin
                     CountNeighbors(row, col, neighbors);
                     UpdateBoard(row, col, neighbors);
                  end;
         end
      else
         begin
            for row := 1 to maxRow do
               for col := 1 to maxCol do
                  begin
                     CountNeighbors(row, col, neighbors);
                     UpdateBoard(row, col, neighbors);
                  end;
         end;
   end;
Listing 6. UpdateBoard.
UpdateBoard
   procedure UpdateBoard(row, col, neighbors : integer);
      {called by CheckDynamicNeighborhood after each call to
      CountNeighbors to make any needed changes to the board.}
   begin
      if (neighbors > ggcMaxNeighbors) and
                                       ggLifeBoard[row, col] then
         begin
            KillCell(row, col);
            ggLifeBoard[row, col] := FALSE;
            gChangeFlag := TRUE;
            Dec(ggCellCount);
            UpdateCellCount;
         end
      else if (neighbors < ggcMinNeighbors) and
                                       ggLifeBoard[row, col] then
         begin
            KillCell(row, col);
            ggLifeBoard[row, col] := FALSE;
            gChangeFlag := TRUE;
            Dec(ggCellCount);
            ClearCellCountRect;   {erase just count nums}
            UpdateCellCount;               
         end
      else if (ggLifeBoard[row, col] = FALSE) and
                           (neighbors = ggcBirthNeighbors) then
         begin
            ggLifeBoard[row, col] := TRUE;
            MakeLiveCell(row, col);
            gChangeFlag := TRUE;
            Inc(ggCellCount);
            UpdateCellCount;
         end;

   end;

With the default static approach, which conforms more closely to the previously published versions and discussions of Conway's game that I have seen, changes are not made to the matrix until it has been completely scanned. The dynamic approach makes changes immediately. The default mode combination is manual-static.

Playing the Game of Life

The opening screen is a blank field with a control panel to the right. The control panel shows two data windows, cell count and generations. There are six buttons initially labeled Row, Clear, Dynamic, Random, Go and Quit. In manual mode, cells are birthed or killed by clicking their locations with the mouse. When the desired cell arrangement is in place, clicking the Go button begins execution. Go changes to Pause and is used to temporarilly interrupt execution. The Clear button, enabled only in manual mode, removes all living cells from the game field.

In random mode, the Random button is relabeled to Manual, and clicking the Go button initiates automatic operation that continues uninterrupted until manual mode is reselected by clicking the Manual button, the Pause button is clicked, or operation is terminated by clicking Quit, typing Command-Q, or selecting Quit from the File menu.

In Dynamic mode, the button inially labelled Row is enabled. It is used to switch the relative positions of nested row and column loops. In the default state, the outer loop is indexed by columns, the inner by rows. Clicking the Row button reverses the two and relabels the button to read Column.

The static approach yields more oscillator and glider patterns. The button initially labelled Dynamic is used to toggle between the two approaches. In Dynamic mode the button is relabeled Static and can be clicked to reselect that operating mode.

Enhancements

The most obvious way to add to the existing program would be to allow menu selection of some of the more interesting initial patterns, such as the 5-cell, 4-state glider, 10 live cells in a horizontal or vertical row. Live-cell co-ordinates for the patterns could be stored in records. Placing the cells would simply involve calling the MakeLiveCell procedure the required number of times with the proper row and column values.

Source Code

Source code in CodeWarrior Pascal and CodeWarrior IDE 2.0 projects is available for download from Mactech. Color Quickdraw is required.

Bibliography and References

  • Buckingham, David J. "Some Facts of Life." Byte. December 1978.
  • BYTE magazine: Sep 75, Oct 75, Dec 75, Jan 76, Jan 79, Apr 79, Oct 80, Jul 81.
  • Gardner, Martin. "On cellular automata, self-reproduction, the Garden of Eden and the game 'Life.'" Scientific American, February 1971.
  • Gardner, Martin. "The Fantastic Combinations of John Conway's New Solitaire Game 'Life.'" Scientific American, October 1970.
  • Scientific American: Nov 70, Jan 71, Mar 71, Apr 71, Nov 71, Jan 72, Dec 75, Mar 84, May 85, Feb 87, Aug 88, Aug 89, Sep 89, Jan 90.
  • Gardner, Martin. "The Game of Life." Wheels, Life and other Mathematical Amusements. W.H. Freeman 1983. ISBN 0-7167-1589-9.
  • Morris, Scot. "The Game of Life," Omni. October 1984.
  • Poundstone, William. The Recursive Universe. William Morrow & Co., 1985. ISBN 0-688-03975-8.
  • Berlekamp, Conway, and Guy: Winning Ways (for your Mathematical Plays), Volume 2, (c)1982. ISBN 0-12-091152-3.
  • Dewdney, A.K.: The Armchair Universe, (c)1988. ISBN 0-7167-1939-8.

F.C. Kuechmann, fk@aone.com, is a programmer, hardware designer and consultant with degrees from the University of Illinois at Chicago and Clark College. He is building a programmers' clock that gives the time in hexadecimal.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Firetask Pro 4.2.2 - Innovative task man...
Firetask Pro uniquely combines the advantages of classical priority-and-due-date-based task management with GTD. Stay focused and on top of your commitments - Firetask Pro's "Today" view shows all... Read more
Bookends 13.4.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
LibreOffice 6.4.5.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Thunderbird 68.10.0 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Firefox 78.0.1 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
BetterTouchTool 3.389 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom)... Read more
Slack 4.7.0 - Collaborative communicatio...
Slack brings team communication and collaboration into one place so you can get more work done, whether you belong to a large enterprise or a small business. Check off your to-do list and move your... Read more
OsiriX Lite 11.0.3 - 3D medical image pr...
OsiriX Lite is an image processing software dedicated to DICOM images (".dcm" / ".DCM" extension) produced by medical equipment (MRI, CT, PET, PET-CT, ...) and confocal microscopy (LSM and BioRAD-PIC... Read more
Wireshark 3.2.5 - Network protocol analy...
Wireshark is one of the world's foremost network protocol analyzers, and is the standard in many parts of the industry. It is the continuation of a project that started in 1998. Hundreds of... Read more
Dabble 1.6.1 - Organize your manuscript,...
Dabble organizes your manuscript, story notes, and plot. Dabble simplifies the story, leaving more room in your brain to create, which is what being a writer is really about. Organize your story.... Read more

Latest Forum Discussions

See All

Pokemon Go's July Community Day wil...
Pokemon Go developers have announced the details concerning the upcoming Gastly Community Day. This particular event was selected by the players of the game after the Gas Pokemon came in second place after a poll that decided which Pokemon would... | Read more »
Clash Royale: The Road to Legendary Aren...
Supercell recently celebrated its 10th anniversary and their best title, Clash Royale, is as good as it's ever been. Even for lapsed players, returning to the game is as easy as can be. If you want to join us in picking the game back up, we've put... | Read more »
Detective Di is a point-and-click murder...
Detective Di is a point-and-click murder mystery set in Tang Dynasty-era China. You'll take on the role of China's best-known investigator, Di Renjie, as he solves a series of grisly murders that will ultimately lead him on a collision course with... | Read more »
Dissidia Final Fantasy Opera Omnia is se...
Dissidia Final Fantasy Opera Omnia, one of Square Enix's many popular mobile RPGs, has announced a plethora of in-game events that are set to take place over the summer. This will include several rewards, Free Multi Draws and more. [Read more] | Read more »
Sphaze is a neat-looking puzzler where y...
Sphaze is a neat-looking puzzler where you'll work to guide robots through increasingly elaborate mazes. It's set in a visually distinct world that's equal parts fantasy and sci-fi, and it's finally launched today for iOS and Android devices. [... | Read more »
Apple Arcade is in trouble
Yesterday, Bloomberg reported that Apple is disappointed in the performance of Apple Arcade and will be shifting their approach to the service by focusing on games that can retain subscribers and canceling other upcoming releases that don't fit... | Read more »
Pixel Petz, an inventive platform for de...
Pixel Petz has built up a sizeable player base thanks to its layered, easy-to-understand creative tools and friendly social experience. It revolves around designing, trading, and playing with a unique collection of pixel art pets, and it's out now... | Read more »
The King of Fighters Allstar's late...
The King of Fighters ALLSTAR, Netmarble's popular action RPG, has once again been updated with a plethora of new content. This includes battle cards, events and 21 new fighters, which increases the already sizeable roster even more. [Read more] | Read more »
Romancing SaGa Re;univerSe, the mobile s...
Square Enix latest mobile spin-off Romancing SaGa Re;univerSe is available now globally for both iOS and Android. It initially launched in Japan back in 2018 where it's proven to be incredibly popular, so now folks in the West can finally see what... | Read more »
Away: Journey to the Unexpected is a sto...
Away: Journey to the Unexpected looks really quite lovely. Stylish, cute, and clearly heavily inspired by Japanese animation, it's amongst the best-looking mobile games on the horizon. Developed by a two-person team, this story-driven rogue-lite... | Read more »

Price Scanner via MacPrices.net

July 4th Sale: Woot offers wide range of Macs...
Amazon-owned Woot is blowing out a wide range of Apple Macs and iPads for July 4th staring at $279 and ranging up to just over $1000. Models vary from older iPads and 11″ MacBook Airs to some newer... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Abt Electronics has Apple’s new 32″ Pro Display XDR model with the nano-texture glass in stock and on sale today for up to $144 off MSRP. Shipping is free: – Pro Display XDR (nano-texture glass): $... Read more
New 2020 Mac mini on sale for up to $100 off...
Amazon has Apple’s new 2020 Mac minis on sale today for $40-$100 off MSRP with prices starting at $759. Shipping is free: – 2020 4-Core Mac mini: $759 $40 off MSRP – 2020 6-Core Mac mini: $998.99 $... Read more
July 4th Sale: $100 off every 2020 13″ MacBoo...
Apple resellers have new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP as part of their July 4th sales. Starting at $899, these are the cheapest new 2020 MacBooks for sale anywhere: (1) B... Read more
This hidden deal on Apple’s site can save you...
Are you a local, state, or federal government employee? If so, Apple offers special government pricing on their products, including AirPods, for you as well as immediate family members. Here’s how... Read more
Apple Watch Series 3 models on sale for new l...
Amazon has Apple Watch Series 3 GPS models on sale for $30 off MSRP, starting at only $169. Their prices are the lowest available for these models from any Apple reseller. Choose Amazon as the seller... Read more
Deal Alert! Get these refurbished 2018 13″ Ma...
Apple has restocked and lowered prices on select Certified Refurbished 2018 13″ MacBook Airs, starting at only $679. Each MacBook features a new outer case, comes with a standard Apple one-year... Read more
July 4th Sale: 13″ 2.0GHz MacBook Pros for $2...
B&H Photo has new 2020 13″ 2.0GHz MacBook Pros on sale for $200 off Apple’s MSRP as part of their July 4th sale. Prices start at $1599. These are the same MacBook Pros sold by Apple in their... Read more
July 1 only: $100 off Apple iPhone 11, 11 Pro...
Boost Mobile is offering Apple iPhone 11, 11 Pro, and iPhone 11 Pro Max models for $100 off MSRP with service. Their discount reduces the cost of an iPhone 11/64GB to $599, iPhone 11 Pro to $899 for... Read more
Apple offers $50-$100 Education discount on i...
Purchase a new 12.9″ or 11″ iPad Pro at Apple using your Education discount, and Apple will take $50-$100 off their MSRP. All teachers, students, and staff of any educational institution with a .edu... Read more

Jobs Board

Operating Room Assistant, *Apple* Hill Surg...
Operating Room Assistant, Apple Hill Surgical Center - Full Time, Day Shift, Monday - Saturday availability required Tracking Code 62363 Job Description Operating Read more
Perioperative RN - ( *Apple* Hill Surgical C...
Perioperative RN - ( Apple Hill Surgical Center) Tracking Code 60593 Job Description Monday - Friday - Full Time Days Possible Saturdays General Summary: Under the Read more
Product Manager, *Apple* Commercial Sales -...
Product Manager, Apple Commercial Sales Austin, TX, US Requisition Number:77652 As an Apple Product Manager for the Commercial Sales team at Insight, you Read more
*Apple* Mac Product Engineer - Barclays (Uni...
Apple Mac EngineerWhippany, NJ Support the development and delivery of solutions, products, and capabilities into the Barclays environment working across technical Read more
Blue *Apple* Cafe Student Worker - Pennsylv...
…enhance your work experience. Student positions are available at the Blue Apple Cafe. Employee meal discount during working hours. Duties include food preparation, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.