TweetFollow Us on Twitter

Mar 96 Challenge
Volume Number:12
Issue Number:3
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Words The Reverse

Text input, of Block given a in words of order the place (in reverse) will that routine a write to is challenge the month this. Oops, what I meant to say was: This month, the Challenge is to write a routine that will reverse (in place) the order of words in a given block of input text. The prototype for the code you should write is:

pascal void ReverseTheWords(
 const char *text, /* the words you should reverse */
 const long numCharsIn    /* length of inputText in chars */
);

Specifically, ReverseTheWords should exchange the first word in the input text with the last word, the second word with the next-to-last word, etc. For the purpose of this Challenge, a word is defined as a continuous sequence of alphanumeric characters [a..zA..Z0..9]. Any nonalphanumeric characters should remain in their original positions and in their original order with respect to the new words; that is, punctuation, white space, and other characters between the first and second input words should, on output, be located between the new first and second words. As an example, ReverseTheWords would convert:

 This, however, <-is-> a (difficult) test.

into

 Test, difficult, <-a-> is (however) this.

As you can see from the example, there is one additional requirement. Your code needs to adjust the capitalization of words so that the n-th word is capitalized on output only if the n-th word was capitalized in the input text.

There are no specific restrictions on the amount of auxiliary memory you may use (within reason), so you may allocate a few buffers of size numCharsIn should you need them. Remember, however, to deallocate any memory you allocate before returning, as I will be calling your code many times.

Note that the prototype specifies the use of Pascal calling conventions. That is because this month we are conducting

A Language Experiment

Over the past months, in response to suggestions from readers, we have made a number of changes to the Challenge, including migrating to PowerPC native code and expanding to other C compilers. Now we are experimenting with some additional changes. This month, for the first time, your solution to the Challenge can be coded in C, C++, or Pascal, using your choice among the MPW, Metrowerks, or Symantec compilers for these languages. Although either 68K or PowerPC code is permitted, I will be running your code on a PowerMac 8500, so native code is obviously recommended. The environment you choose must support linking your solution with test code written in C. Along with your solution, you should specify the intended environment, compiler and compiler options, or (better yet) provide a project file or make file that will generate a stand-alone application that calls your solution from C test code.

Two Months Ago Winner

Congratulations to Jorg “jbx” Brown and Eric Gundrum for submitting the fastest entry to the Sliding Tiles Challenge. Contestants were asked to unscramble an N¥M grid of interlocking tiles, where a tile could be moved horizontally or vertically into the empty tile location. Fourteen of the 16 entries submitted worked correctly. The table below presents selected results from the timing tests, which used puzzles ranging in size from 8¥8 to 100¥300. (Two of the entries worked too slowly to complete the entire test suite.)

The most common solution technique involved solving the puzzle row-by-row from the bottom, being careful not to disturb tiles that had already been moved into their correct positions. The top two rows were solved together, starting from the right column and working left. Several solutions, including the winners’ and the even more move-efficient second-place entry by Peter Lewis, refined this by using a “greedy” algorithm that solves the bottom row and right column first, then moves to the next row and column. Since the problem involved use of a given callback routine for each move, it was important to reduce the number of tile moves. Some solutions moved tiles primarily in horizontal and vertical directions; others (including the winners’) devised operators that moved a tile diagonally in fewer moves.

Thanks to Greg Linden for sending me a reference to an article on this subject in Information Processing Letters (Oct. 1995). In that article, Ian Parberry (University of North Texas) establishes some bounds on algorithms for the n2-1 puzzle (the square version of this Challenge). The article proves that the “greedy” algorithm requires at most 5n3 moves in the worst case, and that any algorithm must make at least n3 moves (ignoring lower-order terms for both bounds). While a better algorithm may exist, Ian speculates that the lower bound could be made tighter. Interested readers can contact the author at ian@cs.unt.edu, or browse his web page at http://hercule.csci.unt.edu/ian.

Here are the times for each of the correct entries. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

Time Time Total # of Moves

Name 20x20 100x300 Time (Millions)

Jorg Brown (10)

& Eric Gundrum 183 175730 261694 249

Peter Lewis 195 197905 294931 228

Christopher Phillips 211 200368 302774 269

Ludovic Nicolle 252 220952 337386 300

Ernst Munter (110) 159 258165 365894 295

Randy Boring 386 309630 481609 307

Cathy Saxton 264 338127 496610 299

Rishi Khan (age 16) 284 350763 506952 320

Xan Gregg (88) 296 360735 531493 299

Tom Saxton (10) 333 404155 592967 339

Miguel Cruz Picão(7) 245 652588 912267 339

John Sweeney (4) 300 875362 1223956 321

A. K. * * * *

G. L. * * * *

Top Contestants Of All Time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 112 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Brown, Jorg 30

7. Riha, Stepan 51 17. Landry, Larry 29

8. Cutts, Kevin 50 18. Elwertowski, Tom 24

9. Goebel, James 49 19. Lee, Johnny 22

10. Nepsund, Ronald 47 20. Noll, Robert 22

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here the winning solution by Jorg and Eric:

SlidingTiles.c

Written by Jorg Brown & Eric Gundrum

Thanks also to Brad Kollmyer

typedef Boolean (*MoveProc)(
  long tileToMoveRow, long tileToMoveCol);

static MoveProc gMakeMove;
static long *gTiles, gNumCols, *gPieceRow, *gPieceCol;
static long *gBlankSquare; // initialized by SolveTiles, updated by BlankXXX()

#define gBlankRow pieceRow[0]
#define gBlankCol pieceCol[0]

BlankUp
static void BlankUp() { // move the BLANK SQUARE up
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

BlankDown
static void BlankDown() { // move the BLANK SQUARE down
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + gNumCols;
   tile = *newBlankSquare;
   pieceRow[tile] = gBlankRow++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToRow
static void MoveBlankToRow(long destRow) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankRow = gBlankRow;
   long   rowInc, BlankSquareInc;

   if (blankRow < destRow) { // move DOWN
      rowInc = 1;
      BlankSquareInc = gNumCols;
   } else if (blankRow > destRow) { // move UP
      rowInc = -1;
      BlankSquareInc = -gNumCols;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + BlankSquareInc;
      tile = *newBlankSquare;
      pieceRow[tile] = blankRow;
      blankRow += rowInc;
      gMakeMove(blankRow, gBlankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankRow != destRow);
   gBlankSquare = newBlankSquare;
   gBlankRow = blankRow;
}

BlankLeft
static void BlankLeft() { // move the BLANK SQUARE left
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare - 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol--;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}


BlankRight
static void BlankRight() { // move the BLANK SQUARE right
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;

   oldBlankSquare = gBlankSquare;
   gBlankSquare = newBlankSquare = oldBlankSquare + 1;
   tile = *newBlankSquare;
   pieceCol[tile] = gBlankCol++;
   gMakeMove(gBlankRow, gBlankCol);
   *oldBlankSquare = tile;
   *newBlankSquare = 0;
}

MoveBlankToCol
static void MoveBlankToCol(long destCol) {
   long   tile, *oldBlankSquare, *newBlankSquare;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   blankCol = gBlankCol;
   long   inc;

   if (blankCol < destCol) { // move RIGHT
      inc = 1;
   } else if (blankCol > destCol) { // move LEFT
      inc = -1;
   } else return;

   oldBlankSquare = gBlankSquare;
   do {
      newBlankSquare = oldBlankSquare + inc;
      tile = *newBlankSquare;
      pieceCol[tile] = blankCol;
      blankCol += inc;
      gMakeMove(gBlankRow, blankCol);
      *oldBlankSquare = tile;
      *newBlankSquare = 0;
      oldBlankSquare = newBlankSquare;
   } while (blankCol != destCol);
   gBlankSquare = newBlankSquare;
   gBlankCol = blankCol;
}

MoveAPiece

static void MoveAPiece(long piece, long destRow, long destCol, 
 long nextPiece) {
   long   sourceRow, sourceCol;
   long   *pieceRow = gPieceRow;
   long   *pieceCol = gPieceCol;
   long   nextRow = gNumCols;

   sourceRow = pieceRow[piece];
   sourceCol = pieceCol[piece];

   if (sourceRow >= destRow) { 
      // in this case, we have to move the tile up (or directly right) to get to its destination
      if (sourceRow == destRow) {
         if (sourceCol == destCol) return;

         // simplify: move the blank so that it is not to the right of the target
         if (gBlankCol > destCol) {
            MoveBlankToCol(destCol);
         }

         // move the blank to the left of the source, possibly moving the source
         // to the right at the same time.
         if (gBlankRow != destRow) {
            if (sourceCol == destCol-1 && gBlankRow > destRow) {
               MoveBlankToCol(sourceCol - 1);
               MoveBlankToRow(sourceRow - 1);
               BlankRight(); BlankRight();
               BlankDown();  BlankLeft();
               return; // all done
            } else {
               MoveBlankToCol(sourceCol + 1);
               MoveBlankToRow(sourceRow);
               BlankLeft();
               sourceCol++;
            }
         } else {
            if (gBlankCol < sourceCol) {
               MoveBlankToCol(sourceCol - 1);
            } else {
               MoveBlankToCol(sourceCol);
               sourceCol++;
            }
         }
         
WereOnTheSameRowNow:
         // at this point, the blank is to the left of the source,
         // and the puzzle might very well be done already.
         while (sourceCol != destCol) {
            if (nextPiece == piece - 1) { // into a row?
               if (gBlankCol != 0 && 
                     pieceCol[nextPiece]-pieceRow[nextPiece] <= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - 1);
               }
               if (gBlankRow == destRow) 
                 while ((gBlankSquare[-1] == gBlankSquare[1] - 1) 
                        && gBlankCol != 0) {
                  BlankLeft();
               }
            }
            if (gBlankRow == destRow) BlankUp();
            do {
               BlankRight();
            } while (gBlankCol <= sourceCol);
            BlankDown();  BlankLeft();  sourceCol++;
         }
         return;
      }
      // simplify: move the blank so that it is to the left of the target
      if (gBlankCol >= destCol) {
         MoveBlankToCol(destCol - 1);
      }
      // simplify: move the blank so that it is not above the target.
      if (gBlankRow < destRow) MoveBlankToRow(destRow);

again1:   // simplify: if the blank is below the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankRow >= sourceRow) {
         // if the blank is in the same column, move it away first.
         if (gBlankCol == sourceCol) {
            if (gBlankCol == destCol - 1) {
               BlankLeft();
            } else {
               BlankRight();
            }
         }
         // now that they're in different columns, move the blank so it’s not below
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is on the same row, and to the left, move up.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         BlankUp();
      }
      // simplify: if the blank is to the left, move it to the same column.
      if (gBlankCol < sourceCol) {
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is to the upper right, move it to the left and down.
      if (gBlankRow < sourceRow) {
         if (gBlankCol > sourceCol) {
            MoveBlankToCol(sourceCol);
         }
         if (gBlankRow < sourceRow - 1) {
            MoveBlankToRow(sourceRow - 1);
         }
      }
      // if the blank is off to the right, move it next to the source.
      while (gBlankCol > sourceCol + 1) {
         MoveBlankToCol(sourceCol + 1);
      }
      // at this point, the blank should be either just above or just right of the piece.
      if (gBlankCol == sourceCol) {
         if (gBlankRow != sourceRow - 1) Debugger();
      } else {
         if (gBlankRow != sourceRow) Debugger();
         if (gBlankCol != sourceCol + 1) Debugger();
         BlankLeft();  BlankUp();    BlankRight();
      }
      BlankDown();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceRow != destRow) goto again1;
      if (gBlankCol != destCol - 1) {
         BlankRight(); BlankUp();    BlankLeft();
         while (pieceCol[piece] != destCol) {
            BlankUp();    BlankRight(); BlankRight();
            BlankDown();  BlankLeft();
         }
         return; // DONE!!!!
      }
      BlankLeft();  BlankUp();    BlankUp();    BlankRight(); 
      BlankRight(); BlankDown();  BlankLeft();
      return; // DONE!!!!
   }

   // at this point, we know that source is above our destination.
   if (sourceCol >= destCol) { 
      // in this case, we have to move the tile left (or directly down) to get to its destination
      if (sourceCol == destCol) {

         // simplify: move the blank so that it is not below the target
         if (gBlankRow > destRow) {
            MoveBlankToRow(destRow);
         }

         // move the blank above the source, possibly moving the source
         // down at the same time.
         if (gBlankCol != destCol) {
            if (sourceRow == destRow-1 && gBlankCol > destCol) {
               MoveBlankToRow(sourceRow - 1);
               MoveBlankToCol(sourceCol - 1);
               BlankDown();  BlankDown();
               BlankRight(); BlankUp();
               return; // all done
            } else {
               MoveBlankToRow(sourceRow + 1);
               MoveBlankToCol(sourceCol);
               BlankUp();
               sourceRow++;
            }
         } else {
            if (gBlankRow < sourceRow) {
               MoveBlankToRow(sourceRow - 1);
            } else {
               MoveBlankToRow(sourceRow);
               sourceRow++;
            }
         }
         
WereInTheSameColumnNow:
         // at this point, the blank is on top of the source,
         // and the puzzle might very well be done already.
         while (sourceRow != destRow) {
            if (nextPiece == piece - nextRow) { // into a column?
               if (gBlankRow != 0 && 
                   pieceCol[nextPiece]-pieceRow[nextPiece] >= 
                     gBlankCol-gBlankRow) {
                  MoveAPiece(nextPiece, gBlankRow, gBlankCol, 
                               nextPiece - nextRow);
               }
               if (gBlankCol == destCol) 
                 while ((gBlankSquare[-nextRow] == 
                         gBlankSquare[nextRow] - 1) && 
                        gBlankRow != 0) {
                  BlankUp();
               }
            }
            if (gBlankCol == destCol) BlankLeft();
            do {
               BlankDown();
            } while (gBlankRow <= sourceRow);
            BlankRight(); BlankUp();    sourceRow++;
         }
         return;
      }
      // simplify: move the blank so that it is to the up of the target
      if (gBlankRow >= destRow) {
         MoveBlankToRow(destRow - 1);
      }
      // simplify: move the blank so that it is not to the left of the target.
      if (gBlankCol < destCol) MoveBlankToCol(destCol);

again2:   // simplify: if the blank is to the right of the source, move it so it’s not.
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (gBlankCol >= sourceCol) {
         // if the blank is in the same row, move it away first.
         if (gBlankRow == sourceRow) {
            if (gBlankRow == destRow - 1) {
               BlankUp();
            } else {
               BlankDown();
            }
         }
         // now that they’re in different rows, move the blank so it’s not to the right of
         MoveBlankToCol(sourceCol);
      }
      // simplify: if the blank is on the same column, and to the up, move left.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         BlankLeft();
      }
      // simplify: if the blank is to the up, move it to the same row.
      if (gBlankRow < sourceRow) {
         MoveBlankToRow(sourceRow);
      }
      // simplify: if the blank is to the lower left, move it to the right and up.
      if (gBlankCol < sourceCol) {
         if (gBlankRow > sourceRow) {
            MoveBlankToRow(sourceRow);
         }
         if (gBlankCol < sourceCol - 1) {
            MoveBlankToCol(sourceCol - 1);
         }
      }
      // if the blank is off to the down, move it next to the source.
      while (gBlankRow > sourceRow + 1) {
         MoveBlankToRow(sourceRow + 1);
      }
      // at this point, the blank should be either just below or just to the left of the piece.
      if (gBlankRow == sourceRow) {
         if (gBlankCol != sourceCol - 1) Debugger();
      } else {
         if (gBlankCol != sourceCol) Debugger();
         if (gBlankRow != sourceRow + 1) Debugger();
         BlankUp();    BlankLeft();  BlankDown();
      }
      BlankRight();
      sourceRow = pieceRow[piece];
      sourceCol = pieceCol[piece];
      if (sourceCol != destCol) goto again2;
      if (gBlankRow != destRow - 1) {
         BlankDown();  BlankLeft();  BlankUp();
         while (pieceRow[piece] != destRow) {
            BlankLeft();  BlankDown();
            BlankDown();  BlankRight(); BlankUp();
         }
         return; // DONE!!!!
      }
      BlankUp();    BlankLeft();  BlankLeft();  BlankDown();
      BlankDown();  BlankRight(); BlankUp();
      return; // DONE!!!!
   }

   // at this point, we know that we are above and to the left of our destination.

   if (destCol - sourceCol == destRow - sourceRow) {
      // we’re on the diagonal.
      if (gBlankCol >= sourceCol) {
         if (gBlankRow <= sourceRow) goto MoveSrcRightFirst;
      }
      if (gBlankRow >= sourceRow) {
         if (gBlankCol <= sourceCol) goto MoveSrcDownFirst;
      }
      if (gPieceRow[nextPiece] - gPieceCol[nextPiece] > 
          destRow - destCol) {
         // relative to the destination, the next piece is to the lower left.
         // this means we want the blank to end up to the left of the target,
         // rather than above it.
         goto MoveSrcDownFirst;
      }
      goto MoveSrcRightFirst;
   }
   if (destCol - sourceCol < destRow - sourceRow) {
MoveSrcDownFirst:
      // the source is within the 90š-135š octant.
      // we want to move the blank square just below the source.
      // we will end up just to the left of the target.
      if (gBlankCol == sourceCol && gBlankRow < sourceRow) {
         // the blank is on top of the source.  moving it
         // down would move our square in the wrong direction.
         BlankRight();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don’t accidentally munge the protected area.
      if (gBlankCol > destCol) MoveBlankToCol(destCol);
      MoveBlankToRow(sourceRow + 1);
      MoveBlankToCol(sourceCol);
      BlankUp();    sourceRow++;
      BlankRight(); BlankDown();
      // the blank is now to the right of the source.
   } else {
MoveSrcRightFirst:
      // the source is within the 135š-180š octant.
      // we want to move the blank square just to the right of the source.
      // we will end up just above the target.
      if (gBlankRow == sourceRow && gBlankCol < sourceCol) {
         // the blank is to the left of the source.  moving it
         // to the right would move our square in the wrong direction.
         BlankDown();
      }
      // in case the source is just to the upper left of the target,
      // we have to make sure we don't accidentally munge the protected area.
      if (gBlankRow > destRow) MoveBlankToRow(destRow);
      MoveBlankToCol(sourceCol + 1);
      MoveBlankToRow(sourceRow);
      // the blank is now to the right of the source.
   }
   BlankLeft();
   sourceCol++;
   // the blank is now to the left of the source.
   // are we done yet?
   for (;;) {
      if (sourceCol == destCol) {
         if (sourceRow == destRow) return;
         // the blank is still to the left of the source.
         BlankDown();  BlankRight(); BlankUp();   sourceRow++;
         goto WereInTheSameColumnNow;
      }
      if (sourceRow == destRow) {
         goto WereOnTheSameRowNow;
      }
      BlankDown();  BlankRight(); BlankUp();    sourceRow++;
      BlankRight(); BlankDown();  BlankLeft();  sourceCol++;
   }
}

QuickBlock
static void *QuickBlock(long size) {
   Handle   h = NewHandle(size);
   if (h == 0) return 0;
   HLock(h);
   return *h;
}

DisposeBlock
static void DisposeBlock(void *block) {
   Handle   h = RecoverHandle(block);
   DisposeHandle(h);
}


SolveTiles
void SolveTiles(
  long *tiles,      /* pointer to array of tiles where */
  long numRows,     /*   tile (row,col) is at */
  long numCols,     /*   *(tiles + row*numCols + col) */
  MoveProc MakeMove /* Callback procedure to move a tile */
) {
   long   col, row, target, tile, correctTile;
   long   colsToGo, rowsToGo;
   long   *tileRover, *pieceRow, *pieceCol;

   pieceRow = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceRow == 0) return;
   pieceCol = QuickBlock(numRows * numCols * sizeof(long));
   if (pieceCol == 0) {
      DisposeBlock(pieceRow);
      return;
   }
   gPieceRow = pieceRow;
   gPieceCol = pieceCol;
   gMakeMove = MakeMove;
   gTiles = tiles;
   gNumCols = numCols;

   tileRover = tiles;
   correctTile = 0;
   for (row = 0; row < numRows; row++) {
      for (col = 0; col < numCols; col++) {
         tile = *tileRover++;
         pieceRow[tile] = row;
         pieceCol[tile] = col;
         correctTile++;
      }
   }

   gBlankSquare = &tiles[gBlankRow * numCols + gBlankCol];

   rowsToGo = numRows;
   colsToGo = numCols;

   for (;;) {
      if (rowsToGo >= colsToGo) {
         if (rowsToGo <= 2) break;
         row = rowsToGo - 1;
         for (col = colsToGo - 1; col > 1; col--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - 1);
         }
         tile = row * numCols;
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0   ||
             pieceRow[tile + 1] != row || 
             pieceCol[tile + 1] != 1) {
            MoveAPiece(tile, row, 1, tile + 1);
            if (gBlankRow == row) {
               if (tiles[(row - 1) * numCols] == tile + 1) {
                  // problem scenario 1
rowScenario1:
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankUp();    BlankRight(); BlankDown();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankDown();  BlankRight();
                  BlankUp();
                  goto nextRow;
               }
            } else if (tiles[row * numCols] == tile + 1) {
               // problem scenario 2
               MoveBlankToCol(0);
               MoveBlankToRow(row);
               goto rowScenario1;
            }
            MoveAPiece(tile + 1, row, 1, 0);
         }
nextRow:   if (gBlankRow == row) BlankUp();
         if (pieceRow[tile]     != row || 
             pieceCol[tile    ] != 0) {
            // the “12” isn’t in place...
            Debugger();
         }
      rowsToGo--;
      } else {
         if (colsToGo <= 2) break;
         col = colsToGo - 1;
         for (row = rowsToGo - 1; row > 1; row--) {
            tile = row * numCols + col;
            MoveAPiece(tile, row, col, tile - numCols);
         }
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col ||
             pieceRow[numCols + col] != 1 || 
             pieceCol[numCols + col] != col) {
            MoveAPiece(col, 1, col, col + numCols);
            if (gBlankCol == col) {
               if (tiles[col - 1] == numCols + col) {
                  // problem scenario 1
colScenario1:
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankLeft();  BlankDown();  BlankRight();
                  BlankRight(); BlankUp();    BlankLeft();
                  BlankDown();  BlankLeft();  BlankUp();
                  BlankRight(); BlankRight(); BlankDown();
                  BlankLeft();
                  goto nextCol;
               }
            } else if (tiles[col] == numCols + col) {
               // problem scenario 2
               MoveBlankToRow(0);
               MoveBlankToCol(col);
               goto colScenario1;
            }
            MoveAPiece(numCols + col, 1, col, 0);
         }
nextCol:   if (gBlankCol == col) BlankLeft();
         if (pieceRow[          col] != 0 || 
             pieceCol[          col] != col) {
            // the “3” isn’t in place...
            Debugger();
         }
         colsToGo--;
      }
   }

   if (gBlankRow == 0) {
      if (gBlankCol == 0) {
         if (pieceRow[1] == 0) goto pos0123;
         if (pieceCol[1] == 0) goto pos0312;
                               goto pos0231;
      } else {
         if (pieceRow[1] == 0) goto pos1023;
         if (pieceCol[1] == 0) goto pos3012;
                               goto pos2031;
      }
   } else {
      if (gBlankCol == 0) {
         if (pieceRow[1] != 0) goto pos3201;
         if (pieceCol[1] == 0) goto pos1302;
                               goto pos2103;
      } else {
         if (pieceRow[1] != 0) goto pos3210;
         if (pieceCol[1] == 0) goto pos1320;
                               goto pos2130;
      }
   }

pos3012: BlankLeft();
pos0312: BlankDown();
pos1302: BlankRight();
pos1320: BlankUp();
pos1023: BlankLeft();
         goto all_done;

pos3210: BlankLeft();
pos3201: BlankUp();
pos0231: BlankRight();
pos2031: BlankDown();
pos2130: BlankLeft();
pos2103: BlankUp();
pos0123: goto all_done;

all_done:
   DisposeBlock(pieceRow); gPieceRow = 0;
   DisposeBlock(pieceCol); gPieceCol = 0;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Notion 2.1.9 - A unified workspace for m...
Notion is the unified workspace for modern teams. Features: Integration with Slack Documents Wikis Tasks More guests: invite up to 10 collaborators, friends & family to your pages Page... Read more
Spotify 1.2.0.1165 - Stream music, creat...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Thunderbird 102.5.1 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Pinegrow 7.03 - Mockup and design web pa...
Pinegrow (was Pinegrow Web Designer) is desktop app that lets you mockup and design webpages faster with multi-page editing, CSS and LESS styling, and smart components for Bootstrap, Foundation,... Read more
Adobe After Effects 2022 23.1 - Create p...
The new, more connected Adobe After Effects can make the impossible possible. Get powerful new features like a Live 3D Pipeline that brings CINEMA 4D scenes in as layers - without intermediate... Read more
SteerMouse 5.6.7 - Powerful third-party...
SteerMouse is an advanced driver for USB and Bluetooth mice. SteerMouse can assign various functions to buttons that Apple's software does not allow, including double-clicks, modifier clicks,... Read more
Wireshark 4.0.2 - Network protocol analy...
Wireshark is one of the world's foremost network protocol analyzers, and is the standard in many parts of the industry. It is the continuation of a project that started in 1998. Hundreds of... Read more
Adobe Premiere Pro 2022 23.1 - Digital v...
Adobe Premiere Pro is available as part of Adobe Creative Cloud for as little as $54.99/month. The price on display is a price for annual by-monthly plan for Adobe Premiere Pro only. Adobe Premiere... Read more
1Password 8.9.10 - Powerful password man...
1Password is a password manager that uniquely brings you both security and convenience. It is the only program that provides anti-phishing protection and goes beyond password management by adding Web... Read more
FotoMagico 6.3 - Powerful slideshow crea...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more

Latest Forum Discussions

See All

SwitchArcade Round-Up: ‘Chained Echoes’,...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 8th, 2022. Today is Thursday, and that usually means an absolute deluge of new releases on the eShop. But the year is winding down, so we’ve only got ten or so to look at... | Read more »
‘Awaken Legends: Idle RPG’ Celebrates th...
Awaken Legends: Idle RPG is adding its first update since the game was soft-launched in November, letting players get their hands on a new hero “Hera Valen". Players can also look forward to the Covenant of the Dark Knight event and the Wishing Well... | Read more »
‘Horizon Chase 2’ Japan World Tour Expan...
Horizon Chase 2 () from Aquiris is getting a major expansion today on Apple Arcade. The Japan World Tour expansion brings in 11 new races across 9 cities and it should be rolling out now as of this writing. I expect it to be available worldwide... | Read more »
Dark Fantasy Visual Novel ‘The 13th Mont...
Originally announced for release in August, The 13th Month from Japanese developer Kobayashimaru and publisher Kodansha released on PC via Steam worldwide this month. The dark fantasy visual novel that reimagines the classic Sleeping Beauty tale, is... | Read more »
Tom Clancey’s The Divison Resurgence ann...
Ubisoft has announced the latest Live Test dates for Tom Clancy’s The Division Resurgence, the hotly anticipated mobile entry in the Divison series. Starting December 8th and ending on the 22nd, the test will offer a huge amount of content for the... | Read more »
‘Easy Come Easy Golf’ New Update Adds St...
Easy Come Easy Golf () from Clap Hanz is one of my favorite games on Apple Arcade. It has been updated quite a bit since launch bringing in new modes and improvements. It recently launched on Nintendo Switch as well. | Read more »
Out Now: ‘Magic vs Metal’, ‘Suzerain’, ‘...
Each and every day new mobile games are hitting the App Store, and so each week we put together a big old list of all the best new releases of the past seven days. Back in the day the App Store would showcase the same games for a week, and then... | Read more »
SwitchArcade Round-Up: Reviews Featuring...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 7th, 2022. Today can be accurately described as Mikhail Madness, with a whopping four reviews from our pal-est of pals. Football Manager 2023 Touch, Wobbledogs, Soccer Story... | Read more »
Alchemy Stars celebrates 1 and a half ye...
It has been one and a half years since Alchemy Stars launched, and Level Infinite is celebrating in style with a host of new content. There will be a new story mission and even a store to explore, and a whole new mode for those budding idol... | Read more »
Fighting Game ‘Art of Fighting 2’ ACA Ne...
Last week, side-scrolling shooter Pulstar hit mobile platforms as the newest ACA NeoGeo series release from Hamster and SNK. Read Shaun’s review of it here. Today, fighting game Art of Fighting 2 has launched on iOS and Android. Art of Fighting 2... | Read more »

Price Scanner via MacPrices.net

New! Details on Verizon’s Christmas/Holiday p...
Verizon is offering discounts on iPhones, Apple Watch models, and iPads with specific promo codes as part of their Christmas/Holiday 2022 offerings. Codes are valid when adding a new line of service... Read more
Apple MagSafe accessories are back on Holiday...
Amazon has Apple MagSafe Chargers and Apple’s MagSafe Battery on sale for up to 24% off MSRP again as part of their Christmas/Holiday sale. Shipping is free, and all models are in stock: – MagSafe... Read more
13″ M2 MacBook Airs on sale again for the low...
Amazon has 13″ MacBook Airs with M2 CPUs in stock today and on sale for $150 off MSRP as part of their Christmas/Holiday Sale, prices start at $1049. Shipping is free. They are the lowest prices... Read more
Get an Apple 16″ MacBook Pro for $400 off MSR...
16″ MacBook Pros with Apple’s M1 Pro CPUs are in stock and on sale today at B&H Photo for $300-$400 off Apple’s MSRP for a limited time. Prices start at $2099 for M1 Pro models with 512GB or 1TB... Read more
Holiday clearance sale! Previous-generation A...
Amazon has 2nd generation 32GB and 64GB 4K Apple TVs with Siri remotes and 32GB Apple TV HDs on clearance sale for $80-$90 off original MSRP. Shipping is free, and delivery is available in time for... Read more
Christmas sale at Verizon: Apple AirPods Pro...
Verizon has first-generation Apple AirPods Pro on sale for $159.99 on their online store as part of their continuing Christmas/Holiday sale. Their price is $90 off Apple’s original MSRP, and it’s the... Read more
New Christmas/New Years promo at Xfinity Mobi...
Switch to Xfinity Mobile and open a new line of service, and take $400 off the price of a new iPhone, no trade-in required, through January 10, 2023. The $400 is applied to your account as credits... Read more
Apple iPad Smart Keyboard Folio prices drop u...
Apple iPad Smart Keyboard Folio prices have dropped up to $60 off MSRP at Amazon and Walmart as part of their Christmas/Holiday sales. These are the cheapest prices currently available for these iPad... Read more
Today is the final day for Xfinity Mobile’s $...
If you switch to Xfinity Mobile and open a new line of service, they will take $500 off the price of a new iPhone, no trade-in required. This is the best no trade-in Cyber Monday Apple iPhone 14 deal... Read more
Amazon restocks 10.2″ 64GB 9th-generation iPa...
Amazon has Apple’s 9th generation 10.2″ 64GB WiFi iPads (Silver) in stock and on sale for $269.99 shipped as part of their Christmas/Holiday Sale. Their price is $60 off Apple’s MSRP. Free delivery... Read more

Jobs Board

*Apple* Systems Administrator - JAMF - Activ...
…Administration **Duties and Responsibilities** + Configure and maintain the client's Apple Device Management (ADM) solution. The current solution is JAMF supporting Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Sephora Beauty Advisor - *Apple* Blossom Ma...
Sephora Beauty Advisor - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.