TweetFollow Us on Twitter

Fast Square Root Calc

Volume Number: 14 (1998)
Issue Number: 1
Column Tag: Assembler Workshop

Fast Square Root Calculation

by Guillaume Bédard, Frédéric Leblanc, Yohan Plourde and Pierre Marchand, Québec, Canada

Optimizing PowerPC Assembler Code to beat the Toolbox


The calculation of the square root of a floating-point number is a frequently encountered task. However, the PowerPC processors don't have a square root instruction. The implementation presented here performs the square root of a double-precision number over the full range of representation of the IEEE 754 standard for normalized numbers (from 2.22507385851E-308 to 1.79769313486E308) with an accuracy of 15 or more decimal digits. It is very fast, at least six times faster than the Toolbox ROM call.

Theory of Operation

A floating point number has three components: a sign, a mantissa and an exponential part. For example, the number +3.5 x 10^4 (35 000) has a plus sign, a mantissa of 3.5 and an exponential part of 104. The mantissa consists of an integer part and a fractional part f.

A double precision number in IEEE 754 format has the same components: a sign bit s, an 11-bit exponent e and a 52 bit fraction f. The exponential part is expressed in powers of 2 and the exponent is biased by adding 1023 to the value of e. The mantissa is normalized to be of the form 1.f. Since the integer part of the normalized mantissa is always 1, it doesn't have to be included in the representation. The number is thus represented as follows: (-1)s x 1.f x 2^e+1023.

For example, the number 5.0 can be expressed in binary as 101.0, which means 101.0 x 2^0, which in turn is equal to 1.010 x 2^2, obtained by dividing the mantissa by 4 and multiplying 2^0 by 4. Therefore, the normalized mantissa is 1.010 and the exponent 2. Fraction f is then .01000000.... The biased exponent is obtained by adding 1023 to e and is 1025, or 10000000001 in binary. The double precision IEEE representation of 5.0 is finally:

|  0 | 10000000001 | 01000000000000000000000000000000000000000000000000000  |

or 4014000000000000 in hexadecimal notation for short.

First Approximation

Given this representation, a first approximation to the square root of a number is obtained by dividing the exponent by 2. If the number is an even power of 2 such as 16 or 64, the exact root is obtained. If the number is an odd power of 2 such as 8 or 32, 1/SQRT(2) times the square root is obtained. In general, the result will be within a factor SQRT(2) of the true value.

Refining the Approximation

The Newton-Raphson method is often used to obtain a more accurate value for the root x of a function f(x) once an initial approximation x0 is given:


This becomes, in the case of the square root of n, = x2 - n:where f(x)


An excellent approximation to the square root starting with the initial approximation given above is obtained within 5 iterations using equation [2]. This algorithm is already pretty fast, but its speed is limited by the fact that each iteration requires a double-precision division which is the slowest PowerPC floating-point instruction with 32 cycles on the MPC601 (Motorola, 1993).

Eliminating Divisions

Another approach is to use equation [1] with the function.

In this case, equation [1] becomes:


There is still a division by n, but since n is constant (it's the original number whose root we want to find), it can be replaced by multiplying by 1/n, which can be calculated once before the beginning of the iteration process. The five 32-cycle divisions are thus replaced by this single division followed by 5 much faster multiplications (5 cycles each). This approach is approximately three times faster than the preceding one. However, care must be taken for large numbers since the term in x02 can cause the operation to overflow.

Use of a table

Finally, an approach that is even faster consists in using a table to obtain a more accurate first approximation. In order to do so, the range of possible values of fraction f (0 to ~1) is divided into 16 sub-ranges by using the first 4 bits of f as an index into a table which contains the first two coefficients of the Taylor expansion of the square root of the mantissa (1.0 to ~2) over that sub-range.

The Taylor expansion is given in general by:


the first two terms of which yield, in the case where f(x) = SQRT(x):


The square root of x is thus approximated by 16 straight-line segments. The table therefore contains the values of

A =

and B =

for each of the 16 sub-ranges as shown in Figure 1. This first approximation gives an accuracy of about 1.5 %.

Figure 1. Approximation by straight line segment.

To reach the desired accuracy of 15 digits, equation [2] is applied twice to the result of equation [5]. To avoid having to perform two divisions by repeating the iteration, the two iterations are folded together as follows, which contains only one division:



In order to perform these calculation, the exponent of x and n is reduced to -1 (1022 biased), so that floating-point operations apply only to the values of the mantissa and don't overflow if the exponent is very large. The value of these numbers will therefore be in the range 0.5 to 1.0 since the mantissa is in the range 1.0 to 2.0. If the original exponent was odd, the mantissa is multiplied by SQRT(2) before applying equation [6].

Finally, the original exponent divided by two is restored at the end.

The Code

The SQRoot function shown in Listing 1 has been implemented in CodeWarrior C/C++ version 10.

Listing 1: SQRoot.c

// On entry, fp1 contains a positive number between 2.22507385851E-308
// and 1.79769313486E308. On exit, the result is in fp1.

asm long double SQRoot(long double num);   // prototype

float Table[35] = {
0.353553390593, 0.707106781187, 0.364434493428, 0.685994340570,
0.375000000000, 0.666666666667, 0.385275875186, 0.648885684523,
0.395284707521, 0.632455532034, 0.405046293650, 0.617213399848,
0.414578098794, 0.603022689156, 0.423895623945, 0.589767824620,
0.433012701892, 0.577350269190, 0.441941738242, 0.565685424949,
0.450693909433, 0.554700196225, 0.459279326772, 0.544331053952,
0.467707173347, 0.534522483825, 0.475985819116, 0.525225731439,
0.484122918276, 0.516397779494, 0.492125492126, 0.508000508001,
1.414213562373, 0.000000000000, 0.000000000000 };

asm long double Sqrt(long double num) {

   lwz   r3,Table(rtoc)      // address of Table[]
   lhz   r4,24(sp)           // load
                             // Sign(1)+Exponent(11)+Mantissa(4)
   andi.   r5,r4,0xF         // keep only Mantissa(4)
   ori   r5,r5,0x3FE0        // exponent = -1+BIAS = 1022
   sth   r5,24(sp)           // save reduced number

   rlwinm   r5,r5,3,25,28    // take 8*Mantissa(4) as index
   lfd   fp1,24(sp)          // load reduced number
   lfsux   fp4,r5,r3         // load coefficient A
   lfs   fp5,4(r5)           // load coefficient B
   lfs   fp3,128(r3)         // load SQRT(2)
   fmr   fp2,fp1             // copy reduced number
   rlwinm.   r5,r4,31,18,28  // divide exponent by 2
   beq   @@2                 // if (exponent == 0) then done

   fmadd   fp2,fp2,fp5,fp4   // approximation SQRT(x) = A + B*x
   andi.   r4,r4,0x10        // check if exponent even
   beq   @@1                 // if (exponent even) do iteration
   fmul   fp2,fp2,fp3        // multiply reduced number by SQRT(2)
   fadd   fp1,fp1,fp1        // adjust exponent of original number

@@1:   fadd   fp3,fp2,fp2    // 2*x
   fmul   fp5,fp2,fp1        // x*n
   fadd   fp3,fp3,fp3        // 4*x
   fmadd   fp4,fp2,fp2,fp1   // x*x + n
   fmul   fp5,fp3,fp5        // 4*x*x*n
   fmul   fp6,fp2,fp4        // denominator = x*(x*x + n)
   fmadd   fp5,fp4,fp4,fp5   // numerator = (x*x + n)*(x*x + n) +
                             // 4*x*x*n
   fdiv   fp1,fp5,fp6        // double precision division
   andi.   r5,r5,0x7FF0      // mask exponent 
   addi   r5,r5,0x1FE0       // rectify new exponent

@@2:   sth   r5,132(r3)      // save constant C (power of 2) 
   lfd   fp2,132(r3)         // load constant C
   fmul   fp1,fp1,fp2        // multiply by C to replace exponent
   blr                       // done, the result is in fp1


The code presented above runs in less than 100 cycles, which means less than 1 microsecond on a 7200/75 Power Macintosh and is more than six times faster than the ROM code. The code could be modified to make use of the floating reciprocal square root estimate instruction (frsqrte) that is available on the MPC603 and MPC604 processors, and which has an accuracy of 5 bits. It is not available on the MPC601, however. The method used here could also be used to evaluate other transcendental functions.

Performance was measured by running the code a thousand times and calling a simple timing routine found in (Motorola, 1993), that we called myGetTime(). It uses the real-time clock of the MPC 601 processor (RTCU and RTCL registers) and is shown in Listing 2. The routine would have to be modified to run on MPC603 or MPC604 processors, since they don't have the same real-time clock mechanism.

The code doesn't support denormalized numbers (below 2.22507385851E-308). This could easily be implemented albeit at the cost of a slight reduction in performance.

Listing 2: myGetTime.c

asm long myGetTime()
lp:    mfspr   r4,4           // RTCU
   mfspr   r3,5               // RTCL
   mfspr   r5,4               // RTCU again
    cmpw      r4,r5           // if RTCU has changed, try again
    bne      lp
    rlwinm   r3,r3,25,7,31    // shift right since bits 25-31 are
                              // not used
    blr                       // the result is in r3. 1 unit is
                              // worth 128 ns.

To run the code, a very simple interface using the SIOUX library is provided in Listing 3.

Listing 3: main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fp.h>

void main()
   long double   num, num2;
   long startTime, endTime, time;
   short i;

   do {
   printf("%2s","> ");           // caret
   scanf("%Lf",&num);           // read long double
   if (num < 0.0) num = 0.0;     // replace by 0.0 if negative
   startTime = myGetTime();
   for (i = 0; i < 1000; i++)    // repeat 1000 times
   num2 = SQRoot(num);              // call our function
   endTime = myGetTime();
   time = endTime - startTime;
   if (num > 1e-6 && num < 1e7)
      printf("%7s%Lf\n","root = ",num2);   // show result
      printf("%7s%Le\n","root = ",num2);
   printf("%7s%d\n","time = ", time);      // show elapsed time
   while (1);                              // repeat until Quit


PowerPC 601 RISC Microprocessor User's Manual, Motorola MPC601UM/AD Rev 1, 1993.

The first three authors are undergraduate students in Computer Science at Université Laval in Québec, Canada. This work was done as an assignment in a course on Computer Architecture given by the fourth author.


Community Search:
MacTech Search:

Software Updates via MacUpdate

Viber 11.9.1 - Send messages and make fr...
Viber lets you send free messages and make free calls to other Viber users, on any device and network, in any country! Viber syncs your contacts, messages and call history with your mobile device, so... Read more
Vallum 3.3.2 - $15.00
Vallum is a little tool that helps you monitor and block apps connections and throttle apps bandwidth. It is able to intercept connections at the application layer, and hold them while you decide... Read more
Microsoft OneNote 16.31 - Free digital n...
OneNote is your very own digital notebook. With OneNote, you can capture that flash of genius, that moment of inspiration, or that list of errands that's too important to forget. Whether you're at... Read more
Apple Pages 8.2.1 - Apple's word pr...
Apple Pages is a powerful word processor that gives you everything you need to create documents that look beautiful. And read beautifully. It lets you work seamlessly between Mac and iOS devices, and... Read more
Numbers 6.2.1 - Apple's spreadsheet...
With Apple Numbers, sophisticated spreadsheets are just the start. The whole sheet is your canvas. Just add dramatic interactive charts, tables, and images that paint a revealing picture of your data... Read more
f.lux 39.9873 - Adjusts the color of you...
f.lux makes the color of your computer's display adapt to the time of day, warm at night and like sunlight during the day. Ever notice how people texting at night have that eerie blue glow? Or wake... Read more
Deeper 2.5.0 - Enable hidden features in...
Deeper is a personalization utility for macOS which allows you to enable and disable the hidden functions of the Finder, Dock, QuickTime, Safari, iTunes, login window, Spotlight, and many of Apple's... Read more
NTFS 15.5.71 - Provides full read and wr...
NTFS breaks down the barriers between Windows and macOS. Paragon NTFS effectively solves the communication problems between the Mac system and NTFS. Write, edit, copy, move, delete files on NTFS... Read more
MTR - The Mac's oldest and...
MTR (was MacTheRipper)--the Mac's oldest and smartest DVD-backup app. MTR - the complete toolbox, not a one-trick, point-and-click extractor. MTR is intended for making fair-use, backup copies of... Read more
Keynote 9.2.1 - Apple's presentatio...
Easily create gorgeous presentations with the all-new Keynote, featuring powerful yet easy-to-use tools and dazzling effects that will make you a very hard act to follow. The Theme Chooser lets you... Read more

Latest Forum Discussions

See All

Black Desert Mobile gets an official rel...
Pearl Abyss has just announced that its highly-anticipated MMO, Black Desert Mobile, will launch globally for iOS and Android on December 11th. [Read more] | Read more »
Another Eden receives new a episode, cha...
Another Eden, WFS' popular RPG, has received another update that brings new story content to the game alongside a few new heroes to discover. [Read more] | Read more »
Overdox guide - Tips and tricks for begi...
Overdox is a clever battle royale that changes things up by adding MOBA mechanics and melee combat to the mix. This new hybrid game can be quite a bit to take in at first, so we’ve put together a list of tips to help you get a leg up on the... | Read more »
Roterra Extreme - Great Escape is a pers...
Roterra Extreme – Great Escape has been described by developers Dig-It Games as a mini-sequel to their acclaimed title Roterra: Flip the Fairytale. It continues that game's tradition of messing with which way is up, tasking you with solving... | Read more »
Hearthstone: Battlegrounds open beta lau...
Remember earlier this year when auto battlers were the latest hotness? We had Auto Chess, DOTA Underlords, Chess Rush, and more all gunning for our attention. They all had their own reasons to play, but, at least from where I'm standing, most... | Read more »
The House of Da Vinci 2 gets a new gamep...
The House of Da Vinci launched all the way back in 2017. Now, developer Blue Brain Games is gearing up to deliver a second dose of The Room-inspired puzzling. Some fresh details have now emerged, alongside the game's first official trailer. [Read... | Read more »
Shoot 'em up action awaits in Battl...
BattleBrew Productions has just introduced another entry into its award winning, barrelpunk inspired, BattleSky Brigade series. Whilst its previous title BattleSky Brigade TapTap provided fans with idle town building gameplay, this time the... | Read more »
Arcade classic R-Type Dimensions EX blas...
If you're a long time fan of shmups and have been looking for something to play lately, Tozai Games may have just released an ideal game for you on iOS. R-Type Dimensions EX brings the first R-Type and its sequel to iOS devices. [Read more] | Read more »
Intense VR first-person shooter Colonicl...
Our latest VR obsession is Colonicle, an intense VR FPS, recently released on Oculus and Google Play, courtesy of From Fake Eyes and Goboogie Games. It's a pulse-pounding multiplayer shooter which should appeal to genre fanatics and newcomers alike... | Read more »
PUBG Mobile's incoming update bring...
PUGB Mobile's newest Royale Pass season they're calling Fury of the Wasteland arrives tomorrow and with it comes a fair chunk of new content to the game. We'll be seeing a new map, weapon and even a companion system. [Read more] | Read more »

Price Scanner via

New 2019 16″ MacBook Pros on sale for $100 of...
Apple Authorized Reseller Adorama has new 2019 16″ MacBook Pros on sale today for $100 off Apple’s MSRP, each including free shipping. In addition, Adorama charges sales tax for NY & NJ residents... Read more
Apple Watch Series 3 GPS models on sale for l...
Amazon has Apple Watch Series 3 GPS models on sale starting at only $179. There prices are the lowest we’ve ever seen for these models from any Apple reseller. Choose Amazon as the seller rather than... Read more
iOS Bug In Facebook News Feed Lets Device Ca...
NEWS: 11.15.19- Users of the Facebook social media platform’s mobile app running on iOS devices won’t, like, this piece of news one bit in where a bug in the News Feed gave access to the camera... Read more
16″ MacBook Pros on sale! Preorder at Amazon...
Apple’s new 16″ MacBook Pros were only introduced yesterday, but Amazon is already offering a $100 discount on preorders. Prices for the base 6-Core 16″ MacBook Pros start at $2299: – 2019 16″ 2.6GHz... Read more
Use our exclusive MacBook Price Trackers to f...
Our Apple award-winning MacBook price trackers are the best place to look for the best sales & lowest prices on new and clearance MacBook Airs and MacBook Pros–including Apple’s new 16″ MacBook... Read more
New November Verizon iPhone deal: Get an iPho...
Verizon has the 64GB iPhone Xr on sale for 50% off for a limited time, plus they will include a free $200 prepaid MasterCard and a free Amazon Echo Dot. That reduces their price for the 64GB iPhone... Read more
Apple cuts prices on clearance, refurbished 2...
Apple has clearance 2018 15″ 6-Core Touch Bar MacBook Pros, Certified Refurbished, now available starting at only $1829. Each model features a new outer case, shipping is free, and an Apple 1-year... Read more
Up to $450 price drop on clearance 15″ MacBoo...
B&H Photo has dropped prices Apple’s 2019 15″ 6-Core and 8-Core MacBook Pros by $400-$450 off original MSRP, starting at $1999, with free overnight shipping available to many addresses in the US... Read more
Here’s how to save $200 on Apple’s new 16″ Ma...
Apple has released details of their Education discount associated with the new 2019 16″ 6-Core and 8-Core MacBook Pros. Take $200 off the price of the new 8-Core model (now $2599) and $200 off the 16... Read more
Price drop! 2019 15″ 2.6GHz 6-Core MacBook Pr...
Focus Camera has dropped their price for clearance 2019 15″ 2.6GHz 6-Core Space Gray MacBook Pros by $400 to $1999 shipped. Apple’s original MSRP for this model was $2399. Focus charges sales tax for... Read more

Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**746655BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Store NUmber or Department:** 002518-Atlantic Center-Store **Job Description:** Read more
*Apple* Mobility Pro - Best Buy (United Stat...
**744973BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Store NUmber or Department:** 000949-Rochester Hills-Store **Job Description:** Read more
AV Systems Engineer at *Apple* - Theorem, L...
Job Summary Apple Retail Technology is looking for an Audio Visual Systems Engineer to design and implement scalable, next-generation A/V solutions for Apple ?s Read more
Nurse Practitioner - Field Based (San Bernard...
Nurse Practitioner - Field Based (San Bernardino, CA, Apple Valley, Hesperia) **Location:** **United States** **New** **Requisition #:** PS30312 **Post Date:** 3 Read more
Best Buy *Apple* Computing Master - Best Bu...
**746510BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Store Associates **Store NUmber or Department:** 001407-Milford-Store **Job Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.