TweetFollow Us on Twitter

Multiprocessing Systems
Volume Number:12
Issue Number:3
Column Tag:Performance Frontiers

A Look at Macintosh Multiprocessing

Three ways to build a “simultaneous screamer”.

By Jim Gochee, Contributing Editor for Performance Processing

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Information for this article was contributed by: Bruce Lawton, Emerson Kennedy; Dr. Karsten Jeppesen, YARC Systems; and Chris Cooksey, DayStar Digital.

Introduction

Applications looking for more performance than a single-processor computer can deliver often look to multiprocessing. Multiprocessing (MP) can take many forms, from having multiple CPUs on a single motherboard, to plug-in accelerator cards, to a network of machines. This article gives an overview of the multiprocessing options available on the Macintosh today, which just got more interesting with the new Apple Multiprocessor API. With this API, Apple has standardized multiprocessing for the MacOS. However, as a developer looking for the ultimate in performance speedup, you shouldn’t rule out other multiprocessing options just yet. For those of you who have never considered making your application multiprocessor-aware, I would suggest taking a good look at Apple’s Multiprocessor API. It is easy to use, runs under System 7 today, and is sure to have a sizable installed base of hardware that supports it.

Overview

Multiprocessing occurs when more than one compute engine is involved in solving a task. These compute engines can be tightly coupled, as is the case with Symmetric Multiprocessing (SMP), closely coupled, with Asymmetric Multiprocessing (AMP), or loosely coupled, with Distributed Processing (DP). SMP systems have multiple processors on the same system bus. The processors in these systems are cache-coherent, which allows software running on any processor to share main memory and other system resources with minimal extra support. AMP systems are composed of multiple processors on a connected bus; however, the CPUs in this configuration take on a master/client arrangement. Also, each CPU doesn’t necessarily have access to the entire machine. A card plugged into an expansion slot would be a good example of an AMP system. DP environments are composed of isolated compute engines which exchange processing information over a local or wide area network.

Because of the flexibility of SMP and because of its cost being relatively low, this architecture has become the standard for mainstream multiprocessing. Multitasking operating systems can run processes on any CPU in a SMP system because each processor has the same view of the machine. Several flavors of UNIX along with Windows NT have been supporting SMP machines for a while, and with the introduction of the Apple MP API, SMP is also the official Macintosh multiprocessing standard. The Apple Multiprocessor API allows you to create MP tasks which are queued and run on any available processor. If there are more tasks than processors, or if there is just one processor, tasks are preemptively scheduled. The tasking model is a subset of the Copland tasking model, which ensures seamless future compatibility. Coding to the multiprocessor API signals the system that tasks should be run on multiple processors; however, it is likely that Copland will support running non-MP aware tasks on multiple processors as well.

One important consideration is that all of the multiprocessing solutions, as well as Copland multitasking, have severe limits on what a task in these environments can do. Preemptive tasks in any operating system can only access system routines which are designed for reentrancy. Under Copland, preemptive tasks will have access to I/O, memory management, and other kernel services. Therefore, MP tasks running under Copland will also have access to these services. However, under System 7, MP tasks cannot call any part of the MacOS. This may sound odd because there are parts of the MacOS under System 7 that are reentrant, i.e. anything that you can call from interrupt handlers. However, these calls contain 68k code, and reentrancy within 68k code isn’t guaranteed by Apple in the current or future implementations of the MacOS. So for now, MP tasks running under System 7 will be limited to scanning and processing shared memory.

Vendor Section

As a software developer looking for more performance, it is important to understand what kind of multiprocessing is available and what flavor is appropriate for your application. There are three major MP vendors for the Macintosh market. They are: DayStar Digital with their Apple-compliant SMP hardware; YARC systems with high speed accelerator boards; and PowerTap, which allows networked distributed processing.

The DayStar/Apple combination is the newest, and in many ways the most compelling, because of its simplicity, versatility, and compatibility with Copland. DayStar did much of the design and implementation of the new API and library; however, Apple now claims ownership for the code and guarantees its support in future releases of the MacOS. Use of the library gives you access to SMP-compliant systems under System 7 and Copland, while also allowing preemptive threads on uniprocessor System 7 machines. This is something that wasn’t available with the old cooperatively scheduled PowerPC threads package. However, the SMP architecture with tightly coupled processors sharing the same system bus will hinder applications that are bottlenecked on memory access.

YARC Systems has a solution for this with NuBus- and PCI-based accelerator cards that have onboard PowerPC processors and fast local RAM. If your application is extremely CPU intensive and you have access to a network of Macintoshes, you will also want to look at PowerTap, a software package from Emerson Kennedy that allows an application to tap into networked CPU resources. While YARC and PowerTap won’t accelerate applications written to the Apple MP API, both vendors plan to internally leverage off of the Apple MP API in order to take advantage of multiprocessing on the host machine.

The three main vendors of Macintosh MP products have supplied sections better describing their products. Each section contains an overview, a sample fractal algorithm coded to the vendor API, and a short section on the cost of the product.

DayStar Digital

Overview

DayStar’s new MP systems are standard Macintoshes, with one major exception: they contain more than one CPU. The Apple MP API, which was designed in conjunction with DayStar, defines a set of services that allows developers to create and communicate with multiple elements of execution called “tasks”. When tasks are run on a multiprocessor system they are scheduled and run simultaneously on all the available processors.

Task creation is accomplished by providing a pointer to a function already defined within existing application code. The most obvious advantage of this approach is that you can use existing tools and build processes to construct an MP-aware application. No special compilers or packaging of the task code are required. Tasks have complete access to all the memory in the system. If an application has retrieved and prepared data for processing it can simply tell the tasks where the data is. It is not necessary to move any data to specialized task-only memory, thus avoiding expensive transactions over system busses.

According to the Apple MP API specification the processors in an MP system must be cache-coherent. This means that the developer need not be concerned with the possibility that data stored in the cache of one processor has not yet been written to main memory. If any other processor accesses that memory, the MP hardware will automatically ensure that the value cached within the other processor is retrieved, rather than the value in main memory. The MP API’s assumption of cache-coherency makes programming significantly easier; programming non-cache-coherent systems is far more error-prone and is not for the faint of heart.

Tasks run preemptively on all systems, including those with a single processor. If an application is willing to require the presence of PowerPC hardware and the shared library that provides the MP API services, the creation of MP-aware applications can be greatly simplified. The application simply creates tasks and distributes the work accordingly. The tasks created could do all the work while the application checks for user events and controls the flow of data. The MP API is Apple system software. It will be carried forward into Copland and is in fact a subset of the Copland tasking model.

Even though tasks and applications share the same memory, it is very important that they communicate, at least initially, via one of the three communication primitives provided: message queues, semaphores and critical regions. Communicating via these primitives ensures that all former memory accesses made by the communicant are completed before the recipient starts using those locations, i.e. ensuring that shared resources are accessed atomically. Using the communication primitives also provides a method by which a task can yield time if it has to wait for something that is not yet available.

Task Communication

There are three main inter-task communication mechanisms. The first are message queues. Message queues are first-in-first-out queues of 96-bit messages. Messages are useful for telling a task what work to do and where to look for information relevant to the request being made, such as a pointer into main memory. They are also useful for indicating that a given request has been processed, and, if necessary, what the results are. Message queues incur more overhead than the other two communication primitives. If you cannot avoid frequent synchronization, at least try to use a semaphore instead of a message queue.

Semaphores store a value between 0 and some arbitrary positive integer value. The value in a semaphore can be raised and lowered, but never below 0 and never above the semaphore’s maximum value. Semaphores are useful for keeping track of how many occurrences of a particular thing are available for use. Binary semaphores, which have a maximum value of 1, are especially efficient mechanisms for indicating to some other task that something is ready. When a task or application has finished preparing data at some previously agreed-upon location, it raises the value of a binary semaphore, which the target task can be awaiting. The target task lowers the value of the semaphore, performs any necessary processing, and raises the value of a different binary semaphore to indicate that it is done with the data. This technique can be used to replace the message queue pairs described above, using the “Divide And Conquer” technique. MPCreateBinarySemaphore() is a macro that exists to simplify the creation of binary semaphores.

Critical regions are used to ensure that no more than one task (or the application) is executing a given “region” of code at any given time. For example, if part of a task’s job is to search a tree and modify it before proceeding with its primary work, then if multiple tasks were allowed to search and try to modify the tree at the same time, the tree would quickly become corrupted. An easy way to avoid the problem is to form a critical region around the tree searching and modification code. When a task tries to enter the critical region, it will be able to do so only if no other task is currently in it - thus preserving the integrity of the tree.

Cost

The cost of the DayStar Genesis system, which comes with four 604 processors and a minimum of 16MB and 1GB, will range from $10,000 to $15,000.

Sample Code

The sample code uses two queues as the communication mechanism between tasks. Each task has a receive queue for messages from the application, and the application has a global queue for messages from the tasks. When work is being done by the tasks, the front end could either block on its queue, or poll the queue and call WaitNextEvent(). When a task finishes a segment of the fractal image, it sends the results back to the front end and blocks on its queue for another segment to processes.

 err = 0
 if( !MPLibraryIsLoaded() ) /* Check that the MP library is present */
 err = 1;

    /* Check that the library is compatible with our header */
 if( (err == noErr) && !MPLibraryIsCompatible() )
 err = 1;
 
 if( err == noErr )
 numProcessors = MPProcessors();
 else
 numProcessors = 1;/* Only use the host processor */

    /* Allocate memory for each processor (each task) */
 gTaskData = (TaskData *) NewPtrClear(
 numProcessors * sizeof (TaskData));
 assert(gTaskData != NULL); /* Handle the error better than this */

    /* Allocate a queue for the main application to wait on */
 err = MPCreateQueue( &gMainAppQueue );
 assert(err == noErr);    /* Handle the error better than this */

    /* Allocate a send queue and a task for each processor */
 err = noErr;
 for( i = 0; i < numProcessors && err == noErr; i++ ) {
 err = MPCreateQueue( &gTaskData[i].taskToAppQueue);
 assert(err == noErr);    /* Handle the error better than this */
 gTaskData[i].taskToAppQueue = gMainAppQueue;
 
    /* Create a task from the function fTask() */
 err = MPCreateTask( fTask, &gTaskData[i],
 2048, NULL, NULL, NULL, 0, &gTaskData[i].taskID );
 assert(err == noErr);

 fSendMessage( gTaskData[i].appToTask, kTMCreate );

    /* We get an immediate reply to our kTMCreate message */
 fReceiveMessage( gMainAppQueue , &message );
 }
 
    /* The main application loop now posts action commands to each task */
    /* queue, then blocks on its receive queue (gMainAppQueue) until a */
    /* task has finished a segment of the image.  When all segments are */
    /* rendered, a terminate message is sent and each task quits */
    
    /* This is the task code that runs on each processor */
    /* The variable “p” was passed in at creation time to the task */
 finished = false;
 while( !finished ) {
 fReceiveMessage( p->appToTask , &message );
 switch( message ) {
 case kTMCreate:
 break;
 case kTMRun:
 main( &p->zc, &p->zd, &p->step, &p->escape,
 p->width, p->results );
 break;
 case kTMQuit:
 finished = true;
 break;
 }
 fSendMessage( gMainAppQueue , kTMReady );
 }

 return( noErr );

YARC Systems

Overview

The YARC environment uses both hardware and software in order to achieve multiprocessing. YARC offers plug-in accelerator cards for PCI and NuBus systems which contain one or two 80mhz 601 processors and onboard RAM that also runs at 80mhz. In concept, the cards may be compared to a number of independent, tightly coupled, networked machines where the network is the peripheral device bus. In the PCI implementation of the boards, this type of networked connection becomes even more powerful because of the high bandwidth of PCI.

Having live processors with fast local memory, the multiprocessing provided by the YARC environment is under full application control, without the operating system scheduling and running tasks. This offers developers a “real time” acceleration engine where CPU cycles can be closely accounted for and controlled by an application’s code. But if the full bandwidth of the processors is not used, YARC also provides a thread manager capable of running multiple threads (or tasks) on any remote processor. This multiprocessing is cooperatively (or voluntarily) scheduled, which is identical to what is implemented by the PowerPC Thread Manager on the Macintosh. The YARC multiprocessing environment therefore offers fast, guaranteed access to remote CPU horsepower, with the ability to fine-tune processor load by adding scheduled multiprocessing for any of the attached board processors.

Because the YARC system isn’t tightly coupled to the MacOS, creating “tasks” for scheduled execution involves a special development environment. This package costs $495 and is built around the GNU C compiler. YARC is working on a PEF loader which would eliminate the need for a custom development setup.

Cost

Boards start at $2,995 with one 80mhz 601 CPU and 8mb of RAM. The most powerful board is currently the two-processor HYDRA board, with 128mb of RAM. This board tops out at $13,000.

Sample Code

 #define MAXBOARDS 16
 static Board *board[MAXBOARDS];
 ...

 y_configure();  /* Initialize the environment and boards */
 if ((vfd = vio_open("AppToLoad.ppc", VO_RDONLY)) < 0)
 vioerror("AppToLoad.ppc");

 err = noErr;
 numBoards = 0;
 while((board[numBoards] = y_open(0,0)) != NULL 
 && numBoards < MAXBOARDS) {
 if ((err = yk_loadkernel(board[numBoards])) != noErr) {
 yerror(board[numBoards], 
 "Unable to load YARC PPC kernel");
 break;
 }
 if (yk_loadxcoff(board[numBoards], vfd, &info) < 0) {
 yerror(board[numBoards], 
 "Unable to load PPC code to board");
 break;
 }
 numBoards++;
 }

 vio_close(vfd);

 for(k=0; k < numBoards; k++) {
 err = yk_setargs(board[k], &info, NULL, NULL);
 err = yio_init(board[k], 0, 1, 2);/* Init stdio */
 err = ykiret(board[k]);  /* Start task code */
 }

PowerTap

Overview

PowerTap is a software library that runs on all Macintosh models. It can assign work to all processors on all Macintoshes connected by a network. PowerTap simplifies multiprocessing by performing all of the scheduling, task management and error recovery, interfacing to the host software as a simple black box where tasks are submitted and results are retrieved.

Candidate applications are those that are computationally intense and can be divided into independent pieces. PowerTap is intended for jobs that take more than a couple of seconds, although shorter jobs are practical when using attached processors. The assumption is that any job that computes for a minute or an hour must be looping in some way. Typically, it is working on each pixel/band/timeslice/piece in a similar manner. So the developer takes the contents of such an existing loop and moves that code into a DoTask() function, rather than restructuring the entire application.

To use PowerTap, a developer divides a job into multiple, independent pieces referred to as “tasks”. [PowerTap tasks are different from Apple’s notion of a MP task. PowerTap tasks refer to data, such as one tile or band of an image.] No task may depend on the results of other tasks in the same job. A host-supplied function, called DoTask(), is needed, that can perform any of the tasks, given two host-defined blocks of data. One of the blocks is the task-specific data, and the other block is common to all or most of the tasks in the job. Separating the two enables PowerTap to minimize network traffic.

To get a job done, the host software creates the separate tasks and submits them to the PowerTap library using SubmitTask(). Subsequent calls to PTIdle() cause the work to be performed on other CPU’s and/or by the local DoTask(). Task results are retrieved by calls to GetNextResult() or GetTaskResult(). Completed results and task data are available throughout the duration of the job, so there is no need to maintain queues or provide error handling for the myriad potential errors.

The basic sequence is:

InitPowerTap()

OpenJob()

SubmitTask() [once for each task]

PTIdle() and

GetNextResult() or GetTaskResult() until all results are done

CloseCurrJob()

ClosePowerTap()

The PowerTap library and DoTask() are linked into the host software. This means the host programmer does not have to code the algorithm two different ways, depending on Gestalt results - the job will be performed, regardless of the platform or environment.

Remote taps are complete, faceless, background-only (FBA) applications built from a Tap Module (provided), plus the host’s DoTask(), plus a customization resource. Users of remote machines being tapped can control their Tap with a local control panel (provided). This provides on/off control as well as an adjustment for how much or little CPU time will be given to the Tap.

Each tap has a customization resource which identifies the tap and provides settings for buffer sizes, CPU sharing and other things. There are several optional calls available for obtaining stats for the job and for individual task performance, limiting the number of participating remote Macs, and other features.

Cost

The end user has no additional costs required. PowerTap works with all Macintosh models. There can even be a relative cost savings if the end user sets up a small number of very powerful machines and uses PowerTap to enable many people to tap into the power of those “power servers”.

The developer must license one copy of PowerTap. This entitles them to unlimited distribution as part of their product with no royalties or periodic renewal fees. The present price range is $1,200 to $2,700, depending on the number of remote taps that can be used.

Sample Code

The sample fractal code is below. The DoTask() routine is not shown; however, it would consist of a routine that takes a pointer to the job data and the task data. The PowerTap libraries would be responsible for sending the task data and job data across the network to and from each tap.

 #definekNumTasks20
 ...

 err = InitPowerTap( kOnlyGuest + kUseGenesisAPI );

    // Allocate the initial request param block that gets sent to each task
 jobLen = sizeof( JobBlock );
 theJobData = (JobBlock**) NewHandleClear( jobLen );
 (**theJobData).zc = -0.75;
 (**theJobData).zd = 0;
 (**theJobData).step = 0.0001;
 (**theJobData).escape  = 50.0;
 (**theJobData).width   = 1500;

    // choose a job number that will be unique
 theJobNum = TickCount();

 err = OpenJob( theJobNum, (Handle) theJobData, jobLen );

 taskLen = sizeof( TaskBlock );

    // submit all of the tasks. they queue ~ LIFO.
    // hard-code the number of tasks as kNumTasks = 50 for the sample.
 for ( i = kNumTasks - 1; i >= 0L; i-- ) {
 taskData = (TaskBlock**) NewHandle( taskLen );
 if ( taskData != NULL )
 {
 (**taskData).startLine   = i * 1500 / kNumTasks;
 (**taskData).endLine   = (i+1) * 1500 / kNumTasks - 1;

 err = SubmitTask(i, (Handle) taskData, taskLen, NULL);
 }
 }

    // act on the task results as they come in 
 nDone = 0L;
 while ( nDone < kNumTasks )
 {
    // get all of the results that are ready now.
 while ( GetNextResult( 
 &taskNo, (Handle*) &result, &rLen, macName ) )
 {
 DrawResult( 
 taskNo, (ResultBlock**) resultHand, macName );
 nDone++;
 }

    // call PTIdle to give PowerTap some time to juggle the tasks.
 if ( PTIdle( 2L ) != noErr )
 break;

 WaitNextEvent( everyEvent, &theEvt, 2L, NULL );
 }

    // we are done now.
 ClosePowerTap();
 DisposeHandle( (Handle) theJobData );

The Pros and Cons

The Apple MP API and the SMP architecture required to support it are really going to bring multiprocessing to the masses. The SMP architecture will be even more compelling under Copland and Gershwin because those operating systems should allow much broader utilization of extra processors by any system task. On the downside, the inherent architecture of shared memory has performance implications for applications that are bottlenecked on the system bus.

PowerTap also has an interesting product that differentiates itself by its network capabilities. While this solution is going to appeal to a much smaller audience because of the necessity of a network of underutilized machines, the potential performance gains are enormous. However, the programming model is limited with respect to inter-task communication, and sending inter-task data over a network can be expensive. Also, the network “taps” can come and go, which makes using the system for real-time problem solving impossible.

YARC offers a good product as well, and the company has had years of experience with accelerator boards for the Macintosh. Their product really shines for applications that are bottlenecked on memory access, or applications that want to completely control slave CPUs for real-time applications. However, the YARC boards are limited in that they cannot stay cache-coherent with the main system CPU, which means that YARC boards currently have no way of seamlessly integrating with Copland or the Apple MP API. YARC has specialized in high-end custom applications in the past, and in my opinion, they will continue to stay in this market in the future.

Conclusions

If you think your software might take advantage of multiprocessing, then I would seriously suggest you look at the offerings described in this article. For most developers, especially mainstream developers, I think the choice is pretty clear. The Apple MP API combined with hardware from DayStar offers a viable solution today under System 7, and a clear support path with the Copland OS and beyond. YARC and PowerTap offer excellent products with superior performance in many situations; however, they are more appropriate for specialized solutions, and I don’t think they will break into the mainstream. From the customer’s point of view, an investment in an Apple MP-compatible machine is a clear investment in the future. The future of MP for Macintosh clones lies also in the SMP architecture. The CHRP hardware standard, which Copland will surely support, also defines a SMP architecture for multiprocessor machines.

Multiprocessing is about to enter the Macintosh mainstream and the price/performance implications are exciting. For Macintosh MP to really take off, though, there will have to be a resolution of the current chicken-and-egg problem. For a while, few customers will have MP-capable machines, and developers will be reluctant to spend time converting their applications without a clear market. For the customer, it will be a question of spending extra for a multiprocessor box when there aren’t that many applications that take advantage of the extra horsepower. However, this problem is already being solved by Adobe. They have a plug-in module for Photoshop that takes advantage of Apple MP systems, and their customer base is very likely to spend the money to upgrade. Maybe this is just the spark needed to get the ball rolling and make Macintosh MP a viable solution.

DayStar Digital http://www.daystar.com/expand.html

YARC http://www.yarc.com

Emerson Kennedy mailto:powertap@aol.com

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.