TweetFollow Us on Twitter

Jan 96 Challenge
Volume Number:12
Issue Number:1
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Bob Boonstra, Westford, Massachusetts

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Sliding Tiles

You have all probably seen small versions of the puzzle that is the basis for this month’s Challenge: a 4-by-4 grid of interlocking tiles, with one empty tile among the 16 cells allowing the puzzle to be scrambled by sliding adjacent cells into the empty location. This month the Challenge is to write code that will unscramble a larger version of the Sliding Tiles puzzle.

The prototype for the code you should write is:

typedef Boolean  /*legalMove*/ (*MoveProc)(
                     /* Callback procedure to move tile at                 */
  long tileToMoveRow,/*   these coordinates into the location              */
  long tileToMoveCol /*   of adjacent empty tile                      */
);
  
void SolveTiles(
  long *tiles,      /* pointer to array of tiles where            */
  long numRows,     /*   tile (row,col) is at                  */
  long numCols,     /*   *(tiles + row*numCols + col)             */
  MoveProc MakeMove /* Callback procedure to move a tile                      */
);

You will be given a pointer tiles into an array of tile values, the number of rows and columns in the puzzle (numRows and numCols, respectively), and the address of a callback procedure MakeMove used to tell my test code about the moves you make to solve the puzzle. The tiles array will be initialized with the values 0..numRows*numCols-1, in an order scrambled by the calling routine. The value 0 represents the empty tile.

Your code should make a sequence of calls to MakeMove and return when the puzzle is solved. Each MakeMove call exchanges the empty tile with the indicated adjacent tile. The puzzle is solved when you have moved each tile into its proper location: moving the tile with value i into location tiles[i] (i.e., row=i/numCols and col=i%numCols).

The callback routine will be something like the code provided below:

static long gNumRows,gNumCols;    /* initialized by test code */
static long gEmptyRow,gEmptyCol;  /* initialized by test code */
static long *gTiles;              /* initialized by test code */

#define TileValue(tiles,row,col) *(tiles+(row)*gNumCols+(col))
#define OutOfRange(val,num)  (((val)<0) || ((val)>=(num)))
  
static Boolean MakeMove(long tileToMoveRow,long tileToMoveCol) 
{
  long diff;
  if (OutOfRange(tileToMoveRow,gNumRows)) return false;
  if (OutOfRange(tileToMoveCol,gNumCols)) return false;
  if (tileToMoveRow == gEmptyRow) {
    diff = tileToMoveCol - gEmptyCol;
  } else if (tileToMoveCol == gEmptyCol) {
    diff = tileToMoveRow - gEmptyRow;
  } else {
    return false;
  }
  if ((diff != -1) && (diff != 1)) return false;
  TileValue(gTiles,gEmptyRow,gEmptyCol) = 
    TileValue(gTiles,tileToMoveRow,tileToMoveCol);
  gEmptyRow = tileToMoveRow;
  gEmptyCol = tileToMoveCol;
  TileValue(gTiles,gEmptyRow,gEmptyCol) = 0;
}

As an example, given the initial conditions:

         long tiles[] = {1,4,0,3,5,2};
         SolveTiles(tiles,2,3,MakeMove);

you could generate the following moves:

         MakeMove(1,2);
         MakeMove(1,1);
         MakeMove(0,1);
         MakeMove(0,0);

to transform the puzzle like this:

        1 4 0  ==>  1 4 2  ==>  1 4 2  ==>  1 0 2  ==>  0 1 2
        3 5 2       3 5 0       3 0 5       3 4 5       3 4 5

It turns out that half of the possible permutations of the values 0..numRows*numCols-1 are “illegal” in that they cannot be reached from the “solved” state. The calling routine will provide a legal starting state - you don’t have to worry about the puzzle being unsolvable.

The number of moves you make to solve the puzzle is not an explicit criterion in determining the winner, but the winner will be determined by total execution time, including the time used by the callback routine, as we did in the Master MindReader challenge a few months back. Note that you are not permitted to optimize the callback routine - its purpose is to provide a fixed time penalty for each move your solution routine makes.

This will be a native PowerPC Challenge, scored using the Symantec 8.0.3 compiler. Good luck. Email me with any questions, or - better yet - join the Programmer’s Challenge Mailing List

Mailing List Reminder

Many Challenge readers have already joined the Programmer’s Challenge Mailing List announced last month. The list is being used to distribute the latest Challenge, provide answers to questions about the current Challenge, and discuss suggestions for future Challenges. The Challenge problem is posted to the list sometime between the 20th and the 25th of the month.

To subscribe to the list, send a message to autoshare@mactech.com with the SUBJECT line “sub challenge YourName”, substituting your real name for YourName. To unsubscribe from the list, send a message to autoshare@mactech.com with the SUBJECT line “unsub challenge”.

Two Months Ago Winner

Congratulations to Eric Lengyel (Blacksburg, VA) for submitting the fastest entry to the EnclosingBounds Challenge. The problem was to find the smallest rectangle enclosing all of the non-white pixels in a PixMap. Eight of the 13 entries submitted worked correctly, but Eric’s solution was significantly faster than the others. This is Eric’s second victory in three months, following his first-place finish in the September Reversible Scrambling Algorithm Challenge.

The winning solution uses a clever technique to minimize the number of comparisons required to find the enclosing rectangle. Rather than test each pixel to determine if it is non-white, Eric logically ORs the values for all pixels in a row (for the indexed color cases), taking advantage of the fact that white is always represented by a zero value. A single comparison then determines whether that row contains only white pixels. Working separately from the top and bottom of the selection rectangle identifies the top and bottom rows of the enclosing rectangle. A similar technique applied to columns finds the left and right boundaries of the rectangle. For the direct (32-bit) color case, the approach is similar, except that pixel values in a row or column are logically ANDed, taking advantage of the fact that white is represented by the value 0x00FFFFFF.

Here are the times and code sizes for each of the correct entries. Numbers in parentheses after a person’s name indicate that person’s cumulative point total for all previous Challenges, not including this one.

Name time time time test code data
1-bit 8-bit 32-bit time size size

Eric Lengyel (20) 13 66 272 340 1608 320

Ernst Munter (100) 22 96 326 427 2980 32

Miguel Cruz Picao 34 110 476 593 3328 44

John Sweeney 75 145 502 659 4416 624

Bill Karsh (78) 54 135 517 662 1600 8

Tom Saxton 146 170 560 758 1044 132

Chris Rudolph 514 289 973 1354 1420 8

P.L. 6197 4672 5384 11181 656 24

The times listed above were all achieved using the Metrowerks CodeWarrior 7 compiler. Running the winning entry with code generated by the Symantec and MrC compilers (with all speed optimizations enabled in each case) gave some interesting results, with the MrC code executing in 2/3 to 3/4 of the time required by the others:

Compiler (version) time time time
1-bit 8-bit 32-bit

MrC / MPW (1.0f2) 10 52 183

Metrowerks C (1.3.2) 13 66 272

Symantec (8.0.3) 17 75 292

An investigation of the generated code provides some insight into these numbers. CodeWarrior generates the following code for one of the inner loops in the winning solution:

         for (i = 0; i < numWholeWords; i++)
00000064: 7D274B78  mr       r7,r9
00000068: 38A00000  li       r5,0
0000006C: 48000014  b        *+20     ; $00000080
         {
            accumulator |= *(long *) k;
            k += 4;
         }
00000070: 80070000  lwz      r0,0(r7)
00000074: 38A50001  addi     r5,r5,1
00000078: 7C630378  or       r3,r3,r0
0000007C: 38E70004  addi     r7,r7,4
00000080: 7C052000  cmpw     r5,r4
00000084: 4180FFEC  blt      *-20     ; $00000070

By comparison, MrC generates the following longer, but faster code:

         for (i = 0; i < numWholeWords; i++)
00F8 006C     48000018   b         $+0x0018      ; 0x00000084
00FC 0070   X 4E800020   blr
0100 0074     31290001   addic     r9,r9,1
0104 0078     7D4A3814   addc      r10,r10,r7
0108 007C   X 7C093000   cmpw      r9,r6
010C 0080   X 4080FFF0   bge       $-0x0010      ; 0x00000070
0110 0084   X 40990028   ble       cr6,$+0x0028  ; 0x000000AC
0114 0088   X 7D0903A6   mtctr     r8            ; CTR = 9
0118 008C   X 2C080001   cmpwi     r8,1
011C 0090   X 4181000C   bgt       $+0x000C      ; 0x0000009C
0120 0094   X 38600001   li        r3,1
0124 0098   X 7C6903A6   mtctr     r3            ; CTR = 9
0128 009C   X 318AFFFC   subic     r12,r10,4
         {
            accumulator |= *(long *) k;
            k += 4;
         }
012C 00A0     846C0004   lwzu      r3,0x0004(r12)
0130 00A4     7C6B5B78   or        r11,r3,r11
0134 00A8   X 4200FFF8   bdnz      $-0x0008      ; 0x000000A0

Notice that the inner loop is 6 instructions in the CodeWarrior version but only 3 instructions in the MrC code. The key to the difference is the use of the mtctr, lwzu, and bdnz instructions. The mtctr instruction loads the special purpose CTR register, which the bdnz instruction decrements and tests, branching when CTR is nonzero (similar to what the DBRA instruction does on 68K machines). The bdnz instruction replaces 3 instructions generated by CodeWarrior. The lwzu instruction loads a value from memory, but also stores the effective address back into the register used for the indirect memory access, replacing 2 CodeWarrior instructions. Reading disassembled compiler-optimized PowerPC code takes a little practice, but it can provide some insight into what the compiler is doing to you (or for you). Those interested in learning more are referred to the many PowerPC articles in past issues of MacTech, including a two part series by Bill Karsh in August and September of 1994.

Top Contestants of All Time

Here are the Top Contestants for the Programmer’s Challenges to date, including everyone who has accumulated more than 20 points. The numbers below include points awarded for this month’s entrants.

Rank Name Points Rank Name Points

1. [Name deleted] 176 11. Mallett, Jeff 44

2. Munter, Ernst 110 12. Kasparian, Raffi 42

3. Gregg, Xan 81 13. Vineyard, Jeremy 42

4. Karsh, Bill 80 14. Lengyel, Eric 40

5. Larsson, Gustav 67 15. Darrah, Dave 31

6. Stenger, Allen 65 16. Landry, Larry 29

7. Riha, Stepan 51 17. Elwertowski, Tom 24

8. Goebel, James 49 18. Lee, Johnny 22

9. Nepsund, Ronald 47 19. Noll, Robert 22

10. Cutts, Kevin 46

There are three ways to earn points: (1) scoring in the top 5 of any Challenge, (2) being the first person to find a bug in a published winning solution or, (3) being the first person to suggest a Challenge that I use. The points you can win are:

1st place 20 points 5th place 2 points

2nd place 10 points finding bug 2 points

3rd place 7 points suggesting Challenge 2 points

4th place 4 points

Here is Eric’s winning solution:

EnclosingBounds

Copyright © 1995 Eric Lengyel

/*
  This algorithm is based on the following idea.  Assuming that we are going to have to
  check many rows or columns which don’t contain any non-white pixels, it is faster to 
  combine all of the pixels in a row or column and look at the end result than it is to 
  check each pixel individually.  This is done by ORing entire rows or columns 
  together for 1-bit and 8-bit deep pixel maps and ANDing entire rows or columns 
  together for 32-bit deep pixel maps.  The two different methods are necessary 
  because for 1-bit and 8-bit pixel maps, white is represented by zeros and for 32-bit 
  pixel maps, white is represented by ones.

  The mask tables below are used with 1-bit and 8-bit deep pixel maps.  They are 
  needed when the left or right side of the selection rectangle is not word aligned.
*/

long LeftMask1[32] =
   {0xFFFFFFFF, 0x7FFFFFFF, 0x3FFFFFFF, 0x1FFFFFFF,
    0x0FFFFFFF, 0x07FFFFFF, 0x03FFFFFF, 0x01FFFFFF,
    0x00FFFFFF, 0x007FFFFF, 0x003FFFFF, 0x001FFFFF,
    0x000FFFFF, 0x0007FFFF, 0x0003FFFF, 0x0001FFFF,
    0x0000FFFF, 0x00007FFF, 0x00003FFF, 0x00001FFF,
    0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF,
    0x000000FF, 0x0000007F, 0x0000003F, 0x0000001F,
    0x0000000F, 0x00000007, 0x00000003, 0x00000001};

long RightMask1[32] =
   {0x80000000, 0xC0000000, 0xE0000000, 0xF0000000,
    0xF8000000, 0xFC000000, 0xFE000000, 0xFF000000,
    0xFF800000, 0xFFC00000, 0xFFE00000, 0xFFF00000,
    0xFFF80000, 0xFFFC0000, 0xFFFE0000, 0xFFFF0000,
    0xFFFF8000, 0xFFFFC000, 0xFFFFE000, 0xFFFFF000,
    0xFFFFF800, 0xFFFFFC00, 0xFFFFFE00, 0xFFFFFF00,
    0xFFFFFF80, 0xFFFFFFC0, 0xFFFFFFE0, 0xFFFFFFF0,
    0xFFFFFFF8, 0xFFFFFFFC, 0xFFFFFFFE, 0xFFFFFFFF};

long LeftMask8[4] =
   {0xFFFFFFFF, 0x00FFFFFF, 0x0000FFFF, 0x000000FF};

long RightMask8[4] =
   {0xFF000000, 0xFFFF0000, 0xFFFFFF00, 0xFFFFFFFF};

long DirectWhite = 0x00FFFFFF;  // Value of white pixel
                                // in 32-bit map.

EnclosingBounds
void EnclosingBounds(PixMapHandle pm,
   Rect selection, Rect *enclosingRect)
{
   PixMapPtr   map;
   long        pixelSize, rowBytes, accumulator,
               leftMask, rightMask, baseAddr,
               leftSide, rightSide, topSide, bottomSide,
               numWholeWords, needLeftMask, needRightMask,
               i, j, k, l, m;

   map = *pm;

/*  Compute position of selection rectangle relative to upper-left corner of pixel map. */

   leftSide = selection.left - map->bounds.left;
   rightSide = selection.right - map->bounds.left;
   topSide = selection.top - map->bounds.top;
   bottomSide = selection.bottom - map->bounds.top;

/*  Check validity of selection rectangle.  */

   if ((rightSide <= leftSide) || (bottomSide <= topSide))
   {
      enclosingRect->left = enclosingRect->right =
         enclosingRect->top = enclosingRect->bottom = 0;
      return;
   }

/*  Determine characteristics of pixel map.  */

   rowBytes = map->rowBytes;
   if (rowBytes >= 0) pixelSize = 1;  // BitMap
   else pixelSize = map->pixelSize;   // PixelMap
   rowBytes &= 0x3FFF;                // Strip flags
   baseAddr = (long) map->baseAddr;

/*  Handle 1-bit and 8-bit deep pixel maps with same chunk
  of code.  32-bit deep pixel map handled separately.  */

   if (pixelSize != 32)
   {

/*  Move baseAddr over to the first column of the selection rectangle, still keeping it 
  word aligned.  Then determine what masks are needed for leftmost and rightmost 
  words in the selection and how many whole words there are in between.  */

      if (pixelSize == 1)
      {
         baseAddr += (leftSide >> 5) << 2;
         leftMask = LeftMask1[leftSide & 0x1F];
         rightMask = RightMask1[(rightSide - 1) & 0x1F];
         numWholeWords = (rightSide >> 5) -
            ((leftSide + 31) >> 5);
      }
      else
      {
         baseAddr += leftSide & 0xFFFC;
         leftMask = LeftMask8[leftSide & 3];
         rightMask = RightMask8[(rightSide - 1) & 3];
         numWholeWords = (rightSide >> 2) -
            ((leftSide + 3) >> 2);
      }

/*  Set flags indicating what masks are in use.  If the left and right boundaries of the 
  selection fall within the same word, then take the intersection of the left and right 
  masks and only consider one column of words.  */

      needLeftMask = (leftMask + 1 != 0);
      needRightMask = (rightMask + 1 != 0);
      if (numWholeWords < 0)
      {
         leftMask &= rightMask;
         needRightMask = 0;
      }

/*  Find first row with a non-white pixel by ORing the
  whole row together and checking for a non-zero result.  */

      j = topSide;
      accumulator = 0;
      m = baseAddr + j * rowBytes;  // Top-left corner
      do
      {
         k = m;
         if (needLeftMask)
         {
            accumulator |= (*(long *) k) & leftMask;
            k += 4;
         }
         for (i = 0; i < numWholeWords; i++)
         {
            accumulator |= *(long *) k;
            k += 4;
         }
         if (needRightMask)
         {
            accumulator |= (*(long *) k) & rightMask;
         }
         if (accumulator != 0) break;
         m += rowBytes;
      } while (++j < bottomSide);
      if (j == bottomSide)    // Whole selection is white
      {
         enclosingRect->left = enclosingRect->right =
            enclosingRect->top = enclosingRect->bottom = 0;
         return;
      }
                topSide = j;

/*  Find last row with a non-white pixel.  */

      j = bottomSide - 1;
      accumulator = 0;
      m = baseAddr + j * rowBytes;  // Bottom-left corner
      do
      {
         k = m;
         if (needLeftMask)
         {
            accumulator |= (*(long *) k) & leftMask;
            k += 4;
         }
         for (i = 0; i < numWholeWords; i++)
         {
            accumulator |= *(long *) k;
            k += 4;
         }
         if (needRightMask)
         {
            accumulator |= (*(long *) k) & rightMask;
         }
         if (accumulator != 0) break;
         m -= rowBytes;
      } while (--j >= topSide);
      bottomSide = j + 1;

/*  Find leftmost column containing a non-white pixel.  */

      accumulator = 0;
      m = baseAddr + topSide * rowBytes;
      l = 0;
      if (needLeftMask)
      {
         k = m;
         j = topSide;
         do
         {
            accumulator |= (*(long *) k) & leftMask;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != 0) goto leftFound;
         l += 4;
      }
      for (i = 0; i < numWholeWords; i++)
      {
         k = m + l;
         j = topSide;
         do
         {
            accumulator |= *(long *) k;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != 0) goto leftFound;
         l += 4;
      }
      if (needRightMask)
      {
         k = m + l;
         j = topSide;
         do
         {
            accumulator |= (*(long *) k) & rightMask;
            k += rowBytes;
         } while (++j < bottomSide);
      }

/*  When we get to here, we have narrowed down the left-most non-white to the 
  word.  The value in the accumulator will tell us the exact column of the pixel.  We 
  then move baseAddr over to the last column of the selection rectangle (word 
  aligned).  */

leftFound:
      if (pixelSize == 1)
      {
         leftSide = (leftSide & 0xFFFFFFE0) + (l << 3);
         while (accumulator >= 0)
         {
            leftSide++;
            accumulator <<= 1;
         }
         baseAddr = (long) map->baseAddr +
            (((rightSide - 1) >> 5) << 2);
      }
      else
      {
         leftSide = (leftSide & 0xFFFFFFFC) + l;
         while ((accumulator & 0xFF000000) == 0)
         {
            leftSide++;
            accumulator <<= 8;
         }
         baseAddr = (long) map->baseAddr +
            ((rightSide - 1) & 0xFFFC);
      }

/*  Find rightmost column containing a non-white pixel.  */

      accumulator = 0;
      m = baseAddr + topSide * rowBytes;
      l = 0;
      if (needRightMask)
      {
         k = m;
         j = topSide;
         do
         {
            accumulator |= (*(long *) k) & rightMask;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != 0) goto rightFound;
         l += 4;
      }
      for (i = 0; i < numWholeWords; i++)
      {
         k = m - l;
         j = topSide;
         do
         {
            accumulator |= *(long *) k;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != 0) goto rightFound;
         l += 4;
      }
      if (needLeftMask)
      {
         k = m - l;
         j = topSide;
         do
         {
            accumulator |= (*(long *) k) & leftMask;
            k += rowBytes;
         } while (++j < bottomSide);
      }
rightFound:
      if (pixelSize == 1)
      {
         rightSide = ((rightSide + 31) & 0xFFFFFFE0) - (l << 3);
         while ((accumulator & 1) == 0)
         {
            rightSide--;
            accumulator >>= 1;
         }
      }
      else
      {
         rightSide = ((rightSide + 3) & 0xFFFFFFFC) - l;
         while ((accumulator & 0x000000FF) == 0)
         {
            rightSide--;
            accumulator >>= 8;
         }
      }
   }

/*  Now for the code which handles 32-bit deep pixel maps.  For direct pixels white is 
  ones, unlike indexed pixels where white is zeros.  We will use the same technique, 
  but we will have to AND the rows and columns together.  We don’t have to worry 
  about left and right masks - in 32-bit deep pixel maps every pixel is word aligned.  */

   else
   {
      baseAddr += leftSide << 2;
      numWholeWords = rightSide - leftSide;

/*  Find first row.  */

      j = topSide;
      accumulator = DirectWhite;
      m = baseAddr + j * rowBytes;
      do
      {
         k = m;
         i = 0;
         do
         {
            accumulator &= *(long *) k;
            k += 4;
         } while (++i < numWholeWords);
         if (accumulator != DirectWhite) break;
         m += rowBytes;
      } while (++j < bottomSide);
      if (j == bottomSide)       // All white pixels
      {
         enclosingRect->left = enclosingRect->right =
            enclosingRect->top = enclosingRect->bottom = 0;
         return;
      }
      topSide = j;

/*  Find last row.  */

      j = bottomSide - 1;
      accumulator = DirectWhite;
      m = baseAddr + j * rowBytes;
      do
      {
         k = m;
         i = 0;
         do
         {
            accumulator &= *(long *) k;
            k += 4;
         } while (++i < numWholeWords);
         if (accumulator != DirectWhite) break;
         m -= rowBytes;
      } while (--j >= topSide);
      bottomSide = j + 1;

/*  Find leftmost column.  */

      accumulator = DirectWhite;
      m = baseAddr + topSide * rowBytes;
      l = 0;
      i = 0;
      do
      {
         k = m + l;
         j = topSide;
         do
         {
            accumulator &= *(long *) k;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != DirectWhite) break;
         l += 4;
      } while (++i < numWholeWords);
      leftSide += l >> 2;

/*  Find rightmost column.  */

      baseAddr = (long) map->baseAddr +
         (rightSide << 2) - 4;
      accumulator = DirectWhite;
      m = baseAddr + topSide * rowBytes;
      l = 0;
      i = 0;
      do
      {
         k = m - l;
         j = topSide;
         do
         {
            accumulator &= *(long *) k;
            k += rowBytes;
         } while (++j < bottomSide);
         if (accumulator != DirectWhite) break;
         l += 4;
      } while (++i < numWholeWords);
      rightSide -= l >> 2;
   }

/*  Return enclosing rectangle in the pixel map’s local coordinates.  */

   enclosingRect->left = leftSide + map->bounds.left;
   enclosingRect->right = rightSide + map->bounds.left;
   enclosingRect->top = topSide + map->bounds.top;
   enclosingRect->bottom = bottomSide + map->bounds.top;
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

NeoOffice 2017.14 - Mac-tailored, OpenOf...
NeoOffice is a complete office suite for OS X. With NeoOffice, users can view, edit, and save OpenOffice documents, PDF files, and most Microsoft Word, Excel, and PowerPoint documents. NeoOffice 3.x... Read more
Iridient Developer 3.3.1 - Powerful imag...
Iridient Developer (was RAW Developer) is a powerful image-conversion application designed specifically for OS X. Iridient Developer gives advanced photographers total control over every aspect of... Read more
Google Chrome 70.0.3538.110 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Adobe Pepper Flash Player 31.0.0.153 - P...
Adobe Pepper Flash Player is a cross-platform, browser-based application runtime that provides uncompromised viewing of expressive applications, content, and videos across browsers and operating... Read more
Chromium 70.0.3538.110 - Fast and stable...
Chromium is an open-source browser project that aims to build a safer, faster, and more stable way for all Internet users to experience the web. Version 70.0.3538.110: Release notes were... Read more
Adobe Flash Player 31.0.0.148 - Plug-in...
Adobe Flash Player is a cross-platform, browser-based application runtime that provides uncompromised viewing of expressive applications, content, and videos across browsers and operating systems.... Read more
Adobe Flash Player 31.0.0.153 - Plug-in...
Adobe Flash Player is a cross-platform, browser-based application runtime that provides uncompromised viewing of expressive applications, content, and videos across browsers and operating systems.... Read more
Tidy Up 5.0.11 - Find duplicate files an...
Tidy Up is a full-featured duplicate finder and disk-tidiness utility. Features Supports Lightroom: it is now possible to search and collect duplicates directly in the Lightroom library. Multiple... Read more
BusyContacts 1.3.1 - Fast, efficient con...
BusyContacts is a contact manager for OS X that makes creating, finding, and managing contacts faster and more efficient. It brings to contact management the same power, flexibility, and sharing... Read more
Reflector 3.2.0 - AirPlay your iOS devic...
Reflector allows you to AirPlay mirror your iPhone or iPad to your Mac. Features Easily demo iOS apps on any Mac running OS X Lion using AirPlay Mirroring on iOS 5. Enable an iPhone or iPad wrapper... Read more

Latest Forum Discussions

See All

Win a brand new iPad courtesy of SEGA an...
Fancy enjoying a blast from the past on an Apple iPad (9.7 inch)? Well now you have the chance to do just that thanks to Pocket Gamer's latest giveaway to celebrate the launch of SEGA Heroes. Developed by the same team behind Marvel® Puzzle Quest,... | Read more »
How will World of Warcraft, Starcraft, a...
You might have heard that Blizzard is bringing Diablo to mobile with Diablo Ultimate. There's been plenty of controversy surrounding that decision, and it's meant that a really important piece of information has been glossed over a little. Namely... | Read more »
Slots Panther Vegas offers a social gamb...
New era of Online gambling Want to try your luck in online social gambling? More and more people are into online casinos as a risk-free amazing way to experience the excitement of a big game. Online casinos and slots machines are gaining popularity... | Read more »
3 features we think you'll love in...
Well known classic RPG “Shin Megami Tensei” franchise originally created by Atlus, can now be played throughout iOS and Android. Created by Sega, “Shin Megami Tensei” has spawned a mobile-centric installment in the shape of “Shin Megami Tensei:... | Read more »
These are the top 3 games for iPhone and...
The end of the week has rolled around again, which means it's time for us to look forward to the games you're going to be playing over the next seven days. We've got the return of a mobile gaming legend next week, as well as a couple of other... | Read more »
Time for you to pick which of these top...
Oh look, Thursday is upon us once more. And we all know what that means! You guessed it, it's time for you to vote for which of these five games you think deserves to win our game of the week award. And have we got a selection for y'all this week... | Read more »
Dragalia Lost - High Midgardsormr Prep G...
It might not seem like there's a ton to do between events in Dragalia Lost, but there is one high level piece of content that can keep you occupied for a long time. Defeating High Midgardsormr is currently the game's most difficult non-event... | Read more »
Get your friends, these are the top 5 be...
You can't be a lone wolf all the time, especially if you want to show off your gaming prowess. And that's where this list comes in - we're running down what we think are the top 5 multiplayer games for iPhone. There might be some controversial... | Read more »
SpitKiss is the worthy winner of last we...
It's been a rough and tumble battle this week, with all of the games managing to get a few hits in where it counts, but after checking with the independent adjudicators at ringside, we can now reveal that gloriously gross smooching sim SpitKiss has... | Read more »
The best games for iPhone - The definiti...
Hi there, and welcome to our ever-increasing list of the very best games for iPhone. We're going to be updating this regularly with new content, so make sure you check back often, because you're not going to want to miss out on even one of the... | Read more »

Price Scanner via MacPrices.net

Sprint offers 32GB 9.7″ iPads with Apple Penc...
Sprint is offering 32GB 9.7″ WiFi + Cellular iPads for only $99.99 when added to your Sprint account. Standard MSRP for these iPads is $459, so their Black Friday week 2018 savings amounts to $360!... Read more
Apple to host four day shopping event this 20...
Apple will be hosting a four day shopping event beginning Friday November 23, 2018 and lasting through Monday November 26th. Special offers will be posted each day, and we will have all the details... Read more
Get a 2018 13″ 4-Core Touch Bar MacBook Pro f...
Apple has Certified Refurbished 2018 13″ 2.3GHz 4-Core Touch Bar MacBook Pros available for $270-$300 off the cost of new models, with prices starting at $1529. Apple’s refurbished prices are the... Read more
Score the best price on Apple’s Macs, iPads,...
Our Apple award-winning price trackers are the best place to look for the best deals and lowest prices on Apple gear this Black Friday and Holiday shopping season. Scan our price trackers for the... Read more
The cheapest price on a 15″ MacBook Pro today...
Save $360 to $420 on the purchase of a 2018 15″ Touch Bar MacBook Pro with these Certified Refurbished models available at Apple. Each model features a new outer case, shipping is free, and an Apple... Read more
Black Friday deal: 12″ 1.3GHz Gold MacBook fo...
Amazon today is has the 12″ 1.3GHz Gold MacBook on sale for $301 off Apple’s price, only $1298 shipped, as part of their Black Friday 2018 week sales: – 12″ 1.3GHz Gold MacBook: $1298 $301 off MSRP... Read more
Score Black Friday Prices On Apple Items Now...
NEWS: 11.19.18- The best bet for anyone shopping for a new shiny Apple product and looking to save the most amount of money going in to this holiday season need not look further than our price... Read more
Save on a new MacBook with these early Black...
B&H Photo has posted early Black Friday sale prices on Apple MacBooks, including up to $300 off MSRP on 15″ MacBook Pros, $100 off new 13″ MacBook Airs, and more. Most of these deals expire... Read more
T-Mobile Black Friday deal: Free iPhone Xr wi...
T-Mobile is offering the 64GB iPhone Xr for free as part of their Black Friday 2018 sale. Two new lines are required, as well as an eligible trade-in (iPhone 6s models or newer). $20.84 is applied to... Read more
Save up to $157 on a 10.5″ iPad Pro with thes...
Apple’s newest authorized reseller, Jet, has 10.5″ iPad Pros on sale for up to $157 off MSRP as part of their Black Friday week sale. Shipping is free. Note that some sale prices may be restricted to... Read more

Jobs Board

*Apple* Mobile Master - Best Buy (United Sta...
**658288BR** **Job Title:** Apple Mobile Master **Job Category:** Store Associates **Location Number:** 000262-Carolina Mall-Store **Job Description:** **What does a Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1044618 Date:Today Job Read more
Sephora Product Consultant - *Apple* Blosso...
Sephora Product Consultant - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1056553 Date:Today Job Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1042611 Date:Today Job Description Read more
Omni-Channel Associate - *Apple* Blossom Ma...
Omni-Channel Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1074107 Date:Today Job Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.