TweetFollow Us on Twitter

Sep 97 Challenge

Volume Number: 13 (1997)
Issue Number: 9
Column Tag: Programmer's Challenge

Programmer's Challenge

by Bob Boonstra, Westford, MA

Image Locator

Imagine yourself with a collection satellite images and the task of finding a particular item in those images. Rather than look for a needle in this image haystack manually, you might call on your PowerMac to narrow down the choices for you. We'll enlist the aid of our Programmer's Challenge participants to help you do that job quickly. The Challenge this month is to detect the presence of a target pattern inside a larger background image. Because the background has been detected by an imperfect sensor, there is noise present in the background image. Your code will need to detect the target in the background despite this noise.

The prototype for the code you should write is:

#define topLeft(r)    (((Point *) &(r))[0])

void InitTarget(
  BitMap pattern,    /* image to be detected */
  BitMap mask      /* bits in image that we care about */
);

long /* numFound */ ImageDetect(
  BitMap backgroundImage,  /* find the target image in backgroundImage */
  Point locations[],    /* return topLeft of matching locations here */
  long maxLocations,    /* max number of locations to return */
  float noise        /* allow this fraction of mismatched bits */
);

void CleanUp(void);  /* deallocate any memory allocated by InitTarget */

Image location will take place in two steps. First, your InitTarget routine will be called with the target pattern that you will be looking for. Next, the ImageDetect routine will be called multiple times with a different background image and an associated noise threshold. ImageDetect should locate all occurrences of the target in the background, allowing for mismatched bits up to the noise threshold, and return the location of the pattern matches. Finally, the CleanUp routine will be called to allow you to deallocate any memory allocated by InitTarget.

InitTarget will be called with two BitMaps that describe the target pattern to be detected. The pattern BitMap identifies bits that should be set to 1, and the mask BitMap describes the bits that you care about (1s and 0s). Any bits not in the mask are not part of the target image, and the corresponding values in the background image are to be ignored. InitTarget should process the target image as desired and allocate memory to remember it.

ImageDetect will then be called multiple times (5-10 on average for each call to InitTarget). You should locate each occurrence of the target image in backgroundImage and return the coordinate in the background of topLeft(pattern.bounds) in the locations array. The noise parameter describes the fraction of target bits where the backgroundImage is allowed to differ from the target and still be considered a match. Up to noise times the number of 1s in the mask, rounded down, bits may be mismatched. Normally, locations will be large enough to hold all of the matches found, but you should not return more than the maxLocations matches for which storage has been allocated. The pattern matches may be returned in any order. If the maxLocations limit is exceeded, the choice of which matches to report is yours. ImageDetect should return the number of matches found.

Other information: The bounds rectangle for the pattern and the mask will be identical. All bits set in the pattern will also be set in the mask (but not the converse). The backgroundImage will typically be the size of a large monitor (e.g., 1024x768, or 1600x1200).

This will be a native PowerPC Challenge, using the latest CodeWarrior environment. In keeping with tradition, September is assembly language month here at the Programmer's Challenge. Solutions may be coded in PowerPC or 68K assembly language, C, C++, or Pascal.

Finally, we should note that the Programmer's Challenge began its sixth year last month. During that time, the Challenge has changed development environments, moved from 68K to PowerPC, and expanded its selection of languages. We appreciate the participation of our readers, without which the Challenge would not be possible. Happy belated birthday, Programmer's Challenge.

Three Months Ago Winner

The June Challenge was to implement a Turing Machine, a finite state machine augmented with an infinite amount of external storage. Twenty people submitted entries, and 17 of those worked correctly. Congratulations to Ernst Munter (Kanata, Ontario) for submitting the fastest solution and returning to the Challenge winner's circle.

The key to success in this Challenge was being able to quickly find the rule that applied to the current machine state and the current input symbol. A variety of techniques were used to find the applicable rule. Hashing was used by many of the faster entries. Ernst uses either hashing or a simple lookup table, depending on memory availability. Others sorted the rules and used a binary search. The slower solutions typically used a brute force approach of simply searching linearly through the rule set.

I used two types of test cases to stress the solutions. The first case involved a Turing Machine of approximately 2300 rules that sorted an input tape with an alphabet of 30 symbols and tape lengths of about 100 symbols. This case required over 113,000 Turing Machine state changes. The second test case was a Universal Turing Machine. A UTM is an interesting creature. Its input tape has two parts, an encoded version of the rules (program) for another Turing Machine, which it is to execute, and the input tape for that emulated program. The tape also contains an area where the Universal TM maintains the state for the program being emulated. The UTM operates by looking up the rule (or program instruction) that applies given the current state of the machine being emulated, remembering that instruction while it moves to the current input for the emulated machine, and then executing that instruction. The Universal Turing Machine I used operated on a binary alphabet and consisted of 184 rules, operating on an input tape that described a simple unary addition machine. This test case required just under 240,000 state changes to execute.

The table below lists for each entry the execution times in milliseconds for the sort test case and the Universal Turing Machine case, total execution time, code and data sizes, and the programming language used. The number in parentheses after the entrant's name is the total number of Challenge points earned in all Challenges to date prior to this one.

NameTime1Time2Total TimeCodeDataLanguage
Ernst Munter (246) 28.1 29.3 57.6 920 8 C++
Russ Webb 30.9 33.0 64.2 1696 140 C
Devon Carew 33.4 35.6 79.5 976 28 C
Gary Beith (24) 39.6 39.9 86.9 592 32 C
Mason Thomas (4) 47.9 40.5 89.1 740 8 C
Kevin Cutts (57) 42.4 43.9 89.7 620 32 C++
Simon Holmes à Court 44.1 42.3 90.0 744 32 C++
Juerg Wullschleger 48.5 50.4 99.7 476 8 C
Daniel Harding 96.0 63.0 159.7 2612 406 C++
Zach Thompson 93.2 64.8 161.3 1076 48 C++
Gregory Cooper (54) 107.8 84.6 192.7 668 40 C
Graham Herrick 137.0 107.2 244.8 820 16 C
Andy Scheck (17) 3239.0 158.3 3397.0 212 8 C++
Charles Higgins (20) 3238.0 167.8 3406.0 276 8 C
David Whitney 4174.0 272.3 4449.0 19800 2745 C++
Bjorn Davidsson (6) 6565.0 165.6 6731.0 224 8 C++
Terry Noyes 6737.0 198.3 6936.0 200 8 C
R.B. 2736 99 C
S.A. 840 448 C
W.R. 1148 8 C++

Top 20 Contestants

Here are the Top Contestants for the Programmer's Challenge. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

RankNamePoints
1. Munter, Ernst 196
2. Gregg, Xan 83
3. Cooper, Greg 54
4. Lengyel, Eric 40
5. Boring, Randy 37
6. Lewis, Peter 32
7. Mallett, Jeff 30
8. Murphy, ACC 30
9. Larsson, Gustav 27
10. Antoniewicz, Andy 24
11. Nicolle, Ludovic 21
12. Picao, Miguel Cruz 21
13. Brown, Jorg 20
14. Day, Mark 20
15. Gundrum, Eric 20
16. Higgins, Charles 20
17. Slezak, Ken 20
18. Studer, Thomas 20
19. Karsh, Bill 19
20. Nevard, John 19

Here is Ernst's winning solution:

Turing.cp ® 1997 Ernst Munter

Problem Statement
Implement the engine for a Turing Machine, a state machine which, at each step, reads a symbol from a tape, consults a rule which is a function of the current state and the symbol. The rule specifies a new state, a symbol to output, and the direction in which to move the tape, or to halt.
Solution
I first try to build a lookup table as an index into the rules array. But this may require an "unreasonable" amount of memory.

First, I scan the rules to determine the amount of table memory required for a simple lookup index. If this appears to be too much, I go to plan B: a hashed index.

The hash table uses linear open addressing: when the table is built and an index location is needed which is already in use we have a collision. To resolve it, I scan linearly through the index array until a free location is found. The size of the index array is larger than the number of rules, so a free location will always be found.

Optimization of hash table lookup
The majority of rules will hash to unique index addresses.

Rules which hash to the same value can be seen as a sequence of index table entries, with the primary location containing the first rule address to be found.

When the Turing Machine is executing, any colliding rule that is encountered will have its index moved to the primary index location, on the assumption that it will be used again, and will then be found more quickly.

Assumptions
A minimum amount of table memory of 8K entries is always provided. But for larger rule sets, an index table that will occupy about 1/2 to 3/4 the amount of memory taken by the rules array itself may be allocated.

The memory allocated for the simple lookup table will be the number_of_states * number_of_symbols, rounded up to a power of 2, but not more than 8K entries, or 2 * number_of_rules, whichever is larger.

If the memory required for the simple index would exceed those rules, for example if there are a lot of holes in the symbol/state space, the hashed index is used.

The memory allocated for the hash index array will be the larger of 8K entries or 2 * number_of_rules, rounded up to the nearest power of 2.

For example, a rule set of up to 2K rules may result in a 32K byte index; a rule set of 50,000 rules which occupy 1M of rules memory may get an index table of 512K bytes.

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include "turing.h"

const enum {    // constants controlling min size of index
  EXPANSION  = 2,
  MIN_BITS   = 13,
  MIN_SIZE    = 1L<<MIN_BITS };  
  
typedef const TMRule* TMRulePtr;

Boolean TuringMachine(
  const TMRule theRules[],
  ulong numRules,
  ulong *theTape,
  ulong tapeLen,
  long rwHeadPos,
  TMMoveProc ReportMove
)  {
  TMRulePtr* index;
  ulong    state=0;
  ulong    symbol;
  int    direction;
  ulong*  tape=theTape+rwHeadPos;
  ulong*  tapeEnd=theTape+tapeLen;

  ulong    mask;
  TMRulePtr rule=theRules;

// The function contains 2 very similar sections,
// one section uses a plain lookup table for an index,
// the other uses a hash table.

// Try to construct a collision-free index of rule addresses

// compute table size
  ulong   maxState=rule->oldState;
  ulong   maxSym=rule->inputSymbol;
  ulong   minSym=rule->inputSymbol;
  rule++;
  for (int i=1;i<numRules;i++) {
    if (maxState<rule->oldState) maxState=rule->oldState;
    if (maxSym<rule->inputSymbol) maxSym=rule->inputSymbol;
    else
    if (minSym>rule->inputSymbol) minSym=rule->inputSymbol;
    rule++;
  }
  ulong numSyms=maxSym-minSym+1;
  ulong numStates=maxState+1;
  ulong numIndex=(numStates)*(numSyms);

  if ((numIndex<numStates)               // overflow
    || ((numIndex > MIN_SIZE)
    && (numIndex > EXPANSION*numRules)))  // too large
      goto try_hash;

// increase size to the next power of 2
  ulong dummy=1;
  while (numIndex) {
    numIndex>>=1;
    dummy<<=1;
  }
  numIndex=dummy;

// Allocate the table memory
  index=(TMRulePtr*)malloc(numIndex*sizeof(TMRulePtr));

// Always expect to get the memory, but just in case ...
  if (index==0)
    return FALSE;

// All unused index locations will remain 0
  memset(index,0,numIndex*sizeof(TMRulePtr));
  mask=numIndex-1;

// Scan the rules and populate the index array
  rule=theRules;
  for (int i=0;i<numRules;i++) {
    ulong addr=
      mask & (rule->oldState*numSyms+rule->inputSymbol);
    index[addr]=rule++;
  }
// Using the collision-free index table:
// Loop until the tape halts or we fail on error
  do {
      symbol=*tape;
      ulong addr=mask & (state*numSyms+symbol);
      rule=index[addr];
      if (rule == 0)    // illegal symbol, no rule
        break;
      symbol=rule->outputSymbol;
      state=rule->newState;
      direction=rule->moveDirection;

      ReportMove(symbol,state,MoveDir(direction));
      *tape=symbol;

      if (direction==kHalt) {
        free(index);
        return TRUE;  
    }  
    
      tape+=direction;
  } while ((tape>=theTape) && (tape<tapeEnd));
  free(index);
  return FALSE;

try_hash:
// Section 2
// If we get here, we could not make a simple table
// and have to go with a hash table, collisions are possible

// Find table size >= minimum size
  numIndex=MIN_SIZE;
  while (numIndex < EXPANSION*numRules) {
    numIndex*=2;
  }

// Allocate the table memory
  index=(TMRulePtr*)malloc(numIndex*sizeof(TMRulePtr));

// Always expect to get the memory, but just in case ...
  if (index==0)
    return FALSE;

// All unused index locations will remain 0
  memset(index,0,numIndex*sizeof(TMRulePtr));

  mask=numIndex-1;
  ulong   hFactor=1 | (numIndex/numStates);
  long     hDelta=1 | (hFactor>>1);

// Scan the rules and populate the index array
  rule=theRules;
  for (int i=0;i<numRules;i++) {
    ulong addr=
      mask & (rule->oldState*hFactor+rule->inputSymbol);

// if primary location is not empty: find next free location
    while (index[addr])   
      addr=mask & (addr+hDelta);
    index[addr]=rule++;
  }

// Using the hash index table:
// Loop until the tape halts or we fail on error.
// This loop is the same as the loop in the first section
// except we have to check for possible collisions with each rule..
  do {
      symbol=*tape;
      ulong addr=mask & (state*hFactor+symbol);
      rule=index[addr];
      if (rule == 0)          // illegal symbol, no rule
        break;
  
// check if we have the right rule, or a collision  
    if ((symbol != rule->inputSymbol)
      || (state != rule->oldState)) {  
       const TMRule* rule0=rule;
        ulong addr0=addr;

      do {          // resolve the collision
        addr=mask & (addr+hDelta);
        rule=index[addr];
          if (rule == 0) {      // could not find rule
        free(index);
      return FALSE;
      }  
  
      } while ((symbol != rule->inputSymbol)
      || (state != rule->oldState));
      index[addr]=rule0;        // move last-used rule
      index[addr0]=rule;        // up in chain
  
    }
  
// now we have the correct rule  
      symbol=rule->outputSymbol;
      state=rule->newState;
      direction=rule->moveDirection;

      ReportMove(symbol,state,MoveDir(direction));

      *tape=symbol;
      if (direction==kHalt) {    // normal stop
        free(index);
        return TRUE;  
        }

        tape+=direction;
  } while ((tape>=theTape) && (tape<tapeEnd));

  free(index);
  return FALSE;
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Six fantastic ways to spend National Vid...
As if anyone needed an excuse to play games today, I am about to give you one: it is National Video Games Day. A day for us to play games, like we no doubt do every day. Let’s not look a gift horse in the mouth. Instead, feast your eyes on this... | Read more »
Old School RuneScape players turn out in...
The sheer leap in technological advancements in our lifetime has been mind-blowing. We went from Commodore 64s to VR glasses in what feels like a heartbeat, but more importantly, the internet. It can be a dark mess, but it also brought hundreds of... | Read more »
Today's Best Mobile Game Discounts...
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Nintendo and The Pokémon Company's...
Unless you have been living under a rock, you know that Nintendo has been locked in an epic battle with Pocketpair, creator of the obvious Pokémon rip-off Palworld. Nintendo often resorts to legal retaliation at the drop of a hat, but it seems this... | Read more »
Apple exclusive mobile games don’t make...
If you are a gamer on phones, no doubt you have been as distressed as I am on one huge sticking point: exclusivity. For years, Xbox and PlayStation have done battle, and before this was the Sega Genesis and the Nintendo NES. On console, it makes... | Read more »
Regionally exclusive events make no sens...
Last week, over on our sister site AppSpy, I babbled excitedly about the Pokémon GO Safari Days event. You can get nine Eevees with an explorer hat per day. Or, can you? Specifically, you, reader. Do you have the time or funds to possibly fly for... | Read more »
As Jon Bellamy defends his choice to can...
Back in March, Jagex announced the appointment of a new CEO, Jon Bellamy. Mr Bellamy then decided to almost immediately paint a huge target on his back by cancelling the Runescapes Pride event. This led to widespread condemnation about his perceived... | Read more »
Marvel Contest of Champions adds two mor...
When I saw the latest two Marvel Contest of Champions characters, I scoffed. Mr Knight and Silver Samurai, thought I, they are running out of good choices. Then I realised no, I was being far too cynical. This is one of the things that games do best... | Read more »
Grass is green, and water is wet: Pokémo...
It must be a day that ends in Y, because Pokémon Trading Card Game Pocket has kicked off its Zoroark Drop Event. Here you can get a promo version of another card, and look forward to the next Wonder Pick Event and the next Mass Outbreak that will be... | Read more »
Enter the Gungeon review
It took me a minute to get around to reviewing this game for a couple of very good reasons. The first is that Enter the Gungeon's style of roguelike bullet-hell action is teetering on the edge of being straight-up malicious, which made getting... | Read more »

Price Scanner via MacPrices.net

Take $150 off every Apple 11-inch M3 iPad Air
Amazon is offering a $150 discount on 11-inch M3 WiFi iPad Airs right now. Shipping is free: – 11″ 128GB M3 WiFi iPad Air: $449, $150 off – 11″ 256GB M3 WiFi iPad Air: $549, $150 off – 11″ 512GB M3... Read more
Apple iPad minis back on sale for $100 off MS...
Amazon is offering $100 discounts (up to 20% off) on Apple’s newest 2024 WiFi iPad minis, each with free shipping. These are the lowest prices available for new minis among the Apple retailers we... Read more
Apple’s 16-inch M4 Max MacBook Pros are on sa...
Amazon has 16-inch M4 Max MacBook Pros (Silver and Black colors) on sale for up to $410 off Apple’s MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather than a third-party... Read more
Red Pocket Mobile is offering a $150 rebate o...
Red Pocket Mobile has new Apple iPhone 17’s on sale for $150 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Switch to Verizon, and get any iPhone 16 for...
With yesterday’s introduction of the new iPhone 17 models, Verizon responded by running “on us” promos across much of the iPhone 16 lineup: iPhone 16 and 16 Plus show as $0/mo for 36 months with bill... Read more
Here is a summary of the new features in Appl...
Apple’s September 2025 event introduced major updates across its most popular product lines, focusing on health, performance, and design breakthroughs. The AirPods Pro 3 now feature best-in-class... Read more
Apple’s Smartphone Lineup Could Use A Touch o...
COMMENTARY – Whatever happened to the old adage, “less is more”? Apple’s smartphone lineup. — which is due for its annual refresh either this month or next (possibly at an Apple Event on September 9... Read more
Take $50 off every 11th-generation A16 WiFi i...
Amazon has Apple’s 11th-generation A16 WiFi iPads in stock on sale for $50 off MSRP right now. Shipping is free: – 11″ 11th-generation 128GB WiFi iPads: $299 $50 off MSRP – 11″ 11th-generation 256GB... Read more
Sunday Sale: 14-inch M4 MacBook Pros for up t...
Don’t pay full price! Amazon has Apple’s 14-inch M4 MacBook Pros (Silver and Black colors) on sale for up to $220 off MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather... Read more
Mac mini with M4 Pro CPU back on sale for $12...
B&H Photo has Apple’s Mac mini with the M4 Pro CPU back on sale for $1259, $140 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – Mac mini M4 Pro CPU (24GB/512GB): $1259, $... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.