TweetFollow Us on Twitter

Fast Square Root Calc

Volume Number: 14 (1998)
Issue Number: 1
Column Tag: Assembler Workshop

Fast Square Root Calculation

by Guillaume Bédard, Frédéric Leblanc, Yohan Plourde and Pierre Marchand, Québec, Canada

Optimizing PowerPC Assembler Code to beat the Toolbox

Introduction

The calculation of the square root of a floating-point number is a frequently encountered task. However, the PowerPC processors don't have a square root instruction. The implementation presented here performs the square root of a double-precision number over the full range of representation of the IEEE 754 standard for normalized numbers (from 2.22507385851E-308 to 1.79769313486E308) with an accuracy of 15 or more decimal digits. It is very fast, at least six times faster than the Toolbox ROM call.

Theory of Operation

A floating point number has three components: a sign, a mantissa and an exponential part. For example, the number +3.5 x 10^4 (35 000) has a plus sign, a mantissa of 3.5 and an exponential part of 104. The mantissa consists of an integer part and a fractional part f.

A double precision number in IEEE 754 format has the same components: a sign bit s, an 11-bit exponent e and a 52 bit fraction f. The exponential part is expressed in powers of 2 and the exponent is biased by adding 1023 to the value of e. The mantissa is normalized to be of the form 1.f. Since the integer part of the normalized mantissa is always 1, it doesn't have to be included in the representation. The number is thus represented as follows: (-1)s x 1.f x 2^e+1023.

For example, the number 5.0 can be expressed in binary as 101.0, which means 101.0 x 2^0, which in turn is equal to 1.010 x 2^2, obtained by dividing the mantissa by 4 and multiplying 2^0 by 4. Therefore, the normalized mantissa is 1.010 and the exponent 2. Fraction f is then .01000000.... The biased exponent is obtained by adding 1023 to e and is 1025, or 10000000001 in binary. The double precision IEEE representation of 5.0 is finally:

-----------------------------------------------------------------------------
|  0 | 10000000001 | 01000000000000000000000000000000000000000000000000000  |
-----------------------------------------------------------------------------

or 4014000000000000 in hexadecimal notation for short.

First Approximation

Given this representation, a first approximation to the square root of a number is obtained by dividing the exponent by 2. If the number is an even power of 2 such as 16 or 64, the exact root is obtained. If the number is an odd power of 2 such as 8 or 32, 1/SQRT(2) times the square root is obtained. In general, the result will be within a factor SQRT(2) of the true value.

Refining the Approximation

The Newton-Raphson method is often used to obtain a more accurate value for the root x of a function f(x) once an initial approximation x0 is given:

[1]

This becomes, in the case of the square root of n, = x2 - n:where f(x)

[2]

An excellent approximation to the square root starting with the initial approximation given above is obtained within 5 iterations using equation [2]. This algorithm is already pretty fast, but its speed is limited by the fact that each iteration requires a double-precision division which is the slowest PowerPC floating-point instruction with 32 cycles on the MPC601 (Motorola, 1993).

Eliminating Divisions

Another approach is to use equation [1] with the function.

In this case, equation [1] becomes:

[3]

There is still a division by n, but since n is constant (it's the original number whose root we want to find), it can be replaced by multiplying by 1/n, which can be calculated once before the beginning of the iteration process. The five 32-cycle divisions are thus replaced by this single division followed by 5 much faster multiplications (5 cycles each). This approach is approximately three times faster than the preceding one. However, care must be taken for large numbers since the term in x02 can cause the operation to overflow.

Use of a table

Finally, an approach that is even faster consists in using a table to obtain a more accurate first approximation. In order to do so, the range of possible values of fraction f (0 to ~1) is divided into 16 sub-ranges by using the first 4 bits of f as an index into a table which contains the first two coefficients of the Taylor expansion of the square root of the mantissa (1.0 to ~2) over that sub-range.

The Taylor expansion is given in general by:

[4]

the first two terms of which yield, in the case where f(x) = SQRT(x):

[5]

The square root of x is thus approximated by 16 straight-line segments. The table therefore contains the values of

A =

and B =

for each of the 16 sub-ranges as shown in Figure 1. This first approximation gives an accuracy of about 1.5 %.

Figure 1. Approximation by straight line segment.

To reach the desired accuracy of 15 digits, equation [2] is applied twice to the result of equation [5]. To avoid having to perform two divisions by repeating the iteration, the two iterations are folded together as follows, which contains only one division:

and

[6]

In order to perform these calculation, the exponent of x and n is reduced to -1 (1022 biased), so that floating-point operations apply only to the values of the mantissa and don't overflow if the exponent is very large. The value of these numbers will therefore be in the range 0.5 to 1.0 since the mantissa is in the range 1.0 to 2.0. If the original exponent was odd, the mantissa is multiplied by SQRT(2) before applying equation [6].

Finally, the original exponent divided by two is restored at the end.

The Code

The SQRoot function shown in Listing 1 has been implemented in CodeWarrior C/C++ version 10.

Listing 1: SQRoot.c

// On entry, fp1 contains a positive number between 2.22507385851E-308
// and 1.79769313486E308. On exit, the result is in fp1.

asm long double SQRoot(long double num);   // prototype

float Table[35] = {
0.353553390593, 0.707106781187, 0.364434493428, 0.685994340570,
0.375000000000, 0.666666666667, 0.385275875186, 0.648885684523,
0.395284707521, 0.632455532034, 0.405046293650, 0.617213399848,
0.414578098794, 0.603022689156, 0.423895623945, 0.589767824620,
0.433012701892, 0.577350269190, 0.441941738242, 0.565685424949,
0.450693909433, 0.554700196225, 0.459279326772, 0.544331053952,
0.467707173347, 0.534522483825, 0.475985819116, 0.525225731439,
0.484122918276, 0.516397779494, 0.492125492126, 0.508000508001,
1.414213562373, 0.000000000000, 0.000000000000 };

asm long double Sqrt(long double num) {

   lwz   r3,Table(rtoc)      // address of Table[]
   lhz   r4,24(sp)           // load
                             // Sign(1)+Exponent(11)+Mantissa(4)
   andi.   r5,r4,0xF         // keep only Mantissa(4)
   ori   r5,r5,0x3FE0        // exponent = -1+BIAS = 1022
   sth   r5,24(sp)           // save reduced number

   rlwinm   r5,r5,3,25,28    // take 8*Mantissa(4) as index
   lfd   fp1,24(sp)          // load reduced number
   lfsux   fp4,r5,r3         // load coefficient A
   lfs   fp5,4(r5)           // load coefficient B
   lfs   fp3,128(r3)         // load SQRT(2)
   fmr   fp2,fp1             // copy reduced number
   rlwinm.   r5,r4,31,18,28  // divide exponent by 2
   beq   @@2                 // if (exponent == 0) then done

   fmadd   fp2,fp2,fp5,fp4   // approximation SQRT(x) = A + B*x
   andi.   r4,r4,0x10        // check if exponent even
   beq   @@1                 // if (exponent even) do iteration
   fmul   fp2,fp2,fp3        // multiply reduced number by SQRT(2)
   fadd   fp1,fp1,fp1        // adjust exponent of original number

@@1:   fadd   fp3,fp2,fp2    // 2*x
   fmul   fp5,fp2,fp1        // x*n
   fadd   fp3,fp3,fp3        // 4*x
   fmadd   fp4,fp2,fp2,fp1   // x*x + n
   fmul   fp5,fp3,fp5        // 4*x*x*n
   fmul   fp6,fp2,fp4        // denominator = x*(x*x + n)
   fmadd   fp5,fp4,fp4,fp5   // numerator = (x*x + n)*(x*x + n) +
                             // 4*x*x*n
   fdiv   fp1,fp5,fp6        // double precision division
   andi.   r5,r5,0x7FF0      // mask exponent 
   addi   r5,r5,0x1FE0       // rectify new exponent

@@2:   sth   r5,132(r3)      // save constant C (power of 2) 
   lfd   fp2,132(r3)         // load constant C
   fmul   fp1,fp1,fp2        // multiply by C to replace exponent
   blr                       // done, the result is in fp1
}

Performance

The code presented above runs in less than 100 cycles, which means less than 1 microsecond on a 7200/75 Power Macintosh and is more than six times faster than the ROM code. The code could be modified to make use of the floating reciprocal square root estimate instruction (frsqrte) that is available on the MPC603 and MPC604 processors, and which has an accuracy of 5 bits. It is not available on the MPC601, however. The method used here could also be used to evaluate other transcendental functions.

Performance was measured by running the code a thousand times and calling a simple timing routine found in (Motorola, 1993), that we called myGetTime(). It uses the real-time clock of the MPC 601 processor (RTCU and RTCL registers) and is shown in Listing 2. The routine would have to be modified to run on MPC603 or MPC604 processors, since they don't have the same real-time clock mechanism.

The code doesn't support denormalized numbers (below 2.22507385851E-308). This could easily be implemented albeit at the cost of a slight reduction in performance.

Listing 2: myGetTime.c

asm long myGetTime()
   {
lp:    mfspr   r4,4           // RTCU
   mfspr   r3,5               // RTCL
   mfspr   r5,4               // RTCU again
    cmpw      r4,r5           // if RTCU has changed, try again
    bne      lp
    rlwinm   r3,r3,25,7,31    // shift right since bits 25-31 are
                              // not used
    blr                       // the result is in r3. 1 unit is
                              // worth 128 ns.
   }

To run the code, a very simple interface using the SIOUX library is provided in Listing 3.

Listing 3: main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fp.h>

void main()
   {
   long double   num, num2;
   long startTime, endTime, time;
   short i;


   do {
   printf("%2s","> ");           // caret
   scanf("%Lf",&num);           // read long double
   if (num < 0.0) num = 0.0;     // replace by 0.0 if negative
   startTime = myGetTime();
   for (i = 0; i < 1000; i++)    // repeat 1000 times
   num2 = SQRoot(num);              // call our function
   endTime = myGetTime();
   time = endTime - startTime;
   if (num > 1e-6 && num < 1e7)
      printf("%7s%Lf\n","root = ",num2);   // show result
   else
      printf("%7s%Le\n","root = ",num2);
   printf("%7s%d\n","time = ", time);      // show elapsed time
   }
   while (1);                              // repeat until Quit
   }

References

PowerPC 601 RISC Microprocessor User's Manual, Motorola MPC601UM/AD Rev 1, 1993.


The first three authors are undergraduate students in Computer Science at Université Laval in Québec, Canada. This work was done as an assignment in a course on Computer Architecture given by the fourth author.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Navicat Premium Essentials 12.1.25 - Pro...
Navicat Premium Essentials is a compact version of Navicat which provides basic and necessary features you will need to perform simple administration on a database. It supports the latest features... Read more
Sketch 58 - Design app for UX/UI for iOS...
Sketch is an innovative and fresh look at vector drawing. Its intentionally minimalist design is based upon a drawing space of unlimited size and layers, free of palettes, panels, menus, windows, and... Read more
ClipGrab 3.8.5 - Download videos from Yo...
ClipGrab is a free downloader and converter for YouTube, Vimeo, Facebook and many other online video sites. It converts downloaded videos to MPEG4, MP3 or other formats in just one easy step Version... Read more
Dash 4.6.6 - Instant search and offline...
Dash is an API documentation browser and code snippet manager. Dash helps you store snippets of code, as well as instantly search and browse documentation for almost any API you might use (for a full... Read more
FotoMagico 5.6.8 - Powerful slideshow cr...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
Civilization VI 1.2.4 - Next iteration o...
Sid Meier’s Civilization VI is the next entry in the popular Civilization franchise. Originally created by legendary game designer Sid Meier, Civilization is a strategy game in which you attempt to... Read more
Skype 8.52.0.138 - Voice-over-internet p...
Skype allows you to talk to friends, family and co-workers across the Internet without the inconvenience of long distance telephone charges. Using peer-to-peer data transmission technology, Skype... Read more
Bookends 13.2.6 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
BusyContacts 1.4.0 - Fast, efficient con...
BusyContacts is a contact manager for OS X that makes creating, finding, and managing contacts faster and more efficient. It brings to contact management the same power, flexibility, and sharing... Read more
Chromium 77.0.3865.75 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 77.0.3865.75: A list of changes is available... Read more

Latest Forum Discussions

See All

Yoozoo Games launches Saint Seiya Awaken...
If you’re into your anime, you’ve probably seen or heard of Saint Seiya. Based on a shonen manga by Masami Kurumada, the series was massively popular in the 1980s – especially in its native Japan. Since then, it’s grown into a franchise of all... | Read more »
Five Nights at Freddy's AR: Special...
Five Nights at Freddy's AR: Special Delivery is a terrifying new nightmare from developer Illumix. Last week, FNAF fans were sent into a frenzy by a short teaser for what we now know to be Special Delivery. Those in the comments were quick to... | Read more »
Rush Rally 3's new live events are...
Last week, Rush Rally 3 got updated with live events, and it’s one of the best things to happen to racing games on mobile. Prior to this update, the game already had multiplayer, but live events are more convenient in the sense that it’s somewhat... | Read more »
Why your free-to-play racer sucks
It’s been this way for a while now, but playing Hot Wheels Infinite Loop really highlights a big issue with free-to-play mobile racing games: They suck. It doesn’t matter if you’re trying going for realism, cart racing, or arcade nonsense, they’re... | Read more »
Steam Link Spotlight - The Banner Saga 3
Steam Link Spotlight is a new feature where we take a look at PC games that play exceptionally well using the Steam Link app. Our last entry talked about Terry Cavanaugh’s incredible Dicey Dungeons. Read about how it’s a great mobile experience... | Read more »
PSA: GRIS has some issues
You may or may not have seen that Devolver Digital just released GRIS on the App Store, but we wanted to do a quick public service announcement to say that you might not want to hop on buying it just yet. The puzzle platformer has come to small... | Read more »
Combo Quest (Games)
Combo Quest 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Combo Quest is an epic, time tap role-playing adventure. In this unique masterpiece, you are a knight on a heroic quest to retrieve... | Read more »
Hero Emblems (Games)
Hero Emblems 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ** 25% OFF for a limited time to celebrate the release ** ** Note for iPhone 6 user: If it doesn't run fullscreen on your device... | Read more »
Puzzle Blitz (Games)
Puzzle Blitz 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Puzzle Blitz is a frantic puzzle solving race against the clock! Solve as many puzzles as you can, before time runs out! You have... | Read more »
Sky Patrol (Games)
Sky Patrol 1.0.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.1 (iTunes) Description: 'Strategic Twist On The Classic Shooter Genre' - Indie Game Mag... | Read more »

Price Scanner via MacPrices.net

Preorder your Apple Watch Series 5 today at A...
Amazon has Apple Watch Series 5 GPS models available for preorder and on sale today for $15 off Apple’s MSRP. Shipping is free and starts on September 20th: – 40mm Apple Watch Series 5 GPS: $384.99 $... Read more
21″ iMacs on sale for $100 off Apple’s MSRP,...
B&H Photo has new 21″ Apple iMacs on sale for $100 off MSRP with models available starting at $999. These are the same iMacs offered by Apple in their retail and online stores. Overnight shipping... Read more
2018 4 and 6-Core Mac minis on sale today for...
Apple resellers are offering new 2018 4-Core and 6-Core Mac minis for $100-$150 off MSRP for a limited time. B&H Photo has the new 2018 4-Core and 6-Core Mac minis on sale for up to $150 off... Read more
Save $150-$250 on 10.2″ WiFi + Cellular iPads...
Verizon is offering $150-$250 discounts on Apple’s new 10.2″ WiFi + Cellular iPad with service. Buy the iPad itself and save $150. Save $250 on the purchase of an iPad along with an iPhone. The fine... Read more
Apple continues to offer 13″ 2.3GHz Dual-Core...
Apple has Certified Refurbished 2017 13″ 2.3GHz Dual-Core non-Touch Bar MacBook Pros available starting at $1019. An standard Apple one-year warranty is included with each model, outer cases are new... Read more
Apple restocks 2018 MacBook Airs, Certified R...
Apple has restocked Certified Refurbished 2018 13″ MacBook Airs starting at only $849. Each MacBook features a new outer case, comes with a standard Apple one-year warranty, and is shipped free. The... Read more
Sunday Sale! 2019 27″ 5K 6-Core iMacs for $20...
B&H Photo has the new 2019 27″ 5K 6-Core iMacs on stock today and on sale for up to $250 off Apple’s MSRP. Overnight shipping is free to many locations in the US. These are the same iMacs sold by... Read more
Weekend Sale! 2019 13″ MacBook Airs for $200...
Amazon has new 2019 13″ MacBook Airs on sale for $200 off Apple’s MSRP, with prices starting at $899, each including free shipping. Be sure to select Amazon as the seller during checkout, rather than... Read more
2019 15″ MacBook Pros now on sale for $350-$4...
B&H Photo has Apple’s 2019 15″ 6-Core and 8-Core MacBook Pros on sale today for $350-$400 off MSRP, starting at $2049, with free overnight shipping available to many addresses in the US: – 2019... Read more
Buy one Apple Watch Series 5 at Verizon, get...
Buy one Apple Watch Series 5 at Verizon, and get a second Watch for 50% off. Plus save $10 on your first month of service. The fine print: “Buy Apple Watch, get another up to 50% off on us. Plus $10... Read more

Jobs Board

*Apple* Mobility Pro-Store 149 - Best Buy (U...
**731985BR** **Job Title:** Apple Mobility Pro-Store 149 **Job Category:** Store Associates **Location Number:** 000149-Towson-Store **Job Description:** At Best Read more
Student Employment (Blue *Apple* Cafe) Spri...
Student Employment (Blue Apple Cafe) Spring 2019 Penn State University Campus/Location: Penn State Brandywine Campus City: Media, PA Date Announced: 12/20/2018 Date Read more
Windows/ *Apple* Technical Support Engineer...
Windows/ Apple Technical Support Engineer McLean , VA , US Apply + Be you + Be Booz Allen + Be empowered + Learn More Job Description Location: McLean, VA, US Job Read more
*Apple* Mobile Master - Best Buy (United Sta...
**725617BR** **Job Title:** Apple Mobile Master **Job Category:** Store Associates **Location Number:** 001095-Chesterfield-Store **Job Description:** **What does a Read more
Geek Squad *Apple* Master Consultation Agen...
**732415BR** **Job Title:** Geek Squad Apple Master Consultation Agent **Job Category:** Services/Installation/Repair **Location Number:** 000425-Hickory-Store **Job Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.