TweetFollow Us on Twitter

Feb 96 Challenge
Volume Number:12
Issue Number:2
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Intersecting Rectangles

The Challenge this month is to write a routine that will accept a list of rectangles and calculate a result based on the intersections of those rectangles. Specifically, your code will return a list of non-overlapping rectangles that contain all points enclosed by an odd (or even) number of the input rectangles. The prototype for the code you should write is:

void RectangleIntersections(
 const Rect inputRects[], /* list if input rectangles */
 const long numRectsIn,   /* number of inputRects */
 Rect outputRects[], /* preallocated storage for output */
 long *numRectsOut,/* number of outputRects returned */
 const Boolean oddParity  /* see text for explanation */
);

The parameter oddParity indicates whether you are to return rectangles containing points enclosed by an odd number of the numRectsIn inputRects rectangles (oddParity==true) or by an even (nonzero) number of rectangles (oddParity==false). Sufficient storage for the output will be preallocated for you and pointed to by outputRects.

As an example, if you were given these inputRects:

 {0,10,20,30}, {5,15,20,30}

and oddParity were true, you might return the following list of outputRects:

 {0,10,5,15}, {0,15,5,30}, {5,10,15,20}

It would also be correct to return a result that combined the first of these rectangles with either of the other two. If oddParity were false, you would return the following list for the example input:

 {5,15,20,30}

The outputRects must be non-empty and non-overlapping. In the example, it would be incorrect to return the following for the odd parity case:

 {0,10,5,30} {0,10,20,15}

The outputRects you generate must also be maximal, in the sense that each edge of each of the outputRects should pass through a vertex of one of the inputRects. That is, for example, I don’t want you to return a 1¥1 rectangle representing each point enclosed in the desired number of inputRects. Before returning, set *numRectsOut to indicate the number of outputRects you generated.

If you need auxiliary storage, you may allocate any reasonable amount within your code using toolbox routines or malloc, but you must deallocate that storage before returning. (No memory leaks! - I’ll be calling your code many times.)

This native PowerPC Challenge will be scored using the latest Metrowerks compiler, with the winner determined by execution time. If you have any questions, or would like some test data for your code, please send me e-mail at one of the Programmer’s Challenge addresses, or directly to bob_boonstra@mactech.com. Test data will also be sent to the Programmer’s Challenge mailing list, which you can join by sending a message to autoshare@mactech.com with the SUBJECT line “sub challenge YourName”, substituting your real name for YourName.

Two Months Ago Winner

Eight of the 13 solutions submitted for the Find Again And Again Challenge worked correctly. Congratulations to Gustav Larsson (Mountain View, CA) for submitting an entry that was significantly faster than the others. The problem was to write a text search engine optimized to operate repeatedly on the same block of text. A variety of optimization techniques were represented in the solutions, a couple of which are highlighted in the table of results below. Several people optimized for the case where the same word was repeatedly searched for. Some of my tests included this case, and those results are in the columns headed “repeat.” The “random” columns shows results for tests that searched for random occurrences of random words. Each of the tests were run under conditions where only 64KB of auxiliary storage was available, and where much more memory was available. These conditions were weighted 20% and 80% respectively in calculating the total time, since the problem statement promised that ample memory would usually be provided. You can see that Gustav’s solution performed reasonably well when memory was scarce, and very well when memory was plentiful.

Gustav’s solution hashes as many words of the input text as possible in the initialization routine. He uses the Boyer-Moore-Horspool algorithm to find words in any text that was not parsed during initialization. Other features of the approach are described in the well-commented code.

Here are the times and code sizes for entries that passed by tests. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

64K Memory >>64K Memory code

Name repeat random repeat random time size

Gustav Larsson (67) 1814 3773 62 111 1255 3584

Tom Saxton 46 16400 197 459 3814 2000

Xan Gregg (81) 27 2907 1316 2835 3907 1664

Kevin Cutts (46) 1760 3234 1760 2809 4654 1600

Joseph Ku 8856 14570 121 509 5189 1584

David Cary 60 22665 499 1000 5745 2124

Eric Lengyel (40) 34 10221 29 4697 5831 1188

Ernst Munter (110) 2036 2053 2287 4603 6330 2976

Top Contestants of All time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 110 12. Kasparian, Raffi 42

3. Gregg, Xan 88 13. Vineyard, Jeremy 42

4. Larsson, Gustav 87 14. Lengyel, Eric 40

5. Karsh, Bill 80 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Landry, Larry 29

7. Riha, Stepan 51 17. Elwertowski, Tom 24

8. Cutts, Kevin 50 18. Lee, Johnny 22

9. Goebel, James 49 19. Noll, Robert 22

10. Nepsund, Ronald 47

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here is Gustav’s winning solution:

Find Again and Again

Copyright © 1995 Gustav Larsson

Constants & Types
#define ALPHABET_SIZE 256
#define ALLOC_SIZE(n) ((n+3) & -4L) /* next multiple of 4 */
#define HASH_BUCKETS 1024           /* must be power of 2 */
#define HASH_MASK (HASH_BUCKETS - 1)
#define NO_NULL_CHAR 'A'
#define NULL 0

typedef unsigned char  uchar;
typedef unsigned short ushort;
typedef unsigned long  ulong;

typedef struct Word Word;
typedef struct Occurrence Occurrence;
typedef struct Private Private;

/* 
  A block of occurrence positions.  We pack in as many occurrences as possible into 
  a single block, from 3 to 6 depending on textLength.

  The first entry in the block is always used.  The remaining entries are in use if they 
  are not zero.  These facts are used several places to simplify the code.
*/
struct Occurrence {
  Occurrence *next;
  union {
    ushort pos2[6];   /* 2 bytes/occurrence */
    struct {
      ushort lo[4];
      uchar  hi[4];
    } pos3;           /* 3 bytes/occurrence */
    long pos4[3];     /* 4 bytes/occurrence */
  } p;
};

/*
  There is one Word struct for each distinct word.  The word’s length is stored in the 
  top eight bits of the hash value.  There’s no need to store the characters in the word 
  since we can just look at the first occurrence (first entry in Word.first).
*/
struct Word {
  Word        *next;
  ulong       hash;
  Occurrence  *last;
  Occurrence  first;
};

/*
  The structure of our private storage.  The hashCodes[] array serves two purposes: it 
  distinguishes alphanumeric from non-alphanumeric characters, and it provides a 
  non-zero hash code for each alphanumeric character.  The endParsedText field will 
  be -1 if there was enough private memory to parse all the text.  Otherwise, it points to 
  the start of the unparsed text.  nullChar is used by the BMH_Search() function when 
  we must search unparsed text for an occurrence.
*/
struct Private {
  ulong hashCodes [ ALPHABET_SIZE ];
  Word  *hashTable [ HASH_BUCKETS ];
  long  endParsedText;  /* start of parsed text */
  long  posBytes;       /* POS_x_BYTES, below */
  char  nullChar;       /* char not appearing in the text */
  long  heap;           /* start of private heap  */
};

Macros
/*
  These macros simplify access to the occurrence positions stored in an Occurrence 
  struct.  Posbytes is a macro argument that is usually set to private->posBytes.  
  However, you can also use a constant for posbytes, which lets the compiler choose 
  the right case at compile time, producing smaller and faster code.
*/
#define POS_2_BYTES 1   /* word position fits in 2 bytes */
#define POS_3_BYTES 0   /* fits in 3 bytes; usual case */
#define POS_4_BYTES 2   /* fits in 4 bytes */

#define GET_POS(pos,occur,index,posbytes)           \
  {                                                 \
    if ( (posbytes) == POS_3_BYTES )                \
      pos = ((long)(occur)->p.pos3.hi[index] << 16) \
          + (occur)->p.pos3.lo[index];              \
    else if ( (posbytes) == POS_2_BYTES )           \
      pos = (occur)->p.pos2[index];                 \
    else                                            \
      pos = (occur)->p.pos4[index];                 \
  }

#define SET_POS(pos,occur,index,posbytes)       \
  {                                             \
    if ( (posbytes) == POS_3_BYTES )            \
    {                                           \
      (occur)->p.pos3.hi[index] = (pos) >> 16;  \
      (occur)->p.pos3.lo[index] = (pos);        \
    }                                           \
    else if ( (posbytes) == POS_2_BYTES )       \
      (occur)->p.pos2[index] = pos;             \
    else                                        \
      (occur)->p.pos4[index] = pos;             \
  }

InitFind
void InitFind (
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;

  private->endParsedText =
    InitFindBody(
        (uchar *)textToSearch,
        textLength,
        privateStorage,
        (uchar *)privateStorage + storageSize
    );

  if ( private->endParsedText != -1 )
    private->nullChar =
      PickNullChar(
            private,
            (uchar *)textToSearch + private->endParsedText,
            (uchar *)textToSearch + textLength );
  else
    private->nullChar = NO_NULL_CHAR;
}

InitFindBody
/*
  This function does most of the work for InitFind().  The arguments have been recast 
  into a more useful form; uchar and ulong are used a lot so that we don’t have to 
  worry about the sign, especially when indexing private->hashCodes[].

  The return value is the character position when the unparsed text begins (if we run 
  out of private storage), or -1 if all the text was parsed.
*/
static long InitFindBody (
  uchar   *textToSearch,
  long    textLength,
  Private *private,
  uchar   *endPrivateStorage
)
{
  uchar       *alloc, *textPos, *textEnd, *wordStart;
  long        wordLength;
  ulong       hash, code;
  Word        *word;
  Occurrence  *occur;

/*
  Init table of hash codes.  The remaining entries are guaranteed to be initialized to 
  zero.  The hash codes were chosen so that any two codes differ by at least five bits.
  */
  {
    ulong *table = private->hashCodes;  /* reduces typing */

    table['0'] = 0xFFC0;  table['5'] = 0xF492;
    table['1'] = 0xFE07;  table['6'] = 0xF31E;
    table['2'] = 0xF98B;  table['7'] = 0xF2D9;
    table['3'] = 0xF84C;  table['8'] = 0xCF96;
    table['4'] = 0xF555;  table['9'] = 0xCE51;

    table['A'] = 0xC9DD;  table['N'] = 0xA245;
    table['B'] = 0xC81A;  table['O'] = 0x9F0A;
    table['C'] = 0xC503;  table['P'] = 0x9ECD;
    table['D'] = 0xC4C4;  table['Q'] = 0x9941;
    table['E'] = 0xC348;  table['R'] = 0x9886;
    table['F'] = 0xC28F;  table['S'] = 0x959F;
    table['G'] = 0xAF5C;  table['T'] = 0x9458;
    table['H'] = 0xAE9B;  table['U'] = 0x93D4;
    table['I'] = 0xA917;  table['V'] = 0x9213;
    table['J'] = 0xA8D0;  table['W'] = 0x6DD3;
    table['K'] = 0xA5C9;  table['X'] = 0x6C14;
    table['L'] = 0xA40E;  table['Y'] = 0x6B98;
    table['M'] = 0xA382;  table['Z'] = 0x6A5F;

    table['a'] = 0x6746;  table['n'] = 0x3C88;
    table['b'] = 0x6681;  table['o'] = 0x3B04;
    table['c'] = 0x610D;  table['p'] = 0x3AC3;
    table['d'] = 0x60CA;  table['q'] = 0x37DA;
    table['e'] = 0x5D85;  table['r'] = 0x361D;
    table['f'] = 0x5C42;  table['s'] = 0x3191;
    table['g'] = 0x5BCE;  table['t'] = 0x3056;
    table['h'] = 0x5A09;  table['u'] = 0x0D19;
    table['i'] = 0x5710;  table['v'] = 0x0CDE;
    table['j'] = 0x56D7;  table['w'] = 0x0B52;
    table['k'] = 0x515B;  table['x'] = 0x0A95;
    table['l'] = 0x509C;  table['y'] = 0x078C;
    table['m'] = 0x3D4F;  table['z'] = 0x064B;
  }

  /*  Determine the number of bytes needed to store each occurrence position. */
  if ( textLength <= 0x10000L )
    private->posBytes = POS_2_BYTES;
  else if ( textLength <= 0x1000000L )
    private->posBytes = POS_3_BYTES;
  else
    private->posBytes = POS_4_BYTES;

  /* Set up variables to handle allocation of private storage. */
  alloc = (uchar *)&private->heap;

  /* Parse the text */
  textPos = textToSearch;
  textEnd = textPos + textLength;

  while ( textPos != textEnd )
  {
    /* Search for start of word */
    while ( private->hashCodes[*textPos] == 0 )
    {
      textPos++;
      if ( textPos == textEnd )
        return -1;  /* parse all text */
    }
    wordStart = textPos;

    /* Search for end of word; generate hash value too */
    hash = 0;
    while ( textPos != textEnd &&
            (code = private->hashCodes[ *textPos ]) != 0 )
    {
      hash = (hash << 1) ^ code;
      textPos++;
    }
    wordLength = textPos - wordStart;
    hash = (hash & 0xFFFFFF) | (wordLength << 24);

    /*
      Record the occurrence.  First we see if a Word struct exists for this word and 
      whether we need to allocate a new Occurrence struct.
    */
    word = LookupWord(
                private,
                (char *)textToSearch,
                (char *)wordStart,
                wordLength,
                hash );
    if ( word )
    {
      long allocateNewBlock, blockSize, i, pos;

      /*
        This word has occurred before, so it already has a Word struct.  See if there’s 
        room in the last Occurrence block for another entry.  Remember that entry #0 in 
        the Occurrence block is always in use, so we can start checking at entry #1 for a 
        non-zero entry.
      */
      occur = word->last;
      allocateNewBlock = TRUE;
      switch ( private->posBytes )
      {
        case POS_2_BYTES:  blockSize = 6; break;
        case POS_3_BYTES:  blockSize = 4; break;
        case POS_4_BYTES:  blockSize = 3; break;
      }

      for ( i = 1; i < blockSize; i++ )
      {
        GET_POS( pos, occur, i, private->posBytes )
        if ( pos == 0 )
        {
          SET_POS( wordStart - textToSearch, occur, i,
                   private->posBytes )
          allocateNewBlock = FALSE;
          break;
        }
      }

      if ( allocateNewBlock )
      {
        /* Block is full.  Allocate new Occurrence block */
        occur = (Occurrence *) alloc;
        alloc += ALLOC_SIZE( sizeof(Occurrence) );
        if ( alloc >= endPrivateStorage )
          return wordStart-textToSearch; /* out of memory */

        /* Init the new struct and link it to the end of the occurence list. */
        SET_POS( wordStart - textToSearch, occur, 0,
                 private->posBytes )
        word->last->next = occur;
        word->last = occur;
      }
    }
    else
    {
      long i;

/* This is a new word.  Allocate a new Word struct, which contains an Occurrence 
    struct too.  */
      word = (Word *) alloc;
      alloc += ALLOC_SIZE( sizeof(Word) );
      if ( alloc >= endPrivateStorage )
        return wordStart-textToSearch ;  /* out of memory */

      /*  Link it to the start of the Word list, coming off the hash table. */
      word->next = private->hashTable[ hash & HASH_MASK ];
      private->hashTable[ hash & HASH_MASK ] = word;

      /* Init the Word struct */
      word->hash = hash;
      word->last = &word->first;

      /* Init the Occurrence struct */
      SET_POS( wordStart - textToSearch, &word->first, 0,
               private->posBytes )
    }
  }

  /* Finished parsing text */
  return -1;
}

FindWordOccurrence
long FindWordOccurrence (
  char *wordToFind,
  long wordLength,
  long occurrenceToFind,
  char *textToSearch,
  long textLength,
  void *privateStorage,
  long storageSize
)
{
  Private *private = privateStorage;
  Word  *word;
  ulong hash;

  /* Make occurenceToFind zero-based */
  occurrenceToFind--;

  /* Generate hash value for word to find */
  hash = 0;
  {
    long remain = wordLength;
    uchar *p = (uchar *) wordToFind;
    while ( remain > 0 )
    {
      hash = (hash << 1) ^ private->hashCodes[*p++];
      remain--;
    }
    hash = (hash & 0xFFFFFF) | (wordLength << 24);
  }

  /* Look for word/occurrence in hash table */
  word = LookupWord( private, textToSearch, wordToFind,
                     wordLength, hash );
  if ( word )
  {
    Occurrence *occur = &word->first;
    long blockSize, pos, i;

    /* Word exists in hash table, so go down the occurrence list.  */
    switch ( private->posBytes )
    {
      case POS_2_BYTES: blockSize = 6;  break;
      case POS_3_BYTES: blockSize = 4;  break;
      case POS_4_BYTES: blockSize = 3;  break;
    }

    while ( occur && occurrenceToFind >= blockSize )
    {
      occurrenceToFind -= blockSize;
      occur = occur->next;
    }

    if ( occur )
    {
      GET_POS( pos, occur, occurrenceToFind,
               private->posBytes )
      if ( occurrenceToFind == 0 || pos != 0 )
        return pos;
      occurrenceToFind -= blockSize;
    }

    occur = word->last;
    for ( i = 0; i < blockSize; i++ )
    {
      GET_POS( pos, occur, i, private->posBytes )
      if ( pos == 0 )
        occurrenceToFind++;
    }
  }

  /* Not in parsed text, so check the unparsed text */
  if ( private->endParsedText != -1 )
  {
    char *p;
    if ( wordLength > 3 )
      p = BMH_Search(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength,
              private->nullChar );
    else
      p = SimpleSearch(
              private->hashCodes,
              wordToFind,
              wordLength,
              occurrenceToFind,
              textToSearch + private->endParsedText,
              textToSearch + textLength );
    if (p)
      return (p - textToSearch);
  }

  /* Not found */
  return -1;
}

LookupWord 
/* Look up a word in the hash table */
static Word *LookupWord (
  Private *private,
  char    *textToSearch,
  char    *wordText,
  long    wordLength,
  ulong   hash
)
{
  Word *word = private->hashTable[ hash & HASH_MASK ];
  while ( word )
  {
    if ( word->hash == hash )
    {
      char *w1, *w2;
      long pos, remain = wordLength;

      /*
        The hash values match, so compare characters to make sure it’s the right word.  
        We already know the word length is correct since the length is contained
        in the upper eight bits of the hash value.
      */
      GET_POS( pos, &word->first, 0, private->posBytes )
      w1 = textToSearch + pos;
      w2 = wordText;
      while ( remain-- > 0 && *w1++ == *w2++ )
        ;
      if ( remain == -1 )
        return word;
    }
    word = word->next;
  }
  return NULL;
}

PickNullChar 
/*
  Find a character that doesn’t appear anywhere in the unparsed text.  BMH_Search() is 
  faster if such a character can be found.
*/
static char PickNullChar (
  Private *private,
  uchar   *textStart,
  uchar   *textEnd
)
{
  long i;
  uchar *p, occurs[ ALPHABET_SIZE ];

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    occurs[i] = FALSE;

  for ( p = textStart; p < textEnd; p++ )
    occurs[*p] = TRUE;

  for ( i = 0; i < ALPHABET_SIZE; i++ )
    if ( occurs[i] == FALSE && private->hashCodes[i] == 0 )
      return i;

  return NO_NULL_CHAR;
}

BMH_Search
/*
  Search the unparsed text using the Boyer-Moore-Horspool algorithm.  Ideally a null 
  character is supplied (one that appears in neither the search string nor the text being 
  searched).  This allows the inner loop to be faster.
*/
static char *BMH_Search (
  ulong *hashCodes,       /* private->hashCodes     */
  char  *wordToFind,
  long  wordLength,
  long  occurrenceToFind, /* 0 is first occurrence  */
  char  *textStart,       /* start of unparsed text */
  char  *textEnd,         /* end of unparsed text   */
  char  nullChar          /* private->nullChar      */
)
{
  long  i;
  char  *text, *wordEnd;
  char  word[256];
  long  offset[ ALPHABET_SIZE ];

  /*
    Copy the search string to a private buffer, where
    the first character is the null character.
  */
  word[0] = nullChar;
  for ( i = 0; i < wordLength; i++ )
    word[i+1] = wordToFind[i];

  /* Set up the offset[] lookup table */
  for ( i = 0; i < ALPHABET_SIZE; i++ )
    offset[i] = wordLength;

  for ( i = 1; i < wordLength; i++ )
    offset[ word[i] ] = wordLength - i;

  /* Let the search begin... */
  wordEnd = word + wordLength;
  text = textStart + wordLength - 1;

  if ( nullChar == NO_NULL_CHAR )
  {
    /* No null character, so use a slower inner loop */
    while ( text < textEnd )
    {
      long i;
      char *p, *q;
      for ( i = wordLength, p = wordEnd, q = text;
            i > 0 && *p == *q;
            i--, p--, q-- )
        ;
/*If i == 0, we have found the search string.  Now we make sure that it is delimited.*/
      if ( i == 0 && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }

      text += offset[*text];
    }
  }
  else
  {
    /* There is a null character (usual case), 
        so we can use a faster and simpler inner loop. */
    while ( text < textEnd )
    {
      char *p, *q;
      for ( p = wordEnd, q = text; *p == *q; p--, q-- )
        ;
      if ( p == word && hashCodes[*q] == 0 &&
           (text+1 == textEnd || hashCodes[text[1]] == 0) )
      {
        if ( occurrenceToFind == 0 )
          return q+1;
        occurrenceToFind--;
      }
      text += offset[*text];
    }
  }
  return NULL;
}

SimpleSearch
/*
  Search the unparsed text using a simple search algorithm.  Note that wordLength 
  must be 1, 2, or 3.  This algorithm runs faster than BMH_Search() for small search 
  strings.
*/
static char *SimpleSearch(
  ulong *hashCodes,       /* private->hashCodes      */
  char  *wordToFind,
  long  wordLength,       /* 1..3                    */
  long  occurrenceToFind, /* 0 is 1st occurrence     */
  char  *textStart,       /* start of unparsed text  */
  char  *textEnd          /* end of all text         */
)
{
  char *text, first;

  first = wordToFind[0];
  text = textStart;

  if ( wordLength == 1 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else if ( wordLength == 2 )
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  else /* wordLength == 3 */
  {
    while ( text < textEnd )
    {
      while ( text < textEnd && *text != first )
        text++;
      if ( text[1] == wordToFind[1] &&
           text[2] == wordToFind[2] &&
           hashCodes[*(text-1)] == 0 &&
           hashCodes[text[wordLength]] == 0 )
      {
        if ( occurrenceToFind == 0 )
          return text;
        occurrenceToFind--;
      }
    text++;
    }
  }
  return NULL;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Marvel Future Fight celebrates nine year...
Announced alongside an advertising image I can only assume was aimed squarely at myself with the prominent Deadpool and Odin featured on it, Netmarble has revealed their celebrations for the 9th anniversary of Marvel Future Fight. The Countdown... | Read more »
HoYoFair 2024 prepares to showcase over...
To say Genshin Impact took the world by storm when it was released would be an understatement. However, I think the most surprising part of the launch was just how much further it went than gaming. There have been concerts, art shows, massive... | Read more »
Explore some of BBCs' most iconic s...
Despite your personal opinion on the BBC at a managerial level, it is undeniable that it has overseen some fantastic British shows in the past, and now thanks to a partnership with Roblox, players will be able to interact with some of these... | Read more »

Price Scanner via MacPrices.net

You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more
24-inch M1 iMacs available at Apple starting...
Apple has clearance M1 iMacs available in their Certified Refurbished store starting at $1049 and ranging up to $300 off original MSRP. Each iMac is in like-new condition and comes with Apple’s... Read more
Walmart continues to offer $699 13-inch M1 Ma...
Walmart continues to offer new Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for $699, $300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBook for sale by... Read more
B&H has 13-inch M2 MacBook Airs with 16GB...
B&H Photo has 13″ MacBook Airs with M2 CPUs, 16GB of memory, and 256GB of storage in stock and on sale for $1099, $100 off Apple’s MSRP for this configuration. Free 1-2 day delivery is available... Read more
14-inch M3 MacBook Pro with 16GB of RAM avail...
Apple has the 14″ M3 MacBook Pro with 16GB of RAM and 1TB of storage, Certified Refurbished, available for $300 off MSRP. Each MacBook Pro features a new outer case, shipping is free, and an Apple 1-... Read more
Apple M2 Mac minis on sale for up to $150 off...
Amazon has Apple’s M2-powered Mac minis in stock and on sale for $100-$150 off MSRP, each including free delivery: – Mac mini M2/256GB SSD: $499, save $100 – Mac mini M2/512GB SSD: $699, save $100 –... Read more
Amazon is offering a $200 discount on 14-inch...
Amazon has 14-inch M3 MacBook Pros in stock and on sale for $200 off MSRP. Shipping is free. Note that Amazon’s stock tends to come and go: – 14″ M3 MacBook Pro (8GB RAM/512GB SSD): $1399.99, $200... Read more
Sunday Sale: 13-inch M3 MacBook Air for $999,...
Several Apple retailers have the new 13″ MacBook Air with an M3 CPU in stock and on sale today for only $999 in Midnight. These are the lowest prices currently available for new 13″ M3 MacBook Airs... Read more
Multiple Apple retailers are offering 13-inch...
Several Apple retailers have 13″ MacBook Airs with M2 CPUs in stock and on sale this weekend starting at only $849 in Space Gray, Silver, Starlight, and Midnight colors. These are the lowest prices... Read more
Roundup of Verizon’s April Apple iPhone Promo...
Verizon is offering a number of iPhone deals for the month of April. Switch, and open a new of service, and you can qualify for a free iPhone 15 or heavy monthly discounts on other models: – 128GB... Read more

Jobs Board

IN6728 Optometrist- *Apple* Valley, CA- Tar...
Date: Apr 9, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 824398 At Target Optical, we help people see and look great - and Read more
Medical Assistant - Orthopedics *Apple* Hil...
Medical Assistant - Orthopedics Apple Hill York Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Now Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
Liquor Stock Clerk - S. *Apple* St. - Idaho...
Liquor Stock Clerk - S. Apple St. Boise Posting Begin Date: 2023/10/10 Posting End Date: 2024/10/14 Category: Retail Sub Category: Customer Service Work Type: Part Read more
Top Secret *Apple* System Admin - Insight G...
Job Description Day to Day: * Configure and maintain the client's Apple Device Management (ADM) solution. The current solution is JAMF supporting 250-500 end points, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.