TweetFollow Us on Twitter

Sep 96 Factory Floor
Volume Number:12
Issue Number:9
Column Tag:From The Factory Floor

Andreas Hommel, Compiler Architect

By Dave Mark

This month’s interview is with Andreas Hommel, one of the original minds behind Metrowerks’ compiler architecture. (See “A Little CodeWarrior History”, MacTech Magazine 12.7 [July 1996] 61-64, where John McEnerney recalls being shown Metrowerks’ newly acquired C compiler which “a guy named Andreas Hommel in Hamburg had been writing as a hobby”.) You’ll meet a pretty interesting person and, at the same time, learn a thing or two about the compilation process.

Dave: How did you hook up with Metrowerks?

Andreas: I got interested in compiler construction while I was still in University. I was writing computer games, and most C compilers didn’t really produce very good code. Also, I liked ANSI C a lot, but back then, Mac compilers didn’t really conform to this standard. So at one point, I decided that it would be fun to write my own compiler in my spare time. Two or three years later, I had my own little IDE and an ANSI C compiler with some C++ extensions.

I was about to finish my CS degree, and I had a good desktop publishing job offer in Hamburg, but I really liked working on my compiler project, so I decided to give it a try. I sent out a bunch of demo disks to some Macintosh compiler-related companies. A few months later, Greg Galanos called me and we started talking about technical details of the compiler and how we could come together. After a couple of Transatlantic phone calls, Greg invited me to come to Montreal to meet with him and Jean Belanger. They spoke about the incredible opportunities for a compiler company, given Apple’s pending transition to the PowerPC chip. We also talked a lot about all the technical aspects of the compiler and how it could be changed to support another code generator and a Pascal front-end. A week later, we had signed a contract.

The next 6 months were pretty busy. I still had some work to do for my old job, I had to finish and defend my thesis, and I had to start moving the compiler towards C++ for Metrowerks.

Dave: For folks who’ve never written a compiler, can you describe the compilation/link process?

Andreas: The compiler transforms each individual source file (or “translation unit”, to be technically correct) into an object file. The functions, procedures, and variables in a source file are transformed into code and data in the object file. The code in an object file is not executable because it usually contains references to code or data in other object files; these references have yet to be resolved by the linker. The unresolved references are also stored in the object file. The CodeWarrior IDE actually hides much of this process, because it stores all the object files in the project file, so you don’t see them on your hard drive (if you use the CW MPW tools, you will actually generate individual object files). The object file also stores symbolic information that is used by the Source Debugger to map source code to executable code and to find variables and their types. If you are interested in this, and you know a little bit of Assembly Language, you can use the Disassemble command (in the Project menu), which will generate a pretty complete object file dump for a particular source file.

The linker then takes all the object files (a library file is basically just an object file), resolves the external code and data references, and generates an executable file from that. On the Macintosh, the linker also merges your application with the resource data and generates a SYM file that is used by the debugger.

Dave: What about the actual compilation process?

Andreas: The compiler itself can be grouped into several phases. A user typically doesn’t notice these individual phases, and in fact most compilers do not strictly execute one phase after the other, but this logical grouping really makes it a lot easier to implement a compiler.

The first phase is the Lexical Analyzer or Scanner. This part of the compiler “looks” at your source code and splits it into individual tokens. A token is a small lexical element. For example, in C, operators such as '+', '--', '->', and keywords such as for and while are individual tokens. Identifiers, numbers and strings are also considered as tokens with attributes. For example, "123" is a numerical token with the attribute/value 123. A lexical analyzer for C and C++ is quite complicated, because it usually also implements the preprocessor, so it has to take care of source file inclusion (#include), macro expansions (#define) and conditional compilation (#if). All this is hidden from the remaining parts of the compiler, and the CodeWarrior lexical analyzer transforms a source file into a uniform stream of tokens.

The next phase is the Syntax Analyzer or Parser. Most computer languages (including C, C++, Pascal and Java) have a grammar which is a set of rules that describes which token sequences form a legal program. The parser makes sure that the stream of tokens conforms to these rules. For example, the rule for a while statement is:

<iteration-statement>: while ( <expression> ) <statement>

<iteration-statement> is the name of this grammar rule. while, '(' and ')' are tokens; <expression> and <statement> are called non-terminal tokens, which means they have to be replaced by other tokens or rules. The parser transforms the stream of individual tokens into another data structure (usually a syntax tree) that is used by the remaining phases.

The next phase is the Semantic Analyzer. The parser makes sure that a program conforms to the grammar, but it doesn’t catch any other types of error. For example, “1=2;” is a syntactically correct C assignment expression statement that is semantically incorrect, because you cannot assign 2 to 1. So this phase makes sure that types in a program match, that all identifiers (or variables) have been defined, and that operand types in expressions match.

Now we have a legal program and all we have to do is generate code from it. One could generate code directly from a syntax tree, but usually a compiler generates an intermediate code representation. For example, CodeWarrior uses a tree-based intermediate code (IR tree) that is very close to a syntax tree but has a lot of additional information about types. In fact, the CodeWarrior compiler folds the syntactic, semantic and intermediate code generation together, so basically the parser also checks the semantics and it generates an IR tree. This really speeds up the whole process. This IR tree is really the key to our compiler technology. All code generation is based on this tree. So this makes our front-ends (C/C++/Pascal) and back-ends (68K, MIPS, PPC, x86) interchangeable.

This IR tree is then passed to the individual back-ends where it is used to generate the actual 68K, PPC, MIPS, or x86 code. The back-ends are all pretty different, but they all transform the IR tree into machine instruction sequences, allocate memory and registers for variables, and generate an object file. All back-ends also do some machine-level optimizations (peephole optimizations) that replace instructions with better ones or remove redundant instructions.

We have an IR-level optimizer that removes redundant parts from this tree and does some other basic things to optimize branches. We also have a high-level IR optimizer that is currently used in the x86 compiler, but this optimizer will eventually also be used in the MIPS or 68K compilers. The PPC back-end is a little special because most of its optimization is done in the back-end. This makes sense, because the PPC’s RISC instructions are very simple, so you can do a lot of high-level optimizations (such as loop optimizations and common subexpressions) with more fine control on the actual machine level and get better results. This would be very hard to do for a CISC processor like the 68K with all its complex instructions and addressing modes.

Dave: With that in mind, what did your original development environment look like, from a technical perspective?

Andreas: It had pretty much all the basic functionality you need to write programs in C. It had a project window, a multi-window text editor, find and replace, and some simple Preference dialogs. It even had some nice little features such as function popups and multiple access paths, but a lot of major features such as multi-language support, plug-in compiler support, collapsible project views, syntax coloring, split-pane editing, multiple-pane Preference dialogs, a tool bar, and tool-server support, have been added to it since then.

Dave: How would you compare your original compiler architecture with the current CodeWarrior architecture?

Andreas: The original compiler and linker didn’t support a plug-in interface, and everything had to be linked into the IDE. I always had multiple back-end support in mind, and I was always using the IR tree. However, when John McEnerney started writing the PPC back-end, I had to clean up the front-end/back-end interface, and we had to change a few other minor things. There were also some changes in the 68K back-end, to support some Pascal-specific features such as sets and nested local variables.

There have been a lot of changes in the front-end. The original compiler had some basic support for C++ classes and function overloading, so a lot of stuff had to be added since then. I also had to change quite a few things to support multiple platforms (Mac OS, x86, MIPS). Recently, I had to make some additions to the IR to support zero runtime overhead exception handling. This also required changes in the back-ends.

Dave: What special work do you have to do in the front-end to enable multiple platform support? For example, what did you have to do to CodeWarrior to make sure it would support x86, MIPS, and 680x0 code generation?

Andreas: There are a number of areas where a front-end needs to be aware of back-end requirements. For example a C struct’s member layout is done in the front-end, so you have to be aware of the data-member alignment of the target architecture. Another problem has to do with integral and floating-point type differences. For example, a long double is an 80-bit type on 68K but a 64-bit type on the PPC. In the same vein, the x86 uses a different byte ordering (little-endian) than the 68K (big-endian). Most of the functions that deal with these issues have been isolated into target-specific front-end files.

There are also some language-specific issues. For example, both Apple and Microsoft have their own C and C++ language extensions, and the front-end needs to support all of them. One of the biggest problems is C++. There are many very powerful features in C++ like multiple inheritance, polymorphism, exception handling and runtime type identification. The ANSI C++ Standard defines how all these features work, but it does not define how they should be implemented, so every compiler vendor has their own implementation. For example, there are many ways to implement virtual function calls or to allocate base classes in a derived class hierarchy. We always had our own implementation for this, but now, with the x86 compiler, we also have to conform to Microsoft’s standard class layout. We’re still targeting full compatibility, and this requires more work in the front-end as we go forward.

Dave: Beginning with CW8, CodeWarrior offered support for zero runtime overhead. First, what is zero runtime overhead? Second, what advantages does it offer?

Andreas: C++ exception handling requires that all local class variables that have been constructed between a try and a throw be destroyed before an exception is handled in a catch block. This process is called stack unwinding. Our first exception implementation was based on a pseudo-setjmp/longjmp, and a linked list of all active local stack objects needing destruction. This was relatively easy to implement in the front-end, and it required no changes in any of the back-ends. So we were able to support exceptions in all our back-ends at the same time.

However, this implementation requires some runtime overhead. For example, each local class object that needs destruction has to be registered when it is constructed and unregistered when it is destroyed. Also, the setjmp call that was required for every try block was very expensive on the PPC, because it had to save all processor registers in a local buffer, and this implementation had to modify a global variable, so it did not work very well with threads.

Our zero runtime overhead implementation is no longer using setjmp or a linked list. Instead, the stack unwinding process is done by examining the processor’s stack and using a pretty complex exception table that tells the exception handler how to locate local variables and how to destroy them. So there is no runtime overhead required for saving registers or registering local objects. Throwing an exception is actually a little bit slower because the stack unwinder is a lot more complicated, but usually exceptions are really exceptional so your application runs much faster. Another advantage is that this exception model doesn’t have to modify any global variables, so it is really thread-safe.

The only disadvantage is that the stack unwinder can only unwind functions that do have an entry in the exception table. The current Mac OS doesn’t have any exception tables, so you can no longer throw an exception in an OS callback function and catch it in your main program, which was possible (but not recommended) in the previous implementation.

Dave: ANSI C and ANSI C++ are two different languages, yet there is a single front-end to handle both. How does this work?

Andreas: ANSI C++ was derived from ANSI C, and most of its new features are really add-ons. Almost all ANSI C features are also supported in C++, so I was able to support both languages from the same front-end by disabling C++ features depending on the state of a global variable. There are some syntactic and semantic differences, but I was able to code around those with some “if-else” statements. This really makes adding features or fixing bugs a lot easier, because everything will only have to be done once. What’s also really interesting is that our compiler architecture allows us to treat both C and C++ with the same front-end, making the transition from C to C++ much easier because it’s the same compiler. Just flip a switch and write your code.

Dave: When you first started on your compiler, work on a C++ standard had just begun (with the publication of the Annotated C++ Reference Manual, or ARM). How has this process evolved?

Andreas: The ARM was the only real useful C++ language reference when I started. This book was used as the base document for the ANSI C++ standard. It has a lot of gray areas, and the template chapter is really vague, but it has some useful sections that explain how certain C++ features like virtual functions can be implemented. Unfortunately, those sections have been removed from the standard.

The current ANSI C++ draft is the size of a phone book. Many features (namespaces, RTTI, bool/true/false, a complete C++ library) have been added to the original definition, and there are three or four revisions every year. It is very hard to keep track of all these changes, and I think it will take another two years until there will be a final ANSI C++ standard.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Combo Quest (Games)
Combo Quest 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Combo Quest is an epic, time tap role-playing adventure. In this unique masterpiece, you are a knight on a heroic quest to retrieve... | Read more »
Hero Emblems (Games)
Hero Emblems 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ** 25% OFF for a limited time to celebrate the release ** ** Note for iPhone 6 user: If it doesn't run fullscreen on your device... | Read more »
Puzzle Blitz (Games)
Puzzle Blitz 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Puzzle Blitz is a frantic puzzle solving race against the clock! Solve as many puzzles as you can, before time runs out! You have... | Read more »
Sky Patrol (Games)
Sky Patrol 1.0.1 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0.1 (iTunes) Description: 'Strategic Twist On The Classic Shooter Genre' - Indie Game Mag... | Read more »
The Princess Bride - The Official Game...
The Princess Bride - The Official Game 1.1 Device: iOS Universal Category: Games Price: $3.99, Version: 1.1 (iTunes) Description: An epic game based on the beloved classic movie? Inconceivable! Play the world of The Princess Bride... | Read more »
Frozen Synapse (Games)
Frozen Synapse 1.0 Device: iOS iPhone Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: Frozen Synapse is a multi-award-winning tactical game. (Full cross-play with desktop and tablet versions) 9/10 Edge 9/10 Eurogamer... | Read more »
Space Marshals (Games)
Space Marshals 1.0.1 Device: iOS Universal Category: Games Price: $4.99, Version: 1.0.1 (iTunes) Description: ### IMPORTANT ### Please note that iPhone 4 is not supported. Space Marshals is a Sci-fi Wild West adventure taking place... | Read more »
Battle Slimes (Games)
Battle Slimes 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: BATTLE SLIMES is a fun local multiplayer game. Control speedy & bouncy slime blobs as you compete with friends and family.... | Read more »
Spectrum - 3D Avenue (Games)
Spectrum - 3D Avenue 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: "Spectrum is a pretty cool take on twitchy/reaction-based gameplay with enough complexity and style to stand out from the... | Read more »
Drop Wizard (Games)
Drop Wizard 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Bring back the joy of arcade games! Drop Wizard is an action arcade game where you play as Teo, a wizard on a quest to save his... | Read more »

Price Scanner via MacPrices.net

Our MacBook Price Trackers will show you the...
Our Apple award-winning MacBook Price Trackers are continually updated with the latest information on prices, bundles, and availability for 16″ and 14″ MacBook Pros along with 13″ and 15″ MacBook... Read more
Amazon is offering a 10% discount on Apple’s...
Don’t pay full price! Amazon has 16-inch M4 Pro MacBook Pros (Silver and Black colors) on sale today for 10% off Apple’s MSRP. Shipping is free. These are the lowest prices currently available for 16... Read more
13-inch M4 MacBook Airs on sale for $150 off...
Amazon has new 13″ M4 MacBook Airs on sale for $150 off MSRP right now, starting at $849. Sale prices apply to most colors and configurations. Be sure to select Amazon as the seller, rather than a... Read more
15-inch M4 MacBook Airs on sale for $150 off...
Amazon has new 15″ M4 MacBook Airs on sale for $150 off Apple’s MSRP, starting at $1049. Be sure to select Amazon as the seller, rather than a third-party: – 15″ M4 MacBook Air (16GB/256GB): $1049, $... Read more
Amazon is offering a $50 discount on Apple’s...
Amazon has Apple’s 11th-generation A16 iPads in stock on sale for $50 (or a little more) off MSRP this week. Shipping is free: – 11″ 11th-generation 128GB WiFi iPads: $299 $50 off MSRP – 11″ 11th-... Read more
Clearance 13-inch M1 MacBook Airs available f...
Walmart has clearance, but new, Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) available online for $649, $360 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBooks for... Read more
iPad minis on sale for $100 off Apple’s MSRP...
Amazon is offering $100 discounts (up to 20% off) on Apple’s newest 2024 WiFi iPad minis, each with free shipping. These are the lowest prices available for new minis among the Apple retailers we... Read more
AirPods Max headphones on sale for $479, $70...
Amazon has AirPods Max with USB-C on sale for $479.99 in all colors. Shipping is free. Their price is $70 off Apple’s MSRP, and it’s the lowest price available today for AirPods Max. Keep an eye on... Read more
14-inch M4 Pro/M4 Max MacBook Pros on sale th...
Don’t pay full price! Get a new 14″ MacBook Pro with an M4 Pro or M4 Max CPU for up to $320 off Apple’s MSRP this weekend at these retailers…they are the lowest prices available for these MacBook... Read more
Get a 15-inch M4 MacBook Air for $150 off App...
A couple of Apple retailers are offering $150 discounts on new 15″ M4 MacBook Airs this weekend. Prices at these retailers start at $1049: (1): Amazon has new 15″ M4 MacBook Airs on sale for $150 off... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.