TweetFollow Us on Twitter

Jul 94 Challenge
Volume Number:10
Issue Number:7
Column Tag:Programmers’ Challenge

Programmers’ Challenge

By Mike Scanlin, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Color Space Conversion

Typically, when an RGB image is compressed into JPEG data, it is first converted into separate luminance (Y) and chrominance (U and V) components. Although JPEG doesn’t specify which color space conversion to use, a commonly used one is:

Y     0.29900000   0.58700000   0.11400000     R
U  = -0.16873590  -0.33126410   0.50000000  *  G
V     0.50000000  -0.41868760  -0.08131241     B

where R, G and B are unsigned chars (0..255). For the outputs, Y is an unsigned char (0..255) while U and V are signed chars (-128..127).

The prototype of the two functions you write are:


/* 1 */
void *RGBtoYUVInit(void);

void RGBtoYUV(rPtr, gPtr, bPtr, 
              yPtr, uPtr, vPtr,
              numPixels,privateDataPtr)
unsigned char *rPtr;
unsigned char *gPtr;
unsigned char *bPtr;
unsigned char *yPtr;
  signed char *uPtr;
  signed char *vPtr;
unsigned long numPixels;
         void *privateDataPtr;

This month you’re being given a chance to have a separate initialization routine that will not be timed (only the RGBtoYUV will count towards your time). It can create whatever lookup tables RGBtoYUV may need and return a pointer to that private data. The return value from RGBtoYUVInit will be passed to RGBtoYUV as the privateDataPtr parameter. You decide what it points to (if anything).

There are two key aspects to writing RGBtoYUV. The first is that it has to be fast (as always). The second, though, is that it has to be accurate (or else when someone reconstructs the image with the inverse conversion image quality will be lost). Even though the outputs are only 8 bits, the matrix coefficients require much more than that to represent. Your output values must equal what you would get if you carried out the matrix math with complete precision and then rounded the results down to 8 bits as the last step (with .5 rounding down to zero). For instance, if R = 3, G = 17 and B = 23 then: Y = 3*.299 + 17*.587 + 23*.114 which is 13.498. When rounded this becomes 13 which is what you should return as part of the buffer that yPtr points to.

Each of the pointers to the RGB input data and YUV output data point to a buffer filled with data of one component (so there are 6 buffers total). numPixels is between 1 and 1,000,000 and is the size of each buffer. If numPixels were 100 then rPtr would point to 100 red values and gPtr and bPtr would point to 100 corresponding green and blue values. Your routine would then set the 100 bytes pointed to by yPtr to the appropriate Y values (and likewise for the U and V values, too).

The RGB and YUV buffers will be allocated for you. Your initialization routine may allocate up to 1MB of lookup tables if it wants to (it will be able to get a contiguous 1MB piece if it needs it).

TWO MONTHS AGO WINNER

We have a new first-time winner this month. Congrats to Troy Anderson (Paradise Valley, AZ) for his somewhat large but definitely fast entry in the Flip Horizontal challenge. He was faster than second place winner Bob Boonstra (Westford, MA) in every case that I tested. No small feat considering that Bob is a three-time Challenge winner. Troy also beat another three-time winner, Bill Karsh (Chicago, IL), in almost every test case. Unfortunately, Bill may have been too ecstatic with his win last month to test every possible case this month and unfortunately I had to disqualify his entry for lack of correctness.

Here are the code sizes and times. The time numbers represents the sum of the times for many different inputs (different depths, different rowBytes, etc). Numbers in parens after a person’s name indicate how many times that person has finished in the top 5 places of all previous Programmer Challenges, not including this one:

Name time code+data

Troy Anderson 759 2442

Bob Boonstra (8) 818 1564

Allen Stenger (5) 1069 1318

Michael Panchenko 2952 616

The best way to do well at the Flip Horizontal problem is to write dedicated code to handle each possible depth. That’s exactly what Troy did. He then went even further by special casing certain common cases, such as when rowBytes is a multiple of four.

Troy also solved the flip-byte problem (that exists when the depth is less than 8) the same way that almost everyone else did: with a lookup table for each case (1-bit, 2-bit and 4-bit). For example, when you’re flipping a bitmap horizontally it becomes necessary to flip all 8 bits in a byte. With a 256 element lookup table you can do this in a single lookup.

The 8-bit, 16-bit and 32-bit deep cases are all very similar. Troy reuses similar code by letting the preprocessor fill in the types of his variables (he uses the #define T for this purpose).

Another way of doing this, if the code is similar enough for each case, is to make the whole routine a macro and have it take a parameter which represents the type (byte, short, etc) that you want the code generated for. For instance, Bob Boonstra created this macro:


/* 2 */
/* Macro DoFlipHoriz 
 handles cases where a pixel is one byte, word, or longword in size.
 */
#define DoFlipHoriz(tp) \
{ \
/* loopCount=numCols/2 has already been calculated. */ \
  if (0 < loopCount) do { \
    register tp *p,*q; \
    p = (tp *)base; \
    q = p+numCols; \
    cCount = loopCount; \
    do { \
      register tp temp; \
      temp = *p; \
      *p++ = *--q; \
      *q = temp; \
    } while (--cCount); \
    base += rowBytes; \
  } while (--rCount); \
}
and then uses it like this in part of his solution:

    register short cCount,rCount,loopCount;
    rCount = numRows;
    loopCount = numCols>>1;
    if (8 == pixSize) DoFlipHoriz(uchar) 
    else if (16==pixSize) DoFlipHoriz(ushort)
    else /*if (32==pixSize)*/ DoFlipHoriz(ulong)

You’ll get 3 copies of the macro’s code, each for a different size pixel.
Here’s Troy’s winning solution:

// MacTech Magazine Programmers' Challenge
// May, 1994
// Submitted by Troy Anderson
// 
// Copyright (c) 1994 Troy L. Anderson

#include <QDOffscreen.h>

typedef unsigned char UCHAR;

prototypes
void FlipPixMapHorz( PixMapHandle thePixMapHndl);

static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area);

static void ExchangeWords_Long( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Word( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);

static void ExchangeWords_Byte( PixMapHandle theMap, 
                                short rowBytes,
                                short depth,
                                Rect* area);


FlipPixMapHorz
// This could be made a bit faster by in-lining the functions, but this 
is much clearer,
// and not very much slower.
void FlipPixMapHorz( PixMapHandle thePixMapHndl)
{
  short   rowBytes = (**thePixMapHndl).rowBytes & 0x7fff;
  Boolean longAligned = rowBytes % 4 == 0;
  short   depth = (**thePixMapHndl).pixelSize;
  Rect    bounds = (**thePixMapHndl).bounds;
  
  switch( depth)
  {
    case  1:
    case  2:
    case  4:
      if (longAligned)
        Flip_Long(  thePixMapHndl, 
                    rowBytes,
                    depth,
                    &bounds);
      else
        Flip_Word(  thePixMapHndl,
                    rowBytes,
                    depth,
                    &bounds);
      break;

    case  8:
      ExchangeWords_Byte( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
    
    case  16:
      ExchangeWords_Word( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
      
    case  32:
      ExchangeWords_Long( thePixMapHndl,
                          rowBytes,
                          depth,
                          &bounds);
      break;
  }
}


ExchangeWords_Long
long word alignment version
static void ExchangeWords_Long( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T long

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


ExchangeWords
word alignment version
static void ExchangeWords_Word( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T short

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}

ExchangeWords
byte alignment version
static void ExchangeWords_Byte( PixMapHandle theMap,
                                short rowBytes,
                                short depth,
                                Rect* area)
{
#undef T
#define T char

  short       rowCells = rowBytes / sizeof(T);
  short       numCells = ((area->right - area->left) * 
                      depth + sizeof(T)*8 - 1) / 
                      (sizeof(T)*8);
  T           temp;
  register T  *cellPtr1, *cellPtr2;
  T           *aRow;
  T           *firstRow = (T*)GetPixBaseAddr( theMap);
  T           *lastRow = firstRow + rowCells * 
                        (long)(area->bottom - area->top);

    // Flip the words in each row
  for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    for ( cellPtr1 = aRow + numCells-1, cellPtr2 = aRow;
        cellPtr1 > cellPtr2; 
        cellPtr1--, cellPtr2++)
      temp = *cellPtr1, // swap them 
      *cellPtr1 = *cellPtr2, 
      *cellPtr2 = temp;
}


Inverse tables
// Inverse tables used to flip the bits in a byte - 
// index is input, value is inverse of index

// This is the 1-bit per pixel table
static char byteFlips1[] ={ 
  0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 
  0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 
  0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 
  0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 
  0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 
  0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 
  0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 
  0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 
  0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 
  0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 
  0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 
  0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 
  0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 
  0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 
  0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 
  0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 
  0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 
  0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 
  0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 
  0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 
  0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 
  0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
  0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 
  0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
  0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 
  0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 
  0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 
  0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 
  0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 
  0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff  };
              
// This is the 2-bits per pixel table
static char byteFlips2[] ={ 
  0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0, 
  0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0,
  0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4, 
  0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4,
  0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8, 
  0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8, 
  0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc, 
  0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc, 
  0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1, 
  0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1, 
  0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5, 
  0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5, 
  0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9, 
  0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9, 
  0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd, 
  0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd, 
  0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2, 
  0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2, 
  0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6, 
  0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6, 
  0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda, 
  0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa, 
  0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde, 
  0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe, 
  0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3, 
  0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3, 
  0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7, 
  0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7, 
  0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb, 
  0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb, 
  0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf, 
  0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff  };
            
// This is the 4-bits per pixel table
static char byteFlips4[] ={ 
  0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 
  0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
  0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, 
  0x81, 0x91, 0xa1, 0xb1, 0xc1, 0xd1, 0xe1, 0xf1, 
  0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, 
  0x82, 0x92, 0xa2, 0xb2, 0xc2, 0xd2, 0xe2, 0xf2, 
  0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, 
  0x83, 0x93, 0xa3, 0xb3, 0xc3, 0xd3, 0xe3, 0xf3, 
  0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, 
  0x84, 0x94, 0xa4, 0xb4, 0xc4, 0xd4, 0xe4, 0xf4, 
  0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, 
  0x85, 0x95, 0xa5, 0xb5, 0xc5, 0xd5, 0xe5, 0xf5, 
  0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, 
  0x86, 0x96, 0xa6, 0xb6, 0xc6, 0xd6, 0xe6, 0xf6, 
  0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, 
  0x87, 0x97, 0xa7, 0xb7, 0xc7, 0xd7, 0xe7, 0xf7, 
  0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, 
  0x88, 0x98, 0xa8, 0xb8, 0xc8, 0xd8, 0xe8, 0xf8, 
  0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, 
  0x89, 0x99, 0xa9, 0xb9, 0xc9, 0xd9, 0xe9, 0xf9, 
  0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a, 0x6a, 0x7a, 
  0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa, 
  0x0b, 0x1b, 0x2b, 0x3b, 0x4b, 0x5b, 0x6b, 0x7b, 
  0x8b, 0x9b, 0xab, 0xbb, 0xcb, 0xdb, 0xeb, 0xfb, 
  0x0c, 0x1c, 0x2c, 0x3c, 0x4c, 0x5c, 0x6c, 0x7c, 
  0x8c, 0x9c, 0xac, 0xbc, 0xcc, 0xdc, 0xec, 0xfc, 
  0x0d, 0x1d, 0x2d, 0x3d, 0x4d, 0x5d, 0x6d, 0x7d, 
  0x8d, 0x9d, 0xad, 0xbd, 0xcd, 0xdd, 0xed, 0xfd, 
  0x0e, 0x1e, 0x2e, 0x3e, 0x4e, 0x5e, 0x6e, 0x7e, 
  0x8e, 0x9e, 0xae, 0xbe, 0xce, 0xde, 0xee, 0xfe, 
  0x0f, 0x1f, 0x2f, 0x3f, 0x4f, 0x5f, 0x6f, 0x7f, 
  0x8f, 0x9f, 0xaf, 0xbf, 0xcf, 0xdf, 0xef, 0xff  };


Flip_Long
static void Flip_Long(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T long

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; 
        aRow < lastRow;
        aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row,  there is one 
cell we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
        // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
        // bring in the bits from the next cell - garbage will be brought 
in during
        // the last iteration, but it’s put into the last cell, outside 
the bounds of the 
        // image (but still in the data area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise, just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the  left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] =
            flipTable[((UCHAR*)cellPtr2)[3]];
        ((UCHAR*)cellPtr2)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[2]];
        ((UCHAR*)cellPtr2)[2] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[2];
        ((UCHAR*)cellPtr1)[2] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[3];
        ((UCHAR*)cellPtr1)[3] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[3]];
        ((UCHAR*)cellPtr1)[3] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr1)[2]];
        ((UCHAR*)cellPtr1)[2] = flipTable[temp];
      }
    }
  }
}


Flip_Word
static void Flip_Word(  PixMapHandle theMap, 
                        short rowBytes,
                        short depth,
                        Rect* area)
{
#undef T
#define T short

  register UCHAR  temp;
  short           rowCells = rowBytes / sizeof(T);
  long            bitsPerRow = (area->right - area->left) *
                          (long)depth - 1;
  short           numCells = (bitsPerRow + sizeof(T)*8) /
                          (sizeof(T)*8);
  T*              cellPtr;
  T*              aRow;
  T*              firstRow = (T*)GetPixBaseAddr( theMap);
  T*              lastRow = firstRow + rowCells * 
                      (long)(area->bottom - area->top);
  
  register T*     cellPtr1, *cellPtr2;

  short           numBitsToShift = ((sizeof(T)*8) -
                      (bitsPerRow % (sizeof(T)*8) + 1));
  T               shiftMask;
  T*              shiftCellPtr;
  char*           flipTable;
  
  

  switch(depth)
  {
    case 1:
      flipTable = byteFlips1;
      break;
    case 2:
      flipTable = byteFlips2;
      break;
    case 4:
      flipTable = byteFlips4;
      break;
  }
            

  if (numBitsToShift)
  {
    shiftMask = (1L << numBitsToShift) - 1;

    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the left, the other 
on the right),
      // flip the pixels in the individual cells and swap the cells with 
one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
          cellPtr1 > cellPtr2;
          cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] =
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there's an odd number of cells in the row, there is one cell 
we haven't
      // touched.   It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[temp];
      }

      // Slide the pixels to the left
      for ( shiftCellPtr = aRow;
          shiftCellPtr < aRow + rowCells;
          shiftCellPtr++)
      {
      // shift the bits over
        *shiftCellPtr <<= numBitsToShift;
          
      // bring in the bits from the next cell - garbage will be brought 
in during last 
      // iteration, but it’s put into the last
        // cell, outside the bounds of the image (but still in the data 
area)
        *shiftCellPtr |= shiftMask & 
                        (*(shiftCellPtr+1) >> 
                          (sizeof(T)*8 - numBitsToShift));
      }
    }
  }
  else  // no need to shift pixels, otherwise,  just the same as previous 
loop
    for ( aRow = firstRow; aRow < lastRow; aRow += rowCells)
    {
      // With each pair of cells in the row (one on the 
      // left, the other on the right), flip the pixels
      // in the individual cells and swap the cells with
       // one another.
      for ( cellPtr1 = aRow + numCells - 1, cellPtr2 = aRow;
            cellPtr1 > cellPtr2;
            cellPtr1--, cellPtr2++)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr2)[1]];
        ((UCHAR*)cellPtr2)[1] = flipTable[temp];
        
        temp = ((UCHAR*)cellPtr1)[1];
        ((UCHAR*)cellPtr1)[1] = 
            flipTable[((UCHAR*)cellPtr2)[0]];
        ((UCHAR*)cellPtr2)[0] = flipTable[temp];
      }
      
      // If there are an odd number of cells in the row,
      // there is one cell we haven't touched.
      // It needs to be flipped.
      if (cellPtr1 == cellPtr2)
      {
        temp = ((UCHAR*)cellPtr1)[0];
        ((UCHAR*)cellPtr1)[0] = 
            flipTable[((UCHAR*)cellPtr1)[1]];
        ((UCHAR*)cellPtr1)[1] = flipTable[temp];
      }
    }
  }
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

ScreenFlow 8.2.5 - Create screen recordi...
ScreenFlow is powerful, easy-to-use screencasting software for the Mac. With ScreenFlow you can record the contents of your entire monitor while also capturing your video camera, microphone and your... Read more
MegaSeg 6.1.1 - Professional DJ and radi...
MegaSeg is a complete solution for pro audio/video DJ mixing, radio automation, and music scheduling with rock-solid performance and an easy-to-use design. Mix with visual waveforms and Magic... Read more
Beamer 3.4 - Stream any movie file from...
Beamer streams to your Apple TV or Chromecast. Plays any movie file - Just like the popular desktop movie players, Beamer accepts all common formats, codecs and resolutions. AVI, MKV, MOV, MP4, WMV... Read more
FotoMagico 5.6.12 - Powerful slideshow c...
FotoMagico lets you create professional slideshows from your photos and music with just a few, simple mouse clicks. It sports a very clean and intuitive yet powerful user interface. High image... Read more
OmniGraffle Pro 7.12.1 - Create diagrams...
OmniGraffle Pro helps you draw beautiful diagrams, family trees, flow charts, org charts, layouts, and (mathematically speaking) any other directed or non-directed graphs. We've had people use... Read more
beaTunes 5.2.1 - Organize your music col...
beaTunes is a full-featured music player and organizational tool for music collections. How well organized is your music library? Are your artists always spelled the same way? Any R.E.M. vs REM?... Read more
HandBrake 1.3.0 - Versatile video encode...
HandBrake is a tool for converting video from nearly any format to a selection of modern, widely supported codecs. Features Supported Sources VIDEO_TS folder, DVD image or real DVD (unencrypted... Read more
Macs Fan Control 1.5.1.6 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
TunnelBear 3.9.3 - Subscription-based pr...
TunnelBear is a subscription-based virtual private network (VPN) service and companion app, enabling you to browse the internet privately and securely. Features Browse privately - Secure your data... Read more
calibre 4.3.0 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more

Latest Forum Discussions

See All

The House of Da Vinci 2 gets a new gamep...
The House of Da Vinci launched all the way back in 2017. Now, developer Blue Brain Games is gearing up to deliver a second dose of The Room-inspired puzzling. Some fresh details have now emerged, alongside the game's first official trailer. [Read... | Read more »
Shoot 'em up action awaits in Battl...
BattleBrew Productions has just introduced another entry into its award winning, barrelpunk inspired, BattleSky Brigade series. Whilst its previous title BattleSky Brigade TapTap provided fans with idle town building gameplay, this time the... | Read more »
Arcade classic R-Type Dimensions EX blas...
If you're a long time fan of shmups and have been looking for something to play lately, Tozai Games may have just released an ideal game for you on iOS. R-Type Dimensions EX brings the first R-Type and its sequel to iOS devices. [Read more] | Read more »
Intense VR first-person shooter Colonicl...
Our latest VR obsession is Colonicle, an intense VR FPS, recently released on Oculus and Google Play, courtesy of From Fake Eyes and Goboogie Games. It's a pulse-pounding multiplayer shooter which should appeal to genre fanatics and newcomers alike... | Read more »
PUBG Mobile's incoming update bring...
PUGB Mobile's newest Royale Pass season they're calling Fury of the Wasteland arrives tomorrow and with it comes a fair chunk of new content to the game. We'll be seeing a new map, weapon and even a companion system. [Read more] | Read more »
PSA: Download Bastion for free, but wait...
There hasn’t been much news from Supergiant Games on mobile lately regarding new games, but there’s something going on with their first game. Bastion released on the App Store in 2012, and back then it was published by Warner Bros. This Warner... | Read more »
Apple Arcade: Ranked - 51+ [Updated 11.5...
This is Part 2 of our Apple Arcade Ranking list. To see part 1, go here. 51. Patterned [Read more] | Read more »
NABOKI is a blissful puzzler from acclai...
Acclaimed developer Rainbow Train's latest game, NABOKI, is set to launch for iOS, Android, and Steam on November 13th. It's a blissful puzzler all about taking levels apart in interesting, inventive ways. [Read more] | Read more »
A Case of Distrust is a narrative-driven...
A Case of Distrust a narrative-focused mystery game that's set in the roaring 20s. In it, you play as a detective with one of the most private eye sounding names ever – Phyllis Cadence Malone. You'll follow her journey in San Francisco as she... | Read more »
Brown Dust’s October update offers playe...
October is turning out to be a productive month for the Neowiz team, and a fantastic month to be a Brown Dust player. First, there was a crossover event with the popular manga That Time I Got Reincarnated as a Slime. Then, there was the addition of... | Read more »

Price Scanner via MacPrices.net

Score a 37% discount on Apple Smart Keyboards...
Amazon has Apple Smart Keyboards for current-generation 10″ iPad Airs and previous-generation 10″ iPad Pros on sale today for $99.99 shipped. That’s a 37% discount over Apple’s regular MSRP of $159... Read more
Apple has refurbished 2019 13″ 1.4GHz MacBook...
Apple has a full line of Certified Refurbished 2019 13″ 1.4GHz 4-Core Touch Bar MacBook Pros available starting at $1099 and up to $230 off MSRP. Apple’s one-year warranty is included, shipping is... Read more
2019 13″ 1.4GHz 4-Core MacBook Pros on sale f...
Amazon has new 2019 13″ 1.4GHz 4-Core Touch Bar MacBook Pros on sale for $150-$200 off Apple’s MSRP. These are the same MacBook Pros sold by Apple in its retail and online stores: – 2019 13″ 1.4GHz/... Read more
11″ 64GB Gray WiFi iPad Pro on sale for $674,...
Amazon has the 11″ 64GB Gray WiFi iPad Pro on sale today for $674 shipped. Their price is $125 off MSRP for this iPad, and it’s the lowest price available for the 64GB model from any Apple reseller. Read more
2019 15″ MacBook Pros available for up to $42...
Apple has a full line of 2019 15″ 6-Core and 8-Core Touch Bar MacBook Pros, Certified Refurbished, available for up to $420 off the cost of new models. Each model features a new outer case, shipping... Read more
2019 15″ MacBook Pros on sale this week for $...
Apple resellers B&H Photo and Amazon are offering the new 2019 15″ MacBook Pros for up to $300 off Apple’s MSRP including free shipping. These are the same MacBook Pros sold by Apple in its... Read more
Sunday Sale: AirPods with Wireless Charging C...
B&H Photo has Apple AirPods with Wireless Charging Case on sale for $159.99 through 11:59pm ET on November 11th. Their price is $40 off Apple’s MSRP, and it’s the lowest price available for these... Read more
Details of Sams Club November 9th one day App...
Through midnight Saturday night (November 9th), Sams Club online has several Apple products on sale as part of their One Day sales event. Choose free shipping or free local store pickup (if available... Read more
Sprint is offering the 64GB Apple iPhone 11 f...
Sprint has the new 64GB iPhone 11 available for $15 per month for new lines. That’s about 50% off their standard monthly lease of $29.17. Over is valid until November 24, 2019. The fine print: “Lease... Read more
New Sprint November iPhone deal: Lease one iP...
Switch to Sprint and purchase an Apple iPhone 11, 11 Pro, or 11 Pro Max, and get a second 64GB iPhone 11 for free. Requires 2 new lines or 1 upgrade-eligible line and 1 new line. Offer is valid from... Read more

Jobs Board

*Apple* Mobility Pro - Best Buy (United Stat...
**746087BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Store NUmber or Department:** 000319-Harlem & Irving-Store **Job Description:** Read more
Best Buy *Apple* Computing Master - Best Bu...
**743392BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Store Associates **Store NUmber or Department:** 001171-Southglenn-Store **Job Read more
Best Buy *Apple* Computing Master - Best Bu...
**746015BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Store NUmber or Department:** 000372-Federal Way-Store **Job Description:** Read more
*Apple* Mobility Pro - Best Buy (United Stat...
**744658BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Store NUmber or Department:** 000586-South Hills-Store **Job Description:** At Read more
Best Buy *Apple* Computing Master - Best Bu...
**741552BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Store NUmber or Department:** 000277-Metcalf-Store **Job Description:** **What Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.