May 97 Challenge

Volume Number: 13 (1997)
Issue Number: 5
Column Tag: Programmer's Challenge

# Programmer's Challenge

By Bob Boonstra, Westford, MA

## Equation Evaluator

Those of you with PowerPCs have probably experimented with the Graphing Calculator application installed by default into the Apple Menu Items folder. As one of the first native applications for the PowerPC, the ability of the Graphing Calculator to display, and even animate 2-dimensional and 3-dimensional equations demonstrating the computing power of the PowerPC chip using native code. Underlying the display capability is code to parse an equation and rapidly compute the equation value for a range of input values. In this month's Challenge, you will produce code to perform these parsing and computation functions.

The prototype for the code you should write is:

```typedef unsigned long ulong;

typedef struct Values {
float first;    /* first equation input value */
float delta;    /* first+delta is second input value */
ulong howMany;  /* number of input values */
} Values;

typedef struct IntValues {
long first;/* first equation input value */
long delta;/* first+delta is second input value */
ulong howMany;  /* number of input values */
} IntValues;

typedef struct Results {
float equationResult;  /* result of equation given x,y,n */
float x; /* input value of x producing equationResult */
float y; /* input value of x producing equationResult */
long n;/* input value of x producing equationResult */
} Results;

void Evaluate(
char *equation, /* null-terminated equation to evaluate */
const Values *xP, /* equation input values for x */
const Values *yP, /* equation input values for y */
const IntValues *nP,/* equation input values for n */
Results w[]/* preallocated storage for equation values */
);

```

The input equation you are to evaluate will be provided as a null-terminated string in the 2-dimensional curve form (y=x+2x^2) or the 3-dimensional surface form (z=r cos(t) r sin(t)). You are to evaluate the equation for each of the values of x and n (in the case of a 2-dimensional equation) or x, y, and n (in the 3-dimensional case) provided and return the results in the preallocated array w. Each input is described as an initial value, a delta between each value and the next value, and the number howMany of values this input parameter is to assume. For example, if x is to take on the range of values [1.0, 1.1, 1.2, 2.0], then the x input could be described as:

``` xP->first = 1.0; xP->delta = .1; xP->howMany = 11

```

In the event that the equation does not contain one of the input parameters, that parameter should be ignored. There is no guarantee, for example, that nP->howMany will be zero when the input equation is not a function of n. Similarly, for a 2-dimensional equation, yP should be ignored.

The input equation might be written as a function of r and q, which should be calculated from x and y just as the Graphing Calculator does. Because the Graphing Calculator displays equations in ways that cannot be directly represented in a character string, the following symbols will be used in the equation to represent the operator or value indicated:

\ square root

/ division

^ exponentiation

p pi (p)

t theta (q)

. multiplication (also represented by juxtaposition)

Standard algebraic operator precedence should be used: exponentiation and square roots, then multiplication and division, then addition and subtraction, with left-to-right evaluation order for operators of equal precedence, and with parentheses used to override normal precedence. Arguments to trigonometric functions will always be surrounded by parentheses. Where the Graphing Calculator would use superscripts to indicate an extended exponent, parentheses will be used to make the meaning clear (e.g., e^(x+y)).

Store the equation result for the i-th combination of input values in w[i]->equationResult, and store the corresponding input values in w[i]->x, w[i]->y, and w[i]->n. The results may be stored in any order, but each input combination should appear exactly once. Results should be calculated with a minimum relative accuracy of .00001.

Even though the Graphing Calculator handles inequalities, multiple equations, differentiation, simplification, and expansion, your code does not need to deal with these cases. With these exceptions, your code should handle any equation that the Graphing Calculator can handle.

You may allocate any amount of dynamic storage up to 20MB, provided you deallocate the storage before returning. This will be a native PowerPC Challenge, using the CodeWarrior environment. Solutions may be coded in C, C++, or Pascal. Limited use of assembly language is also permitted, for anyone who might need it to access any dynamically generated code as part of their solution. The solution computing the correct results in the least amount of time will be the winner.

## Three Months Ago Winner

Congratulations to Jeff Mallett (Boulder Creek, CA) for producing the winning entry among ten submitted for the Othello Challenge. The objective was to win a round-robin Othello tournament, generalized to allow a board size between 8 and 64 (even numbers only), by as large a margin as possible, using as little computation time as possible. Tournament points were based on the margin of victory (the number of the winner's pieces showing at the end of the game minus the number of the opponent's pieces showing), and on the amount of computation time used, as follows:

[margin of victory - seconds of execution time / 30] / number of squares

The test cases included board sizes of 8x8 and 18x18, with each player competing against each other player twice, once playing first, with the black pieces, and once playing second, with the white pieces. I had planned to run some larger cases, but the first two still had not completed after running all night, so I had to stop at 18x18.

The solutions submitted varied considerably in complexity. The simplest (and fastest) solutions assigned values to each board position and made the move which maximized total value. Some solutions took that approach one step further and evaluated an opponent's potential responses and used a min/max approach to select the best move. Other solutions took credit for the number of pieces flipped on a move, with possible consideration for vulnerability to reversal on the next move. The winning solution used the most complicated approach, with lines of play being examined by a progressively deepening search.

The table below describes how each player fared against each other player. Each row shows the number of victories that player had against the player represented by the corresponding column. The final column shows the total number of victories won out of the 36 games played by each entry. As you can see, the second place entry by Randy Boring won nearly as many games as Jeff's winning entry, and actually beat the winning entry in one of the four games they played.

 Player Name 1 2 3 4 5 6 7 8 9 10 Wins 1 David Whitney - 1 4 2 4 2 2 0 0 4 19 2 Dan Farmer 3 - 4 2 4 4 4 1 0 4 26 3 David McGavran 0 0 - 2 4 1 1 0 1 1 10 4 Eric Hangstefer 2 2 2 - 4 0 1 0 0 3 14 5 Ken Slezak 0 0 0 0 - 0 0 0 0 0 0 6 Gregory Cooper 2 0 3 4 4 - 2 0 1 4 20 7 Mason Thomas 2 0 3 3 4 2 - 0 0 3 17 8 Randy Boring 4 3 4 4 4 4 4 - 1 4 32 9 Jeff Mallett 4 4 3 4 4 3 4 3 - 4 33 10 Ludovic Nicolle 0 0 3 1 4 0 1 0 0 - 9

The top two entries used significantly more computation time than the others. Jeff's winning entry used an average of more than one second per move (as you can see by examining the parameter settings in his code), but the larger margin of victory more than offset the execution time penalty.

The table below provides the code and data sizes for each of the solutions submitted, along with the total number of victories won in all of the test cases, and the cumulative score earned in those victories. Numbers in parenthesis after a person's name indicate that person's cumulative point total for all previous Challenges, not including this one.

 Player Code Data Wins Score Jeff Mallett (44) 6988 277 33 25.49 Randy Boring (27) 6908 64 32 20.37 Gregory Cooper (27) 4764 284 20 15.00 Dan Farmer 9240 96 26 14.27 David Whitney 7216 864 19 9.79 Eric Hangstefer 4124 80 14 9.72 Mason Thomas (4) 6976 57 17 9.01 David McGavran 3272 48 10 8.09 Ludovic Nicolle (21) 6436 120 9 6.33 Ken Slezak (20) 9256 77 0 0.00

## Sample Game

Here is one of the games played by the top two entries. Randy Boring's entry played Black, and Jeff Mallett's played White. The moves are given as the row and column selected by the programs, interspersed with an occasional view of the resulting board position.

 Move Black (Boring) White (Mallett) row col row col 1 2 3 4 2 2 5 2 2 4 3 2 5 3 5 4 4 5 3 6 5 2 2 3 2 6 2 6 5 3

```- - - - - - - -
- - - - - - - -
- - B B B B B -
- - W W W B W -
- - W W B B - -
- - B W - - - -
- - - - - - - -
- - - - - - - -
```

 7 3 1

...missing an opportunity to place a piece on the edge at (2,7), inviting (1,7) as a response by white, in hope of moving to (0,7)

 5 4 8 4 1 1 5 9 3 7
```- - - - - - - -
- - - - - W - -
- - B B B W B -
- B B B B B B B
- B B B B W - -
- - B W W - - -
- - - - - - - -
- - - - - - - -
```

Black occupies the first edge square.

 2 7 10 1 7 1 3 11 1 2 4 6 12 0 3 5 5 13 6 2 0 2

```- - W B - - - -
- - B W - W - B
- - B B W W B B
- B B W B B W B
- B B W B W W -
- - B B W W - -
- - B - - - - -
- - - - - - - -
```

Black's next move, to (0,1), prevents White from obtaining a foothold on one of the edges.

 14 0 1 2 1 15 3 0 2 0 16 1 0 5 0 17 5 1 6 3 18 0 4 4 0 19 6 0 7 2 20 1 4 1 6

```- B B B B - - -
B - B B B B W B
B W B B B W W B
B B B W B B W B
B B W W B W W -
B B W W W W - -
B - W W - - - -
- - W - - - - -
```

While white had other choices, none of them were very good, and this move to (1,6) gives Black a corner on the next move.

 21 0 7 6 1 22 7 0

Black takes a second corner ...

```- B B B B - - B
B - B B B B B B
B W B B B B W B
B W B W B B W B
B W W B B W W -
B W B W W W - -
B B W W - - - -
B - W - - - - -
```

 7 1 23 7 3 7 4 24 6 5 6 4 25 7 5 6 6 26 7 7

and a third

```- B B B B - - B
B - B B B B B B
B W B B B B W B
B B B W B B W B
B W B B B B W -
B B W B B B - -
B W B W W W B -
B B B B B B - B
```
 5 6 27 7 6 6 7 28 1 1

```- B B B B - - B
B B B B B B B B
B B B B B B W B
B B B W B B W B
B W B B B B W -
B B W W B W W -
B W B W W W W W
B B B B B B B B
```

Black could have done better with (5,7) at this point, instead of giving the final corner to White.

 0 0 29 4 7 5 7 30 - - 0 5 31 0 6
```W W W W W W B B
B W B B W B B B
B B W W B W W B
B B W W B W B B
B W B B B W B B
B B W W B W W W
B W B W W B W W
B B B B B B B B
```

Black wins by a score of 37 to 27, a relatively close game compared to many in the tournament.

## TOP 20 CONTESTANTS

Here are the point totals for the Top Contestants in the Programmer's Challenge. The numbers below include points awarded over the 24 most recent contests, including points earned by this month's entrants.

Rank Name Points Rank Name Points

1. Munter, Ernst 184 11. Cutts, Kevin 21

2. Gregg, Xan 114 12. Nicolle, Ludovic 21

3. Larsson, Gustav 47 13. Picao, Miguel Cruz 21

4. Lengyel, Eric 40 14. Brown, Jorg 20

5. Boring, Randy 37 15. Gundrum, Eric 20

6. Cooper, Greg 34 16. Higgins, Charles 20

7. Lewis, Peter 32 17. Kasparian, Raffi 20

8. Mallett, Jeff 27 18. Slezak, Ken 20

9. Antoniewicz, Andy 24 19. Studer, Thomas 20

10. Beith, Gary 24 20. Karsh, Bill 19

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

 1st place 20 points 5th place 2 points 2nd place 10 points finding bug 2 points 3rd place 7 points suggesting Challenge 2 points 4th place 4 points

Here is Jeff's winning solution:

## Jello.c An nxn Othello program in C

*Copyright 1997 Jeff Mallett

```/*
*  Uses alpha-beta search with iterative deepening, transposition tables,
*  extension for solving, futility cut-off, a simplistic selectivity, etc.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define MY_ASSERT(b)

Engine Parameters

// Extensions/Pruning
#define kFullDepthPlies  2 // # of full-depth plies before selectivity
#define kSolveThreshold  4 // Plies extension for solving whole board
#define kMinimumSafeDisks3 // Minimum disks to have and still be safe
#define kFutilityScore   kCorner
// Score above beta to trigger futility cut-off
#define kWipeOutExtension   2
// Extend a ply if opponent doesn't have more disks than this

// Average move time in 60ths of a second
#define kOpeningMoveTime 50// In the opening
#define kMoveTime 150  // Normally
#define kSolveMoveTime   800 // When trying to solve

// Scoring Parameters
#define kFinalDisk50// per disk on board at the end
#define kTooFewDisks-50  // per disk under threshold

Constants/Macros
#define kInfinity110000000L
#define kBestPossible100000000L

// Directions (if se increases both x and y):
// 7  6  5  4  3  2  1  0
// NE SW NW SE  N  S  W  E  (opposites are adjacent)
enum { DIR_E = 0, DIR_W, DIR_S, DIR_N,
DIR_SE, DIR_NW, DIR_SW, DIR_NE };
enum { E  = 0x0001,
W  = 0x0002,
S  = 0x0004,
N  = 0x0008,
SE = 0x0010,
NW = 0x0020,
SW = 0x0040,
NE = 0x0080,

E_BORDER  = 0x0100,
W_BORDER  = 0x0200,
S_BORDER  = 0x0400,
N_BORDER  = 0x0800,
SE_BORDER = 0x1000,
NW_BORDER = 0x2000,
SW_BORDER = 0x4000,
NE_BORDER = 0x8000
};

// Array of squares on the board (up to 66 x 66 squares)
// Each square has:
// 1st 8 bits - In this direction there's a BLACK disk that can be flipped by WHITE
#define ADJACENCY0x000000FF // Adjacent to disk in 8 directions
#define BORDER_ADJACENCY  0x0000FF00 // Adjacent to border in 8 directions
#define WHITE    0x00010000 // Is White disk here?
#define BLACK    0x00020000 // Is Black disk here?
#define COLOR_BITS 0x00030000 // Mask: Is disk here?
#define BORDER_BIT 0x00040000 // Is this border square?
#define COLOR_BORDER_BITS 0x00070000 // Mask: Is border or disk here?
#define BAD_BIT  0x00080000 // X or C square
#define EMPTYADJ_BITS0xFFF00000    /* Top 12 bits (0-4095) */

#define COLOR_SHIFT16

#define IS_NOT_EMPTY(z)   ((z) & COLOR_BORDER_BITS)
#define IS_EMPTY(z)!IS_NOT_EMPTY(z)
#define HAS_DISK(z)((z) & COLOR_BITS)
#define HAS_NO_DISK(z)    !HAS_DISK(z)
#define IS_BORDER(z) ((z) & BORDER_BIT)
#define IS_ON_BOARD(z)    !IS_BORDER(z)
#define IS_EDGE(z) ((z) & BORDER_ADJACENCY)
#define IS_CORNER(z) (gCountZeros[((z) & BORDER_ADJACENCY) \
>> BORDER_ADJACENCY_SHIFT] == 3)

#define OPPONENT(side)    ((side) ^ COLOR_BITS)

#define XY2INDEX(x, y)    ((y) * gRealBoardSize + (x))

#define COUNT_EMPTIES(z) \
gCountZeros[ ((z) | ((z) >> \

#define DIR_BIT(dir) (1L << (dir))
#define OPP_DIR_BIT(dir)  gOppDirBit[dir]

#define SET_EMPTYADJ_INDEX(pSq, index) \
*(pSq) = (*(pSq) & ~EMPTYADJ_BITS) | EMPTYADJ_BIT(index)

// Add to end of list

// Swap entry in list with end entry and shrink list
#define REMOVE_FROM_EMPTYADJ(pSq) { \
long i = GET_EMPTYADJ_INDEX(pSq); \
gEmptyAdj[i] = p; \
}

#define PUSH(x)  *(gChangesEnd++) = (x)
#define START_SAVE PUSH(0L)
#define PUSH_SQ(pSq) \
{ PUSH(*(pSq)); PUSH((unsigned long)(pSq)); }
#define POP *(-gChangesEnd)
#define TOP *gChangesEnd

typedef unsigned long * PSQUARE;
typedef long SCORE;

#define USE_HASH
#ifdef USE_HASH
#define kHashTableMask   0x7FFF // 32K entry table
#define kHashTableSize   (kHashTableMask + 1)
#define kSwitchSideHash  0x87654321
enum { INVALID = 0, VALID = 1,
LOWER_BOUND = 2, UPPER_BOUND = 3 };

typedef struct SHash {
unsigned long HashValue;
SCORE Score;
PSQUARE BestMove;
short Depth;
short Type;
} SHash;

static SHash *gHashTable;
static long gWhiteHashOffset, gBlackHashOffset,
gFlipHashOffset;
static unsigned long gHashValue;
#endif

Prototypes
Boolean /*legalMove*/ Othello (
long boardSize,    /* number of rows/columns in the game board */
long oppRow,       /* row where opponent last moved, 0 .. boardSize-1 */
long oppCol,       /* column where opponent last moved, 0 .. boardSize-1 */
long *moveRow,     /* return your move - row, 0 .. boardSize-1 */
long *moveCol,     /* return your move - column, 0 .. boardSize-1 */
void *privStorage, /* preallocated storage for your use */
long storageSize,  /* size of privStorage in bytes */
Boolean newGame,   /* TRUE if this is your first move in a new game */
Boolean playBlack  /* TRUE if you play first (black pieces) */
);

static SCORE Search(SCORE alpha, SCORE beta, unsigned long side, long
depth, Boolean passEndsGame);
static long Generate(unsigned long side);
static SCORE MakeMove(PSQUARE to, unsigned long side);
static void UnmakeMove();
static void Initialize(long boardSize, void *privStorage);
static SCORE Evaluate(unsigned long side);
static long SortValue(PSQUARE p, unsigned long side);
static void BubbleSort(long n, unsigned long side);

Static Variables
// Direction indices
static unsigned long gOppDirBit[8] =
{ W, E, N, S, NW, SE, NE, SW };

// Offsets on board plus zero sentinel
// Fill in gOffsets[2..7] when we know board size
static long gOffsets[9] = {1L,-1L,99L,99L,99L,99L,99L,99L,0L};

// gSquares - Array of squares: Stores board
static unsigned long *gSquares;
static unsigned long *gOnBoardStart; // Pointer into gSquares
static unsigned long *gOnBoardEnd; // Pointer into gSquares
static long gNumOnSquares;// # of squares, not including borders
static long gRealBoardSize; // Length of a side (includes borders)

// gEmptyAdj - Array of pointers to squares:
//    Stores all empty squares adjacent to disk(s)

// gChanges - Array of unsigned longs containing data to undo moves
//     list of:
//          <pointer to square> <old square value>
//     terminated by a OL
//   The first position will be the drop square and the others will be flips
static unsigned long *gChanges;
static unsigned long *gChangesEnd; // Pointer into gChanges

// gCountZeros - Precalculated 256-element constant array
//     returns count of zero bits in the byte
static unsigned long *gCountZeros;

// gTree - Array of pointers to squares: Holds search tree
static PSQUARE *gTree;
static PSQUARE *gTreeEnd; // Pointer into gTree

// gMobility - Array of counts of moves available at each ply
static long *gMobility;

// Pointers to various special squares
static PSQUARE gNWCorner, gNWX, gNWC1, gNWC2;
static PSQUARE gNECorner, gNEX, gNEC1, gNEC2;
static PSQUARE gSWCorner, gSWX, gSWC1, gSWC2;
static PSQUARE gSECorner, gSEX, gSEC1, gSEC2;
// The gCounts array holds current counts of disks
// Access is by gCounts[side >> COLOR_SHIFT]
//   gCounts[WHITE_INDEX] white's disks
//   gCounts[BLACK_INDEX] black's disks
#define WHITE_INDEX(WHITE >> COLOR_SHIFT)
#define BLACK_INDEX(BLACK >> COLOR_SHIFT)
static unsigned long gCounts[3];

static SCORE gIncScore;   // Score relative to side to move
static SCORE gEndgameDiskBonus;    // Bonus per disk in endgame
static SCORE kX, kC, kEdge, kCorner; // Penalties/Bonuses

static long gAbortSearchTime; // Time at which the search will be aborted
static Boolean gAborted;  // Has the search been aborted?

static long gStartDepth;  // Search was started at this depth
static long gPly;// Number of moves deep

Othello
Boolean /*legalMove*/ Othello (
long boardSize,    /* number of rows/columns in the game board */
long oppRow,       /* row where opponent last moved, 0 .. boardSize-1 */
long oppCol,       /* column where opponent last moved, 0 .. boardSize-1 */
long *moveRow,     /* return your move - row, 0 .. boardSize-1 */
long *moveCol,     /* return your move - column, 0 .. boardSize-1 */
void *privStorage, /* preallocated storage for your use */
long storageSize,  /* size of privStorage in bytes */
Boolean newGame,   /* TRUE if this is your first move in a new game */
Boolean playBlack  /* TRUE if you play first (black pieces) */
)
{
PSQUARE *to, p;
unsigned long side = playBlack ? BLACK : WHITE;
unsigned long nextSide;
SCORE t, bestScore, saveIncScore;
long j, generated, index, x, y;
long stillOpen, bestFoundAt, *pOffsets;
long startTime, targetTime, targetDuration;
Boolean nearEdge;
#ifdef USE_HASH
unsigned long saveHashValue;
#endif

if (newGame) {
Initialize(boardSize, privStorage);
}
gChangesEnd = gChanges;

#ifdef USE_HASH
// Fix up gHashTable
{
SHash *pHashTable = gHashTable;
int i;

i = kHashTableSize - 1;
do {
(pHashTable++)->Depth -= 2;
} while (i-);
}
#endif

if (oppRow != -1) {
index = XY2INDEX(oppCol+1, oppRow+1);
gIncScore -=
MakeMove(&gSquares[index], playBlack ? WHITE : BLACK);
gChangesEnd = gChanges;
}

gTreeEnd = gTree;
generated = Generate(side);

if (!generated) { // No moves
*moveRow = *moveCol = -1;
return TRUE;
}
if (generated > 1 && !(newGame && oppRow == -1)) {
BubbleSort(generated, side);

gMobility[0] = gMobility[1] = generated;
gPly = 1;

nextSide = OPPONENT(side);
stillOpen = gNumOnSquares - gCounts[WHITE_INDEX] -
gCounts[BLACK_INDEX];

// Calculate gEndgameDiskBonus
gEndgameDiskBonus = 0;
x = gNumOnSquares / 3;
j = x - stillOpen;
if (j > 0) {
gEndgameDiskBonus = (j * kFinalDisk) / (x * 5);
if (!gEndgameDiskBonus)
gEndgameDiskBonus = 1;
}

// Do we have any pieces near an edge?
nearEdge = false;
for (p = gOnBoardStart;
!nearEdge && p <= gOnBoardEnd; ++p) {
if (HAS_DISK(*p)) {
if (IS_EDGE(*p)) {
nearEdge = true;
} else {
pOffsets = gOffsets;
do {
if (IS_EDGE(*(p + *pOffsets)))
nearEdge = true;
} while (!nearEdge && *(++pOffsets));
}
}
}

// Set times
if (!nearEdge)
targetDuration = kOpeningMoveTime;
else if (stillOpen > 20)
targetDuration = kMoveTime;
else // try to solve!
targetDuration = kSolveMoveTime;
startTime = LMGetTicks();
targetTime = startTime + targetDuration;
gAbortSearchTime = startTime + targetDuration * 6;
gAborted = false;

saveIncScore = gIncScore;
#ifdef USE_HASH
saveHashValue = gHashValue;
#endif

for (gStartDepth=1; gStartDepth < stillOpen && !gAborted;
++gStartDepth) {
to = gTree;
bestScore = -kInfinity;
for (j=0; j<generated; ++j) {
gIncScore = - (gIncScore + MakeMove(*to, side));
++gPly;
t = -Search(-kInfinity, kInfinity, nextSide,
gStartDepth - 1, false);
-gPly;
UnmakeMove();
gIncScore = saveIncScore;
#ifdef USE_HASH
gHashValue = saveHashValue;
#endif
if (gAborted)
break;

if (t > bestScore) {
PSQUARE bestMove, *p;
// Move *to to front of the tree
bestMove = *to;
MY_ASSERT(bestMove >= gOnBoardStart && bestMove <=
gOnBoardEnd);

for (p = to; p != gTree; -p)
*p = *(p-1);
*gTree = bestMove;

bestScore = t;
bestFoundAt = gStartDepth;
}
if (LMGetTicks() >= targetTime) {
if (bestScore > -kInfinity && gStartDepth +
kSolveThreshold + 1 != stillOpen)
break; // time to stop
if (LMGetTicks() - startTime
>= 3 * targetDuration)
break; // time to stop
}
++to;
}

if (gStartDepth >= 4 && LMGetTicks() - startTime > 1 +
targetDuration/2)
break; // probably not enough time to finish another iteration
if (gStartDepth - bestFoundAt == 3
&& IS_CORNER(*gTree[0]))
break; // easy corner move
}
}

gIncScore += MakeMove(*gTree, side);
index = (long)(*gTree - gSquares);
y = index / gRealBoardSize;
x = index - y * gRealBoardSize;
*moveCol = x - 1;
*moveRow = y - 1;

return TRUE;
}

SortValue
// Returns value that orders squares for root search
long SortValue(PSQUARE p, unsigned long side)
{
long stillOpen, value;
PSQUARE q;
unsigned long occupant, enemy;
long *pOffsets;

if (IS_EDGE(*p)) {
if (IS_CORNER(*p))
return 200; // Corner
return -100; // C
return 100; // Edge
}
return -200; // X

// Check p's adjacency bits
stillOpen = gNumOnSquares - gCounts[WHITE_INDEX] -
gCounts[BLACK_INDEX];
enemy = OPPONENT(side);
value = 0;
pOffsets = gOffsets;
do {
q = p + *pOffsets;
occupant = *q & COLOR_BITS;
if (stillOpen > 10) {
if (occupant == side)
++value; // good to take away empty-adjacent
else if (occupant == enemy)
-value; // bad to flip
} else if (occupant == OPPONENT(side))
++value; // endgame: good to flip
} while (*(++pOffsets));

return value;
}

BubbleSort
// Sorts generated root moves in decreasing value order
// Hey, bubble sort is really okay in this case
void BubbleSort(long n, unsigned long side)
{
long i, j, swaps;
PSQUARE temp;

for (j=n-2; j>=0; -j) {
swaps = 0;
i = 0;
do {
if (SortValue(gTree[i+1], side)
> SortValue(gTree[i], side)) {
++swaps; // Swap i and i+1
temp = gTree[i];
gTree[i] = gTree[i+1];
gTree[i+1] = temp;
}
} while (i++ != j);
if (!swaps)
break; // Already sorted: Finish early
}
}

Evaluate
// Evaluate position and return score relative to side
// side is also the side to move
SCORE Evaluate(unsigned long side)
{
SCORE score = 0;

// Maximize disks, but only in endgame
if (gEndgameDiskBonus) {
score = (gCounts[WHITE_INDEX] - gCounts[BLACK_INDEX]) * gEndgameDiskBonus;
if (side == BLACK)
score = -score;
}

// NW Corner Area
if (HAS_DISK(*gNWCorner)) {
score += (*gNWCorner & side) ? kCorner : -kCorner;
} else if (*gNWCorner & ADJACENCY) {
if (HAS_DISK(*gNWX)) {
score += (*gNWX & side) ? kX : -kX;
}
if (HAS_DISK(*gNWC1)) {
score += (*gNWC1 & side) ? kC : -kC;
}
if (HAS_DISK(*gNWC2)) {
score += (*gNWC2 & side) ? kC : -kC;
}
}

// NE Corner Area
if (HAS_DISK(*gNECorner)) {
score += (*gNECorner & side) ? kCorner : -kCorner;
} else if (*gNECorner & ADJACENCY) {
if (HAS_DISK(*gNEX)) {
score += (*gNEX & side) ? kX : -kX;
}
if (HAS_DISK(*gNEC1)) {
score += (*gNEC1 & side) ? kC : -kC;
}
if (HAS_DISK(*gNEC2)) {
score += (*gNEC2 & side) ? kC : -kC;
}
}

// SW Corner Area
if (HAS_DISK(*gSWCorner)) {
score += (*gSWCorner & side) ? kCorner : -kCorner;
} else if (*gSWCorner & ADJACENCY) {
if (HAS_DISK(*gSWX)) {
score += (*gSWX & side) ? kX : -kX;
}
if (HAS_DISK(*gSWC1)) {
score += (*gSWC1 & side) ? kC : -kC;
}
if (HAS_DISK(*gSWC2)) {
score += (*gSWC2 & side) ? kC : -kC;
}
}

// SE Corner Area
if (HAS_DISK(*gSECorner)) {
score += (*gSECorner & side) ? kCorner : -kCorner;
} else if (*gSECorner & ADJACENCY) {
if (HAS_DISK(*gSEX)) {
score += (*gSEX & side) ? kX : -kX;
}
if (HAS_DISK(*gSEC1)) {
score += (*gSEC1 & side) ? kC : -kC;
}
if (HAS_DISK(*gSEC2)) {
score += (*gSEC2 & side) ? kC : -kC;
}
}
// Too few disks?
if (gCounts[WHITE_INDEX] < kMinimumSafeDisks) {
SCORE x = (kMinimumSafeDisks - gCounts[WHITE_INDEX]) *
kTooFewDisks;
score += (side == WHITE) ? x : -x * 2;
}
if (gCounts[BLACK_INDEX] < kMinimumSafeDisks) {
SCORE x = (kMinimumSafeDisks - gCounts[BLACK_INDEX]) *
kTooFewDisks;
score += (side == BLACK) ? x : -x * 2;
}

// Mobility
score += gMobility[gPly-2] - gMobility[gPly-1];

// Could also have a value for the right to move

return gIncScore + score;
}

Search
SCORE Search(SCORE alpha, SCORE beta, unsigned long side, long depth,
Boolean passEndsGame)
{
register PSQUARE *to;
unsigned long nextSide;
long generated;
SCORE t, bestScore, saveIncScore;
PSQUARE *firstMove;
long stillOpen;
SCORE oldAlpha = alpha;
#ifdef USE_HASH
unsigned long saveHashValue;
SHash *pHashTable;
#endif

stillOpen = gNumOnSquares - gCounts[WHITE_INDEX] -
gCounts[BLACK_INDEX];
if (!stillOpen) {
// Board full
bestScore = (gCounts[WHITE_INDEX] -
gCounts[BLACK_INDEX]) * kFinalDisk;
if (side == BLACK)
bestScore = -bestScore;
return bestScore;
}

if (!gCounts[WHITE_INDEX]) {
// White is wiped out!
bestScore = kBestPossible;
if (side == WHITE)
bestScore = -kBestPossible;
return bestScore;
}

if (!gCounts[BLACK_INDEX]) {
// Black is wiped out!
bestScore = kBestPossible;
if (side == BLACK)
bestScore = -kBestPossible;
return bestScore;
}

if (depth <= 0) {
if (stillOpen > kSolveThreshold &&
gCounts[OPPONENT(side) >> COLOR_SHIFT]
> kWipeOutExtension) {
bestScore = Evaluate(side);
#ifdef USE_HASH
bestMove = NULL;
#endif
goto HashSave; // Terminal node
}
} else if (depth == 1 && stillOpen > kSolveThreshold) {
t = Evaluate(side);
if (t > beta + kFutilityScore)
return t; // Futility cut-off
}

#ifdef USE_HASH
pHashTable = &gHashTable[gHashValue & kHashTableMask];
if (pHashTable->HashValue == gHashValue) {
if (pHashTable->Depth >= depth) {
if (pHashTable->Type == VALID) {
if (pHashTable->Score > beta)
alpha = beta;
else if (pHashTable->Score > alpha)
alpha = pHashTable->Score;
} else if (pHashTable->Type == LOWER_BOUND) {
if (pHashTable->Score > beta)
return beta + 1;
} else if (pHashTable->Type == UPPER_BOUND) {
if (pHashTable->Score < alpha)
return alpha - 1;
}
if (alpha > beta)
return beta;
}
}
#endif

// Abort?
if (LMGetTicks() >= gAbortSearchTime) {
gAborted = true;
return 0;
}

#ifdef USE_HASH
bestMove = NULL;
#endif
nextSide = OPPONENT(side);

firstMove = gTreeEnd;
generated = Generate(side);
gMobility[gPly] = generated;

if (!generated) { // no moves available
if (passEndsGame) {
bestScore = (gCounts[WHITE_INDEX] -
gCounts[BLACK_INDEX]) * kFinalDisk;
if (side == BLACK)
bestScore = -bestScore;
return bestScore;
}
#ifdef USE_HASH
gHashValue ^= kSwitchSideHash;
#endif
gIncScore = -gIncScore;
++gPly;
bestScore = -Search(-beta, -alpha,
nextSide, depth, true);
-gPly;
gIncScore = -gIncScore;
++depth;
goto Searched;
}

to = firstMove;
bestScore = -kInfinity;
#ifdef USE_HASH
if (tableReply && *to != tableReply) {
// Find tableReply in move list and move to front
PSQUARE *p;
for (p = to + 1; *p; ++p)
if (*p == tableReply) {
// Swap *p and *to
*p = *to;
break;
}
}
#endif

saveIncScore = gIncScore;
#ifdef USE_HASH
gHashValue ^= kSwitchSideHash;
saveHashValue = gHashValue;
#endif

do {
if (!IS_BAD(**to) || // selectivity
#ifdef USE_HASH
!bestMove ||
#endif
gStartDepth - depth <= kFullDepthPlies ||
stillOpen <= kSolveThreshold) {
gIncScore = - (gIncScore + MakeMove(*to, side));
++gPly;
t = -Search(-beta, -alpha, nextSide, depth-1, false);
-gPly;
UnmakeMove();
gIncScore = saveIncScore;
#ifdef USE_HASH
gHashValue = saveHashValue;
#endif
if (gAborted) {
#ifdef USE_HASH
bestMove = NULL;
#endif
break;
}

if (t > bestScore) {
#ifdef USE_HASH
bestMove = *to;
#endif
if (t > alpha) {
if (t >= beta) {
bestScore = t;
break;
}
alpha = t;
}
bestScore = t;
}
}
++to;
} while (*to);

Searched: ;
#ifdef USE_HASH
gHashValue ^= kSwitchSideHash;
#endif
gTreeEnd = firstMove;

#ifdef USE_HASH
if (bestMove) {
#endif
HashSave: ;
#ifdef USE_HASH
pHashTable = &gHashTable[gHashValue & kHashTableMask];
if (pHashTable->Depth <= depth) {
pHashTable->HashValue = gHashValue;
pHashTable->Depth = depth;
pHashTable->Score = bestScore;
pHashTable->BestMove = bestMove;
MY_ASSERT(!bestMove || IS_EMPTY(*bestMove));

pHashTable->Type = VALID;
if (bestScore <= oldAlpha) {
pHashTable->Type = UPPER_BOUND;
} else if (bestScore >= beta) {
pHashTable->Type = LOWER_BOUND;
}
}
}
#endif

return bestScore;
}

Generate
#define ADD_MOVE(pSq)*(gTreeEnd++) = pSq
long Generate(unsigned long side)
{
PSQUARE *e, p, q, *afterCorners, *movesStart, lastBad;
unsigned long enemy;
long i, *pOffsets;

enemy = OPPONENT(side);
afterCorners = movesStart = gTreeEnd;

while (i-) {
p = *e;
MY_ASSERT(IS_EMPTY(*p) && (*p & ADJACENCY));
pOffsets = gOffsets;
do {
q = p + *pOffsets;
if (*q & enemy) {
do { // Skip through line of enemy disks
q += *pOffsets;
} while (*q & enemy);
if (*q & side) { // Add square p to move list!
// Bad?  Try to put it on the end
break;
}
break;
}
if (!IS_CORNER(*p)) {
// Add to end after corners
break;
}
// Corner: keep all corners on front
if (afterCorners == gTreeEnd) { // All are corners!
} else {
unsigned long *temp = *afterCorners;
*afterCorners = p;
}
++afterCorners;
break;
}
}
} while (*(++pOffsets));
++e;
}
}
return (long)(gTreeEnd - movesStart) - 1;
}

MakeMove
// Makes the move for "side" on the "to" square
// Saves the move to gChanges for later undo'ing
// Returns the change in score relative to the moving side
SCORE MakeMove(PSQUARE to, unsigned long side)
{
unsigned long z;
PSQUARE q, p;
long dir, offset;
long flips = 0;
SCORE score = 0;
unsigned long enemy = OPPONENT(side);

MY_ASSERT(IS_EMPTY(*to) && (*to & ADJACENCY));

#ifdef USE_HASH
// Update hash for new disk
if (side == BLACK)
gHashValue ^= *(to + gBlackHashOffset);
else
gHashValue ^= *(to + gWhiteHashOffset);
#endif

START_SAVE;

// Do flipping, Update adjacency
dir = 7;
do {
offset = gOffsets[dir];
q = to + offset;
if (IS_ON_BOARD(*q)) {
if (IS_EMPTY(*q)) {
if ( !(*q & ADJACENCY) ) { // First adjacent
}
score-; // New disk touches empty, which is bad
} else if (*q & enemy) {
// Skip through line of enemy disks
p = q + offset;
while (*p & enemy)
p += offset;

if (*p & side) { // Flip ‘em
p = q;
do {
// Flip disk at p
++flips;
if (IS_EDGE(*p))
score += kEdge;
PUSH_SQ(p);
score -= (COUNT_EMPTIES(*p) << 1);
// x2  Empties counted for us now
*p ^= COLOR_BITS; // Flip
#ifdef USE_HASH
gHashValue ^= *(p + gFlipHashOffset);
// Update hash for flipped disk
#endif
p += offset;
} while (*p & enemy);
score++;
// Fills in area around disk at q which is now ours
} else {
score-;
// Fills in area around disk at enemy disk at q
}
} else { // *q & side
score++;
// Fills in area around our disk at q
}
z = OPP_DIR_BIT(dir);
MY_ASSERT((*q & z) == 0L);
*q |= z;
}
} while (dir-);

PUSH_SQ(to);
*to |= side;

PUSH(gCounts[WHITE_INDEX]);
PUSH(gCounts[BLACK_INDEX]);
gCounts[side >> COLOR_SHIFT] += flips + 1;
gCounts[enemy >> COLOR_SHIFT] -= flips;

if (IS_EDGE(*to))
score += kEdge;

return score;
}

UnmakeMove
void UnmakeMove()
{
PSQUARE to, flipped, q;
unsigned long z;
long dir;

// Restore disk counts
gCounts[BLACK_INDEX] = POP;
gCounts[WHITE_INDEX] = POP;

// Replace to-disk
to = (PSQUARE)POP;
*to = POP;

// Undo disk changes
while (POP) {
flipped = (PSQUARE)TOP;
*flipped = POP;
}
dir = 7;
do {
q = to + gOffsets[dir];
z = OPP_DIR_BIT(dir);
*q &= ~z; // Remove adjacency (if not already removed from disk changes)
if ( IS_EMPTY(*q) && !(*q & ADJACENCY) ) { // First adjacent
}
} while (dir-);
}

Initialize
void Initialize(long boardSize, void *privStorage)
{
unsigned long *p, *q;
long i, index, numRealSquares;
char *ptr;
unsigned long z;
#ifdef USE_HASH
unsigned long r1, r2;
#endif

kX      = -2 - boardSize * 5;
kC      = -2 - boardSize * 4;
kEdge   = 3 + boardSize / 8;
kCorner = 2 + boardSize * 13;

gRealBoardSize = boardSize + 2;
gNumOnSquares = boardSize * boardSize;
numRealSquares = gRealBoardSize * gRealBoardSize;

ptr = privStorage;

gSquares = (unsigned long *)ptr;
gOnBoardStart = gSquares + gRealBoardSize + 1;
gOnBoardEnd   = gSquares + (gRealBoardSize * (gRealBoardSize - 1) -
2);
ptr += numRealSquares * 4;
// worst case 66*66*4 = 17,424 bytes (~17K)

#ifdef USE_HASH
gWhiteHashOffset = numRealSquares;
gBlackHashOffset = numRealSquares * 2;
gFlipHashOffset  = numRealSquares * 3;
ptr += (numRealSquares * 3) * 4;
// worst case 66*66*3*4 = 52,272 bytes (~51K)

gHashTable = (SHash *)ptr;
ptr += kHashTableSize * sizeof(SHash);
// 32768*16 = 524,288 bytes (512K)
#endif

gEmptyAdj = (PSQUARE *)ptr;
ptr += gNumOnSquares * 4;
// worst case 64*64*4 = 16,384 bytes (16K)

gChanges = (unsigned long *)ptr;
ptr += 65536; // e.g. 64 moves (deep) * 256 longs/move * 4 bytes/long
// 65,536 bytes (64K)

gMobility = (long *)ptr;
ptr += 1024; // e.g. 256 moves deep * 4 bytes/long
// 1,024 bytes (1K)

gCountZeros = (unsigned long *)ptr;
ptr += 256 * 4;
// 256*4 = 1,024 bytes (1K)

gTree = (PSQUARE *)ptr;
// Gets what's left, almost 400K!

// ** Calculate directional offsets
gOffsets[DIR_S]  = gRealBoardSize;
gOffsets[DIR_N]  = - gRealBoardSize;
gOffsets[DIR_SE] = gRealBoardSize + 1;
gOffsets[DIR_NW] = - gRealBoardSize - 1;
gOffsets[DIR_NE] = - gRealBoardSize + 1;
gOffsets[DIR_SW] = gRealBoardSize - 1;

// ** Borders
//   Upper/Lower
p = gSquares;
q = gSquares + (gRealBoardSize * (gRealBoardSize - 1));
i = gRealBoardSize;
do {
*(p++) = BORDER_BIT;
*(q++) = BORDER_BIT;
} while (-i);
//   Sides
p = gSquares + gRealBoardSize;
i = gRealBoardSize - 2;
do {
*p = BORDER_BIT;
p += (gRealBoardSize - 1);
*(p++) = BORDER_BIT;
} while (-i);

// ** Edges
//   Upper/Lower
p = gOnBoardStart;
q = gOnBoardEnd;
i = boardSize;
do {
*(p++) = NW_BORDER | N_BORDER | NE_BORDER;
*(q-) = SW_BORDER | S_BORDER | SE_BORDER;
} while (-i);

//   Sides
p = gOnBoardStart;
q = gOnBoardEnd;
i = boardSize;
do {
*p |= NW_BORDER | W_BORDER | SW_BORDER;
*q |= NE_BORDER | E_BORDER | SE_BORDER;
p += gRealBoardSize;
q -= gRealBoardSize;
} while (-i);

// ** Starting configuration
// Set up initial disks and adjacent empty squares
// "On your first move, you should initialize the board
// with white tiles at (row,col) = (boardSize/2-1,boardSize/2-1) and
// (boardSize/2,boardSize/2), and black tiles at (boardSize/2-1,boardSize/2)
// and (boardSize/2,boardSize/2-1)"
gCounts[WHITE_INDEX] = gCounts[BLACK_INDEX] = 2;

i = boardSize >> 1; // x2
index = XY2INDEX(i-1, i-1);

p = &gSquares[index];
*p = SE; gEmptyAdj[0] = p;
*(++p) = EMPTYADJ_BIT(1) | S | SE; gEmptyAdj[1] = p;
*(++p) = EMPTYADJ_BIT(2) | SW | S; gEmptyAdj[2] = p;
*(++p) = EMPTYADJ_BIT(3) | SW; gEmptyAdj[3] = p;

p += gRealBoardSize - 3;
*p = EMPTYADJ_BIT(4) | E | SE; gEmptyAdj[4] = p;
*(++p) = WHITE | S | SE | E;
*(++p) = BLACK | W | SW | S;
*(++p) = EMPTYADJ_BIT(5) | W | SW; gEmptyAdj[5] = p;

p += gRealBoardSize - 3;
*p = EMPTYADJ_BIT(6) | E | NE; gEmptyAdj[6] = p;
*(++p) = BLACK | N | NE | E;
*(++p) = WHITE | W | NW | N;
*(++p) = EMPTYADJ_BIT(7) | W | NW; gEmptyAdj[7] = p;

p += gRealBoardSize - 3;
*p = EMPTYADJ_BIT(8) | NE; gEmptyAdj[8] = p;
*(++p) = EMPTYADJ_BIT(9) | N | NE; gEmptyAdj[9] = p;
*(++p) = EMPTYADJ_BIT(10) | NW | N; gEmptyAdj[10] = p;
*(++p) = EMPTYADJ_BIT(11) | NW; gEmptyAdj[11] = p;

gNWCorner = gOnBoardStart;
gNWC1 = gNWCorner + 1; *gNWC1 |= BAD_BIT;
gNWC2 = gNWCorner + gRealBoardSize; *gNWC2 |= BAD_BIT;
gNWX = gNWC2 + 1; *gNWX |= BAD_BIT;

gNECorner = gNWCorner + boardSize - 1;
gNEC1 = gNECorner - 1; *gNEC1 |= BAD_BIT;
gNEC2 = gNECorner + gRealBoardSize; *gNEC2 |= BAD_BIT;
gNEX = gNEC2 - 1; *gNEX |= BAD_BIT;

gSWCorner = gOnBoardEnd - boardSize + 1;
gSWC1 = gSWCorner + 1; *gSWC1 |= BAD_BIT;
gSWC2 = gSWCorner - gRealBoardSize; *gSWC2 |= BAD_BIT;
gSWX = gSWC2 + 1; *gSWX |= BAD_BIT;

gSECorner = gOnBoardEnd;
gSEC1 = gSECorner - 1; *gSEC1 |= BAD_BIT;
gSEC2 = gSECorner - gRealBoardSize; *gSEC2 |= BAD_BIT;
gSEX = gSEC2 - 1; *gSEX |= BAD_BIT;

// Precalculate gCountZeros
// (Could have had the compiler fill these in, but I'm not
//  THAT desperate for speed)
for (z=0; z<256; ++z) {
gCountZeros[z] =
8 - (z & 1) - ((z>>1) & 1) - ((z>>2) & 1) - ((z>>3) & 1) -
((z>>4) & 1) - ((z>>5) & 1) - ((z>>6) & 1) - ((z>>7) & 1);
}

#ifdef USE_HASH
gHashValue = 0xFFFFFFFF;

// Initialize gHashKeys
srand(0x1234); //srand(time(NULL));
for (i=0; i<numRealSquares; ++i) {
r1 = rand() + ((unsigned long)rand() << 16);
r2 = rand() + ((unsigned long)rand() << 16);
gSquares[gWhiteHashOffset + i] = r1;
gSquares[gBlackHashOffset + i] = r2;
gSquares[gFlipHashOffset  + i] = r1 ^ r2;
}

// Clear gHashTable
{
SHash *pHashTable = gHashTable;

i = kHashTableSize - 1;
do {
pHashTable->HashValue = 0;
pHashTable->Depth = -100;
pHashTable->BestMove = NULL;
pHashTable->Type = INVALID;
pHashTable->Score = 0;
++pHashTable;
} while (i-);
}
#endif

gIncScore = 0;
}
```

Community Search:
MacTech Search:

## Latest Forum Discussions

Fresh From the Land Down Under – The Tou...
After a two week hiatus, we are back with another episode of The TouchArcade Show. Eli is fresh off his trip to Australia, which according to him is very similar to America but more upside down. Also kangaroos all over. Other topics this week... | Read more »
TouchArcade Game of the Week: ‘Dungeon T...
I’m a little conflicted on this week’s pick. Pretty much everyone knows the legend of Dungeon Raid, the match-3 RPG hybrid that took the world by storm way back in 2011. Everyone at the time was obsessed with it, but for whatever reason the... | Read more »
SwitchArcade Round-Up: Reviews Featuring...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for July 19th, 2024. In today’s article, we finish up the week with the unusual appearance of a review. I’ve spent my time with Hot Lap Racing, and I’m ready to give my verdict. After... | Read more »
Draknek Interview: Alan Hazelden on Thin...
Ever since I played my first release from Draknek & Friends years ago, I knew I wanted to sit down with Alan Hazelden and chat about the team, puzzle games, and much more. | Read more »
The Latest ‘Marvel Snap’ OTA Update Buff...
I don’t know about all of you, my fellow Marvel Snap (Free) players, but these days when I see a balance update I find myself clenching my… teeth and bracing for the impact to my decks. They’ve been pretty spicy of late, after all. How will the... | Read more »
‘Honkai Star Rail’ Version 2.4 “Finest D...
HoYoverse just announced the Honkai Star Rail (Free) version 2.4 “Finest Duel Under the Pristine Blue" update alongside a surprising collaboration. Honkai Star Rail 2.4 follows the 2.3 “Farewell, Penacony" update. Read about that here. | Read more »
‘Vampire Survivors+’ on Apple Arcade Wil...
Earlier this month, Apple revealed that poncle’s excellent Vampire Survivors+ () would be heading to Apple Arcade as a new App Store Great. I reached out to poncle to check in on the DLC for Vampire Survivors+ because only the first two DLCs were... | Read more »
Homerun Clash 2: Legends Derby opens for...
Since launching in 2018, Homerun Clash has performed admirably for HAEGIN, racking up 12 million players all eager to prove they could be the next baseball champions. Well, the title will soon be up for grabs again, as Homerun Clash 2: Legends... | Read more »
‘Neverness to Everness’ Is a Free To Pla...
Perfect World Games and Hotta Studio (Tower of Fantasy) announced a new free to play open world RPG in the form of Neverness to Everness a few days ago (via Gematsu). Neverness to Everness has an urban setting, and the two reveal trailers for it... | Read more »
Meditative Puzzler ‘Ouros’ Coming to iOS...
Ouros is a mediative puzzle game from developer Michael Kamm that launched on PC just a couple of months back, and today it has been revealed that the title is now heading to iOS and Android devices next month. Which is good news I say because this... | Read more »

## Price Scanner via MacPrices.net

Amazon is still selling 16-inch MacBook Pros...
Prime Day in July is over, but Amazon is still selling 16-inch Apple MacBook Pros for \$500-\$600 off MSRP. Shipping is free. These are the lowest prices available this weekend for new 16″ Apple... Read more
Walmart continues to sell clearance 13-inch M...
Walmart continues to offer clearance, but new, Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for \$699, \$300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBooks... Read more
Apple is offering steep discounts, up to \$600...
Apple has standard-configuration 16″ M3 Max MacBook Pros available, Certified Refurbished, starting at \$2969 and ranging up to \$600 off MSRP. Each model features a new outer case, shipping is free,... Read more
Save up to \$480 with these 14-inch M3 Pro/M3...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at \$1699 and ranging up to \$480 off MSRP. Each model features a new outer case, shipping is... Read more
Amazon has clearance 9th-generation WiFi iPad...
Amazon has Apple’s 9th generation 10.2″ WiFi iPads on sale for \$80-\$100 off MSRP, starting only \$249. Their prices are the lowest available for new iPads anywhere: – 10″ 64GB WiFi iPad (Space Gray or... Read more
Apple is offering a \$50 discount on 2nd-gener...
Apple has Certified Refurbished White and Midnight HomePods available for \$249, Certified Refurbished. That’s \$50 off MSRP and the lowest price currently available for a full-size Apple HomePod today... Read more
The latest MacBook Pro sale at Amazon: 16-inc...
Amazon is offering instant discounts on 16″ M3 Pro and 16″ M3 Max MacBook Pros ranging up to \$400 off MSRP as part of their early July 4th sale. Shipping is free. These are the lowest prices... Read more
14-inch M3 Pro MacBook Pros with 36GB of RAM...
B&H Photo has 14″ M3 Pro MacBook Pros with 36GB of RAM and 512GB or 1TB SSDs in stock today and on sale for \$200 off Apple’s MSRP, each including free 1-2 day shipping: – 14″ M3 Pro MacBook Pro (... Read more
14-inch M3 MacBook Pros with 16GB of RAM on s...
B&H Photo has 14″ M3 MacBook Pros with 16GB of RAM and 512GB or 1TB SSDs in stock today and on sale for \$150-\$200 off Apple’s MSRP, each including free 1-2 day shipping: – 14″ M3 MacBook Pro (... Read more
Amazon is offering \$170-\$200 discounts on new...
Amazon is offering a \$170-\$200 discount on every configuration and color of Apple’s M3-powered 15″ MacBook Airs. Prices start at \$1129 for models with 8GB of RAM and 256GB of storage: – 15″ M3... Read more

## Jobs Board

*Apple* Systems Engineer - Chenega Corporati...
…LLC,** a **Chenega Professional Services** ' company, is looking for a ** Apple Systems Engineer** to support the Information Technology Operations and Maintenance Read more
Solutions Engineer - *Apple* - SHI (United...
**Job Summary** An Apple Solution Engineer's primary role is tosupport SHI customers in their efforts to select, deploy, and manage Apple operating systems and Read more
*Apple* / Mac Administrator - JAMF Pro - Ame...
Amentum is seeking an ** Apple / Mac Administrator - JAMF Pro** to provide support with the Apple Ecosystem to include hardware and software to join our team and Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.