TweetFollow Us on Twitter

Jan 95 Challenge
Volume Number:11
Issue Number:1
Column Tag:Programmer’s Challenge

Programmer’s Challenge

By Mike Scanlin, Mountain View, CA

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Poker Hand Evaluator

This month’s challenge was suggested by Chris Derossi (Mountain View, CA). The goal is to compare two poker hands and determine which is higher. Your routine will be given two hands of 7 cards each. It will have to make the best 5 card hand it can from each and return the two 5-card hands as well as which is higher.

Here is how poker hands rank (from lowest to highest, with an example of each in parentheses):

one pair (5, 5, *, *, *)

two pair (5, 5, 8, 8, *)

three of a kind (5, 5, 5, *, *)

straight (5, 6, 7, 8, 9)

flush (club, club, club, club, club)

full house (5, 5, 5, 8, 8)

four of a kind (5, 5, 5, 5, *)

straight flush (5, 6, 7, 8, 9; all clubs)

five of a kind (5, 5, 5, 5, wildCard)

The prototype of the function you write is:

typedef unsigned char Card;

typedef SevenCardHand {
 Card cards[7];
} SevenCardHand;

typedef FiveCardHand {
 Card cards[5];
} FiveCardHand;

ComparePokerHands(hand1Ptr, hand2Ptr,
 best1Ptr, best2Ptr, 
 wildCardAllowed, wildCard, 
SevenCardHand  *hand1Ptr;
SevenCardHand  *hand2Ptr;
Boolean  wildCardAllowed;
Card     wildCard;
Boolean  straightsAndFlushesValid;
void    *privateDataPtr;

A Card is a byte value (unsigned char) from 0 to 51 where 0 represents the 2 of clubs, 9 is the jack of clubs, 12 is the ace of clubs, 13 is the 2 of diamonds, 26 is the 2 of hearts, 39 is the 2 of spades and 51 is the ace of spades.

The inputs are two SevenCardHands (from the same deck; you won’t get duplicate Cards). Your routine should make the highest hand possible with 5 of the 7 cards and store the resulting hand in the two FiveCardHands. It should then return one of the following values: -1 if hand 1 is higher than hand 2, 0 if the hands are tied and 1 if hand 2 is higher than hand 1. Hands can be tied because suit counts for nothing when ranking hands. Aces can be high or low (whichever makes the resulting hand better).

WildCardAllowed is true if wild cards are allowed and false if not. If they are allowed then wildCard will be the card that is wild, from 0 to 12. All suits of that care are wild. For example, if wildCard is 4 then all 6’s are wild (Card values 4, 17, 30 and 43).

StraightsAndFlushesValid is true if straights and flushes are to be counted in the ranking. If it is false then straights and flushes do not count for anything (they are low hands).

PrivateDataPtr is the value returned by your Init routine, which is not timed, whose prototype is:

void *
ComparePokerHandsInit(wildCardAllowed, wildCard,
Boolean wildCardAllowed;
Card    wildCard;
Boolean straightsAndFlushesValid;

You can allocate up to 1MB of memory in your Init routine (in case you want to generate some lookup tables). The pointer you return will be passed to your ComparePokerHands routine.

E-mail me if you have any questions. Have fun.

Two Months Ago Winner

I had to disqualify two of the eight entries I received for the Huffman Decoding challenge because of incorrect results. Congratulations to Challenge Champion Bob Boonstra (Westford, MA) for earning his fifth win. The top four entrants each optimized their solutions for those cases where there was extra memory available. Greg McKaskle (Austin, TX) had a very strong showing for the extra memory case but his very-little-extra-memory case code came in 3rd place, preventing him from winning overall.

Here are the times and code sizes for each entry. Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name 256K time8K time  code
Bob Boonstra (12)12422308
Greg McKaskle    11113    2012
John Schlack (1) 28551470
Wolfgang Thaller (age 13) 40929    1090
Allen Stenger (7)103 103  440
Peter Hance 1211 1211188

From reading the winning code you may notice that even a master such as Bob has picked up at least one trick from studying previous Challenge winners. He chose to borrow the ‘switch-do-while’ idea from Bill Karsh’s SwapBytes entry (a neat trick, indeed). Glad to see it. After all, this column is meant to be educational (by teaching tricks by example) as much as it is a contest.

I’ve been getting more requests than usual to have access to the current Challenge before the magazine hits the streets (especially from people outside the US). Well, this being the 90’s and all, the latest Challenge is available on-line the day the magazines go out in the mail. Check out p. 2 for where to look on each of the online services.

Hope that helps. Here is Bob’s winning solution:


Copyright (c) 1994  J Robert Boonstra

Problem Statement

Given a symbol table, decompress the Huffman encoded input stream and return the number of decompressed bytes.

Solution Strategy

Use the untimed initialization routine to create a tree structure corresponding to the sym values in the symbol table. In the timed decode routine, traverse the tree. When a leaf node is encountered, output the corresponding value, and begin traversing the tree again from the root.

We determine whether there is enough storage for the tree structure by trying to construct it. If there is not enough storage, set up a simple table of pointers into the symbol table based on symbol length. This is not especially efficient, but it produce correct results.

#pragma options(honor_register,!assign_registers)

#define ulong  unsigned long
#define ushort unsigned short
#define uchar  unsigned char

 * SymElem is the data structure provided in the problem
 * definition.  Symbols are sorted by symLength and within
 * length by sym.
typedef struct SymElem {
  unsigned short symLength;
  unsigned short sym;
  unsigned short value;
} SymElem, *SymElemPtr;

 * DecodeNode is a node in the tree used to decode the 
 * input stream.  The zeroP and oneP values are offsets
 * into the tree corresponding to reading a 0 or a 1 given
 * the prior input.  Note that the zeroP field is used at a
 * leaf node (identified by a zero in the oneP field) to 
 * represent the SymElem value.  The offsets are stored
 * relative to the current tree position for efficiency
 * in calculating the address.  Note also that 16 bits are 
 * enough to access the max available 256K (64K nodes of 
 * 4 bytes each).  In cases where only 64K storage is used,
 * the offsets are premultiplied by sizeof(DecodeNode) to
 * squeeze out a little additional efficiency at some small
 * expense in code size.
typedef struct DecodeNode {   
    ushort zeroP;   /* index of right tree node, or value */ 
    ushort oneP;    /* index of left tree node            */ 
} DecodeNode; 

typedef struct SymDecode {
        SymElemPtr symP;
        ushort numEntries;
        ushort align;
} SymDecode;


void *HuffmanDecodeInit(SymElemPtr theSymTable,
  unsigned short numSymElems,
  unsigned long maxMemoryUsage);

unsigned long HuffmanDecode(SymElemPtr theSymTable,
  unsigned short numSymElems, char *bitsPtr,
  unsigned long numBits, unsigned short *outputPtr,
  void * privateHuffDataPtr);
#define kUnused (ushort)0xFFFF
#define kTerminalNode 0
#define InitializeNewNode()                                \
{                                                          \
    if ((void *)pFree > (void *)pMax)                      \
      goto notEnoughStorage;                               \
    pFree->oneP = kUnused;                                 \
    pFree->zeroP = kUnused;                                \

#define kGMode 0
#define kSEP 4
#define kGlobalStorageSize (kSEP+16*sizeof(SymDecode))

#define gMode *(short *)((char *)privateHuffDataPtr+kGMode)


void *HuffmanDecodeInit(SymElemPtr theSymTable,
  unsigned short numSymElems,
  unsigned long maxMemoryUsage)
register DecodeNode *p;
register DecodeNode *pOrig;
register DecodeNode *pFree;
register ulong pMax;
register ushort i;
register ulong nodeNum=1;
SymDecode *theSymElemPtr;
SymElemPtr sP;
void *privateHuffDataPtr;
ulong count;
ushort sym,maxLng,maxDiff=0;

 * Allocate entire memory allocation, return if allocation
 * fails.
  if (0 == (p=privateHuffDataPtr = NewPtr(maxMemoryUsage)))
     return 0;
  gMode = 0;

 * Initialize SymElem pointers
  theSymElemPtr = (SymDecode *)((char *)privateHuffDataPtr +
  sP = theSymTable;
  count = 0;
  sym = theSymTable->sym;
  for (i=1; i<=16; ++i) {
    ushort oldCount;
    oldCount = count;
    theSymElemPtr->symP = sP;
    while ((sP->symLength==i) && (count<numSymElems))
      { ++count;  ++sP; }
    theSymElemPtr++->numEntries = count-oldCount;

 * Initialize tree pointers.
  p = (DecodeNode *)(kGlobalStorageSize + 
                                (char *)privateHuffDataPtr);
  pOrig = pFree = p;
  pMax = (ulong)((char *)p + maxMemoryUsage -
                (kGlobalStorageSize + sizeof(DecodeNode)) );

 * Initialize root of tree.

 * Loop over symbol table elements.
 * Insert each symbol into the tree.
 * Tree is traversed by following the zeroP/oneP indices 
 * corresponding to the bits of the sym field in the symbol
 * table, from most significant to least significant bit.
 * Leaves of the tree are indicated by oneP==kTerminalNode.
 * The zeroP field of leaf nodes contains the decompressed 
 * output for the bit sequence that led to the leaf when 
 * the oneP field is kTerminalNode.
  for (i=0; i<numSymElems; ++i) {
    SymElemPtr sP;
    register short sym;
    ushort value;
    register ushort symLength;
    sP = theSymTable+i;
    sym = sP->sym;
    value = sP->value;
    symLength = sP->symLength;
    p = pOrig;

 * Loop over bits in the sym field.
    sym <<= (16-symLength);
    do {
      if (0 > sym ) {
 * Process a 1, allocate a new node if one is needed.
        if (kUnused == p->oneP) { 
          p->oneP = (pFree-p);
          if (p->oneP > maxDiff) maxDiff = p->oneP;
          p = pFree++;
        } else {
          p += p->oneP;
      } else {
 * Process a 0, allocate a new node if one is needed.
 * Note that since we reuse the zeroP field later to contain
 * the value to be output, this code depends on having a
 * correct (i.e. deterministic) Huffman encoding in
 * theSymTable, and will crash spectacularly otherwise.
        if (kUnused == p->zeroP) {
          p->zeroP = (pFree-p);
          if (p->zeroP > maxDiff) maxDiff = p->zeroP;
          p = pFree++;
        } else {
          p += p->zeroP;
      sym <<= 1;
    } while (--symLength);

 * Insert value into leaf node.
    p->zeroP = value;
    p->oneP = kTerminalNode;
    maxLng = sP->symLength;

 * Premultiply offsets by node size for "fast" mode.
  if ( (1<<14)-1 > maxDiff  ) {
    gMode = 1;
    p = pFree;
    do {
      if (p->oneP != kTerminalNode) {
        if (p->zeroP != kUnused)
          p->zeroP *= sizeof(DecodeNode);
        if (p->oneP != kUnused)
          p->oneP *= sizeof(DecodeNode);
    } while (p>pOrig);
  goto done;

 * If we do not have enough storage for the tree, fall back
 * on a slower technique requiring less storage.
  gMode = 2;
  return privateHuffDataPtr;

macro ProcessBit

#define ProcessBit(mask,bitNum)                            \
{ register ulong temp;                                     \
  if (!(theChar & mask)) temp = tP->zeroP;                 \
  else                   temp = oneP;                      \
  temp *= sizeof(DecodeNode);                              \
  t += temp;                                               \
  if (kTerminalNode == (oneP = tP->oneP))  {               \
    *outP++ =  tP->zeroP;                                  \
    t = (char *)decode_tree;                               \
    oneP = tP->oneP;                                       \
  }                                                        \

macro ProcessBitFast

#define ProcessBitFast(mask,bitNum)                        \
{ register ulong temp;                                     \
  if (!(theChar & mask)) temp = tP->zeroP;                 \
  else                   temp = oneP;                      \
  t += temp;                                               \
  if (kTerminalNode == (oneP = tP->oneP))  {               \
    *outP++ =  tP->zeroP;                                  \
    t = (char *)decode_tree;                               \
    oneP = tP->oneP;                                       \
  }                                                        \

macro ProcessBitSlow

#define ProcessBitSlow(mask,bitNum,keepMask,next)          \
{ register ushort temp;                                    \
  if (!(theChar & mask)) temp = tP->zeroP;                 \
  else                   temp = oneP;                      \
  if (temp != kUnused) {                                   \
    temp *= sizeof(DecodeNode);                            \
    t += temp;                                             \
    if (kTerminalNode == (oneP = tP->oneP))  {             \
      *outP++ =  tP->zeroP;                                \
      t = (char *)decode_tree;                             \
      oneP = tP->oneP;                                     \
      theSym=0;  theSymLng=0;                              \
      theChar &= keepMask;                                 \
      bitStart = bitNum-1;                                 \
      next;                                                \
    }                                                      \
  } else {                                                 \
    theBitNum = bitNum;                                    \
    goto overflow;                                         \
  }                                                        \


unsigned long HuffmanDecode(SymElemPtr theSymTable,
  unsigned short numSymElems, char *bitsPtr,
  unsigned long numBits, unsigned short *outputPtr,
  void * privateHuffDataPtr)
register char *bitsP = bitsPtr;
register ushort *outP = outputPtr;
register char *t = (char *)privateHuffDataPtr + 
#define tP ((DecodeNode *)t)

register uchar theChar; 
register ushort oneP;
register ulong count; 
ushort state;
  oneP = ((DecodeNode *)t)[0].oneP;
  state = 0;
 * Set up loop count to loop over complete input bytes, and
 * jump past the switch statement into the loop.
 * The billKarsh-inspired switch--do subterfuge allows us  
 * to optimize the main loop and still reuse code for the 
 * leftover bits at the end.
  count = numBits>>3;
 * Select case.
    register ushort mode;
    if (0 == (mode = *(ushort *)(t - kGlobalStorageSize)) )
      goto start;
    if (1 == mode) goto startFast;
    goto slowest;

 * CASE 0
 * This section processes the case where the decode tree
 * fit into available memory, but the offsets are in units
 * of sizeof(long).
 * We jump to doLeftOverBits at the end to pick up the last byte.
  state = 1;
  count = 1;                  /* Only one byte to process */
  theChar =  *bitsP;          /* Fetch last byte */
  theChar>>=(8-numBits);      /* Shift bits into position */
  switch (numBits) {
    register ulong decode_tree;
    decode_tree = (ulong)t;
    do { 
 * Loop over the bytes in the input stream, decoding as
 * we go.  Rather than loop over the bits in each byte,
 * the bit loop is unrolled for efficiency.
        theChar =  *bitsP++;  /* get input byte */ 
case 0: ProcessBit(0x80,8);     /* process 0th bit */
case 7: ProcessBit(0x40,7);     /* process 1st bit */ 
case 6: ProcessBit(0x20,6);     /* process 2nd bit */ 
case 5: ProcessBit(0x10,5);     /* process 3rd bit */ 
case 4: ProcessBit(0x08,4);     /* process 4th bit */ 
case 3: ProcessBit(0x04,3);     /* process 5th bit */ 
case 2: ProcessBit(0x02,2);     /* process 6th bit */ 
case 1: ProcessBit(0x01,1);     /* process 7th bit */ 
    } while (--count);
 * Make another pass to process the bits in the last byte.
  if (state==0) {
    if (numBits &= 7) goto doLeftOverBits;
  goto done;

 * CASE 1
 * This section processes the case where the decode tree
 * fit into available memory, but the offsets are in units
 * of bytes.
 * We jump to doLeftOverBitsFast at the end to pick up the 
 * last byte.
  state = 1;
  count = 1;                  /* Only one byte to process */
  theChar =  *bitsP;          /* Fetch last byte */
  theChar>>=(8-numBits);      /* Shift bits into position */
  switch (numBits) {
    register ulong decode_tree;
    decode_tree = (ulong)t;
    do { 
 * Loop over the bytes in the input stream, decoding as
 * we go.  Rather than loop over the bits in each byte,
 * the bit loop is unrolled for efficiency.
        theChar =  *bitsP++;  /* get input byte */ 
case 0: ProcessBitFast(0x80,8); /* process 0th bit */
case 7: ProcessBitFast(0x40,7); /* process 1st bit */ 
case 6: ProcessBitFast(0x20,6); /* process 2nd bit */ 
case 5: ProcessBitFast(0x10,5); /* process 3rd bit */ 
case 4: ProcessBitFast(0x08,4); /* process 4th bit */ 
case 3: ProcessBitFast(0x04,3); /* process 5th bit */ 
case 2: ProcessBitFast(0x02,2); /* process 6th bit */ 
case 1: ProcessBitFast(0x01,1); /* process 7th bit */ 
    } while (--count);
 * Make another pass to process the bits in the last byte.
  if (state==0) {
    if (numBits &= 7) goto doLeftOverBitsFast;
  goto done;

 * CASE 2
 *   This code handles the case where the entire decode
 *   tree did not fit into the private storage.  In this
 *   case we use the portion of the tree that did fit, but
 *   we may have to linearly search the SymTable for the
 *   longer symbols.
  SymDecode *theSymElemPtr;
  SymElemPtr sP;
  short bitStart,theSymLng,theMask,theBitNum,saveCount,x;
  register ushort theSym;
  theSymLng = 0;
  theSym = 0;
  goto startSlow;
  state = 1;
  count = 1;                /* Only one byte to process */
  theChar =  *bitsP;        /* Fetch last byte */
  theChar>>=(8-numBits);    /* Shift bits into position */
  switch (numBits) {
    ulong decode_tree;
    decode_tree = (ulong)t;
    do { 
      theChar =  *bitsP++;  /* get input byte */ 
      bitStart = 8;
slow0:                                /* process 0th bit */
case 0: ProcessBitSlow(0x80,8,0x7F,);
slow7:                                /* process 1st bit */
case 7: ProcessBitSlow(0x40,7,0x3F,);
slow6:                                /* process 2nd bit */
case 6: ProcessBitSlow(0x20,6,0x1F,);
slow5:                                /* process 3rd bit */
case 5: ProcessBitSlow(0x10,5,0x0F,); 
slow4:                                /* process 4th bit */
case 4: ProcessBitSlow(0x08,4,0x07,);
slow3:                                /* process 5th bit */
case 3: ProcessBitSlow(0x04,3,0x03,);
slow2:                                /* process 6th bit */
case 2: ProcessBitSlow(0x02,2,0x01,); 
slow1:                                /* process 7th bit */
case 1: ProcessBitSlow(0x01,1,0x00,continue);  

      theSym <<= bitStart;
      theSym |= theChar;
      theSymLng += bitStart;
      continue; /* continue with next char */
      theSym <<= bitStart-theBitNum;
      theSym |= (theChar>>theBitNum);
      theSymLng += bitStart-theBitNum;                               
      theMask = 1<<(theBitNum-1);
      theChar &= (1<<theBitNum)-1;
      bitStart = theBitNum;

      /* search SymTab for theSym */
      saveCount = count;
      theSymElemPtr = (SymDecode *)
                        ((char *)privateHuffDataPtr + kSEP);
      theSymElemPtr += theSymLng-1;
      sP = theSymElemPtr->symP;
      count = theSymElemPtr->numEntries;
      if (count) do {
        if (sP->sym < theSym) goto nextSP;
        if (sP->sym > theSym) goto noSym;
        *outP++ = sP->value;
        if (state != 0) goto done;
        theSymLng = 0;
        theSym = 0;
        theChar &= ((1<<theBitNum)-1);
        bitStart = theBitNum;
        count = saveCount;
        t = (char *)decode_tree;
        oneP = tP->oneP;
next:   switch (theBitNum) {
        case 8:
        case 0:  count = saveCount;
                 goto nextChar0;
        case 1:  goto slow1;
        case 2:  goto slow2;
        case 3:  goto slow3;
        case 4:  goto slow4;
        case 5:  goto slow5;
        case 6:  goto slow6;
        case 7:  goto slow7;
nextSP: ++sP;
        } /* end switch */
      } while (--count);
noSym:if (0 == theBitNum) {
        if (0==--saveCount) {
          if (state!=0) goto done;
          theChar = *bitsP;
          count = 1;
          theBitNum = 8;  theMask = 0x80;
        } else {
          theChar =  *bitsP++;  /* get input byte */ 
          theBitNum = 8;  theMask = 0x80;
      if (theChar&theMask) theSym|=1;
      goto search;
      theSym <<= 8;
      theSym |= theChar;
      theSymLng += 8;
nextChar0: ;
    } while (--count);
    if ((state==0) && (numBits &= 7)) 
      goto doLeftOverBitsSlow;
    return (char *)outP-(char *)outputPtr;  


Community Search:
MacTech Search:

Software Updates via MacUpdate

Dropbox 193.4.5594 - Cloud backup and sy...
Dropbox is a file hosting service that provides cloud storage, file synchronization, personal cloud, and client software. It is a modern workspace that allows you to get to all of your files, manage... Read more
Google Chrome 122.0.6261.57 - Modern and...
Google Chrome is a Web browser by Google, created to be a modern platform for Web pages and applications. It utilizes very fast loading of Web pages and has a V8 engine, which is a custom built... Read more
Skype - Voice-over-internet...
Skype is a telecommunications app that provides HD video calls, instant messaging, calling to any phone number or landline, and Skype for Business for productive cooperation on the projects. This... Read more
Tor Browser 13.0.10 - Anonymize Web brow...
Using Tor Browser you can protect yourself against tracking, surveillance, and censorship. Tor was originally designed, implemented, and deployed as a third-generation onion-routing project of the U.... Read more
Deeper 3.0.4 - Enable hidden features in...
Deeper is a personalization utility for macOS which allows you to enable and disable the hidden functions of the Finder, Dock, QuickTime, Safari, iTunes, login window, Spotlight, and many of Apple's... Read more
OnyX 4.5.5 - Maintenance and optimizatio...
OnyX is a multifunction utility that you can use to verify the startup disk and the structure of its system files, to run miscellaneous maintenance and cleaning tasks, to configure parameters in the... Read more
Hopper Disassembler 5.14.1 - Binary disa...
Hopper Disassembler is a binary disassembler, decompiler, and debugger for 32- and 64-bit executables. It will let you disassemble any binary you want, and provide you all the information about its... Read more
WhatsApp 24.3.78 - Desktop client for Wh...
WhatsApp is the desktop client for WhatsApp Messenger, a cross-platform mobile messaging app which allows you to exchange messages without having to pay for SMS. WhatsApp Messenger is available for... Read more
War Thunder - Multiplayer war...
In War Thunder, aircraft, attack helicopters, ground forces and naval ships collaborate in realistic competitive battles. You can choose from over 1,500 vehicles and an extensive variety of combat... Read more
Iridient Developer 4.2 - Powerful image-...
Iridient Developer (was RAW Developer) is a powerful image-conversion application designed specifically for OS X. Iridient Developer gives advanced photographers total control over every aspect of... Read more

Latest Forum Discussions

See All

Gorgeous Tactical Puzzle Game ‘Howl’ is...
Following its release on PC and Nintendo Switch this past November, and it’s arrival on Xbox and PlayStation back in January, publisher Astragon Entertainment and developer Mi’pu’mi Games are now bringing their super stylish tactical puzzler Howl to... | Read more »
Best iPhone Game Updates: ‘Shoot the Moo...
Hello everyone, and welcome to the week! It’s time once again for our look back at the noteworthy updates of the last seven days. It feels like a bit of a dry spell this week, at least in terms of really interesting updates. I mean, I found some... | Read more »
Celebrate Phobies spooky second annivers...
Get ready to have that classic song stuck in your head, as Phobies celebrates its second anniversary with the release of its latest update; Birthday Bash, Monster Mash. Starting March 5th and lasting for four weeks, it will be a month of... | Read more »
‘Dissidia Final Fantasy Opera Omnia’ Sto...
Square Enix finally shut down Dissidia Final Fantasy Opera Omnia (Free) on iOS and Android last week following the end of service announcement back in November last year. Following the game shutting down, Square Enix | Read more »
‘Monster Hunter Now’ Is Celebrating the...
Niantic and Capcom have begun celebrating the 20th anniversary of Capcom’s best franchise from today inside Monster Hunter Now (Free) on iOS and Android for a limited time. | Read more »
New ‘Warframe Mobile’ Update Adds 60fps...
Warframe Mobile (Free) launched worldwide on iOS just under two weeks ago. I’ve been playing it for review across multiple iOS devices, but have also been picking it up on Steam Deck and Switch to compare. Right from launch, I was impressed with... | Read more »
Passionate About Fidget Toys – The Touch...
In this week’s episode of The TouchArcade Show we kick things off with some passionate discussion about… fidget toys? For some reason? We quickly change gears to talk about the card-based rogulike Balatro, which we’ve both been playing and enjoying... | Read more »
TouchArcade Game of the Week: ‘Flying Ta...
For me Hexage is one of those developers that harkens back to the early days of the App Store and really the beginnings of iPhone gaming. I have spent many collective hours playing the likes of Totemo, Radiant, Radiant Defense, EVAC, Reaper… the... | Read more »
SwitchArcade Round-Up: ‘Ufouria 2: The S...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for March 1st, 2024. In today’s article, we’re looking at the remaining releases of the week. There are a few really good ones today, but the bin bunch certainly isn’t going home hungry... | Read more »
Steam Deck Weekly: Reviews of PowerWash...
Welcome to the first Steam Deck Weekly of March and this week’s edition is bigger than usual. I was a bit unwell last week and had to push some reviews to this week. Alongside that, there have been many notable announcements, releases, and new Steam... | Read more »

Price Scanner via

Deal Alert! B&H is now selling 13-inch M2...
B&H Photo has 13″ MacBook Airs with M2 CPUs and 256GB of storage in stock and on sale for $100 off Apple’s new MSRP, now only $899. Free 1-2 day delivery is available to most US addresses. Their... Read more
At $999, Apple’s 13-inch M2 MacBook Air is th...
With today’s introduction of the new 13-inch M3 MacBook Air for $1099, Apple dropped prices on the previous-generation 13-inch M2 MacBook Air to $999. At the same time, Apple discontinued the 13-inch... Read more
Apple discontinues 15-inch M2 MacBook Airs, d...
With today’s introduction of new M3-powered 15″ MacBook Airs, Apple has dropped prices on clearance, Certified Refurbished, 15″ M2 MacBook Airs to a new low of $1019. These are the cheapest 15″... Read more
Price Drop! 13-inch M2 MacBook Airs at Apple...
Apple has dropped prices on Certified Refurbished 13″ M2 MacBook Airs to a new low of $849. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty is included,... Read more
Apple finally discontinues the 13-inch M1 Mac...
With the introduction of M3-powered 13″ MacBook Airs today, Apple has dropped prices on clearance 13″ M1 MacBook Airs, Certified Refurbished, to $759 for 8-Core CPU/7-Core GPU/256GB models and $929... Read more
Updated Apple iPad Price Trackers
Our Apple award-winning iPad Price Trackers are the best place to find the latest information on iPad sales and deals. We track prices from 20+ Apple retailers, including Apple, Amazon, Best Buy,... Read more
Updated Apple MacBook Price Trackers
Our Apple award-winning MacBook Price Trackers are continually updated with the latest information on prices, bundles, and availability for 16″, 14″, and (recently-discontinued) 13″ MacBook Pros... Read more
Mac Studios with Apple M2 Max and M2 Ultra CP...
B&H Photo has the standard-configuration Mac Studio model with Apple’s M2 Ultra CPU in stock today and on sale for $300 off MSRP, now $3699 (24-Core CPU and 64GB RAM/1TB SSD). B&H Photo has... Read more
Extended: Switch to Verizon and get the Apple...
Verizon has the iPhone 15 on sale for $0 per month when you add a new line if service. Discount is applied to your account monthly over a 36 month term and is valid for the 128GB model. For the first... Read more
Select 16-inch M3 Pro and M3 Max MacBook Pros...
B&H Photo has select 16-inch M3 Pro and M3 Max MacBook Pros on sale for $250 off MSRP. Their prices are the lowest currently available for these configurations. Free 1-2 day shipping is available... Read more

Jobs Board

Teller Part Time *Apple* Valley MN *Apple*...
…is not eligible for Visa sponsorship **Posting Location:** + 15574 Pilot Knod Road Apple Valley, MN 55124 @RWF22 **Posting End Date:** Job posting may come down Read more
*Apple* End User Support Specialist - North...
…that they are performed. + Responsible for support of all College owned Apple computers, mobile ios devices, and peripherals, and for diagnosing and resolving Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States ( - Apple Read more
Teller Part Time *Apple* Valley MN *Apple*...
…is not eligible for Visa sponsorship **Posting Location:** + 15574 Pilot Knod Road Apple Valley, MN 55124 @RWF22 **Posting End Date:** Job posting may come down Read more
Nurse Anesthetist - *Apple* Hill Surgery Ce...
Nurse Anesthetist - Apple Hill Surgery Center WellSpan Medical Group, York, PA | Advanced Practice Providers | Certified Registered Nurse Anesthetists | FTE: 1 | Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.