TweetFollow Us on Twitter

May 94 Cornfield
Volume Number:10
Issue Number:5
Column Tag:From The Corn Field

Thoughts From The Cornfield

Provocative, perhaps inflammatory, but just say no to assembly language on PowerPC

By Steve Kiene, MindVision Software, Lincoln, Nebraska

About the author

Steve, author of things like Stacker for Macintosh, cares about performance, code size, performance, portability, and performance as much as anyone we know (well, there’s always Mike Scanlin, too). Steve’s recently worked through a number of issues about porting to the PowerPC for performance, and along the way surprised himself with his conclusions. He’s curious about your reaction, so please let us know if they surprise you, too. I can just see our assistant Al holding up a placard with this in big letters: editorial@xplain.com

Writing code in assembly language instead of a high-level language to get performance is fast becoming an historic anachronism. The fierce competition in the 90’s leads to time-to-market battles that cannot be won by the company that insists on writing large chunks of their product in assembly language.

I’ve seen plenty of code whose authors have spent an inordinate amount of time tweaking assembly language instructions to get the most speed out of the code when the real problem was a slow algorithm. It’s the old problem of not seeing the forest for the trees. Careful examination of the algorithm offers more potential for improved performance than coding a bad algorithm in tightly-tuned assembly language. This generally holds true even when the improved algorithm is coded in C.

I took some code a friend had written; he had spent weeks hand-tuning assembly code. I re-examined the algorithms and found a better way to do it. I coded it up in C and the new C code ran fifty times faster on the 68K than the assembly solution had before. Now, it not only performs, it’s portable and more maintainable. After simply recompiling the code for Power Macintosh, its speed doubled. To convert the assembly code would have taken at least a couple of weeks for someone proficient not only in writing PowerPC assembly code, but also good at scheduling the assembly instructions to keep the chip as busy as possible.

Now, with all that said, there are reasons for writing PowerPC assembly language. So, if you have to write part of your program in assembly, make sure it’s the right part and be completely sure you cannot increase the speed by improving the algorithm. There’s little sense in writing assembly language for code that only amounted to 4% of the execution time, but it’s not that hard to find programs that do just that. What was gained by writing the code in assembly language rather than a high-level language?

The release of the Power Macintosh machines has sent many 68K assembly language programmers scrambling to learn the new architecture and its assembly language so that they can continue to performance-program the Macintosh. However, as they are finding out, programming in PowerPC assembly language is much harder than on the 68K Macintosh.

I’ve seen several examples of PowerPC assembly language code that at first glance looks fast but after careful examination the code turns out to run slower than expected. RISCprocessors require understanding the architecture of both the CPU and the memory bus to get good performance, and it’s simply difficult to keep all of the rules and constraints in your head while trying to be creative and write code. Compilers, on the other hand, just don’t care how many rules they have to remember.

Reasons to avoid assembly language

(1) Assembly language code is not easily ported to different instruction set architectures. There are tools which will port 68K assembly to PowerPC assembly, but you run the risk that the architectures are so different a port doesn’t get you the full potential of the new architecture.

(2) Code can be written in a shorter amount of time in a high level language than it can be in assembly. People want to argue this, claiming that bit manipulation routines are too hard to do in C, but it’s just not true. I suspect that if they knew C as well as they knew assembler there would be little or no argument.

(3) It is far easier to make mistakes in assembly than it is in a high level language. High level languages offer abstraction and structure which makes many common assembly language problems simply non-existent.

(4) Code written in assembly is harder to maintain both for the original programmer as well as a different programmer. Because of the fine-grain control you get with assembly language, it is not always easy to follow the flow of the code.

(5) The development tools available for writing assembly language are not advancing at the same rate as those for high level languages. In fact, there are many situations where the tools are getting worse. Apple’s PowerPC Assembler for MPW is not nearly as sophisticated as their 68K Assembler.

Reasons to use assembly language

(1) Highly time-critical code, such as software which interfaces with a piece of hardware which has very specific timing dependencies. Not very common.

(2) Code where space is at a minimum, such as embedded controllers. Generally not applicable to the Macintosh.

(3) Code that is proven to be an unacceptable bottleneck in a specific task.

(4) Places where parameters are passed in specific locations that are not easily accessible to a high level language. [Between the PowerPCruntime architecture, and the protocol conversion that Mixed Mode does for you, this problem essentially goes away on the Power Macintosh - Ed stb]

In all of these instances, there is a need for assembly only in specific places in the code. There is no need to code large parts in assembly.

How to speed up your code - the old way

The most common way to speed up existing code is to find the parts of the program that are slow and rewrite them in assembly. In the past that may have been a good way to gain more speed. Today, that model is not only outdated, it can backfire. I’ve seen people rewrite their code in PowerPC assembly language only to see it run SLOWER. Do not assume you know more about the processor architecture than the compiler. Unless you understand the instruction scheduling of the processor entirely, you probably can’t out-do a good compiler.

How to speed up your code - the new way

Determine which parts of your program are used the most. If a particular feature takes several minutes to run but is only used once a month, maybe it’s not as important as features which takes ten seconds but are used every five minutes. Watch your customers’ usage patterns. Ask them which parts of the program are annoyingly slow. Ask them why they think those parts are slow. Remember, slowness is subjective. What is slow to a power user may seem perfectly fine to a novice user. Who uses your product, the novice or the power user?

Once you have identified the areas of your software that seem slow, you may want to back up the results with scientific data. Run performance analysis tools to see exactly where in the code things are slow when you perform the tasks that users said were slow. THINK C and CodeWarrior have performance monitoring tools included that work well. MPW has its own performance tools which are adequate. If you are writing code that is not easily interfaced to these tools, I recommend you look at the source code provided for the performance tools in THINK C. It is very easy to adapt this code to monitor the performance of any piece of code.

One thing to remember is that the performance of your software may differ greatly when comparing Power Macintosh to the 68K Macintosh. Performance may also vary quite a bit between specific Macintosh models. Machines with a 32 bit data bus will perform memory intensive operations much faster than machines with a 16 bit data bus.

Now that you have figured out which parts of your program are slow, it is time to decide how to make them faster. The first thing to do is to examine the underlying algorithms of the code. Is there anything fundamental that you can do to speed things up? For example, if you are performing a text search, how do you search through the text? Do you use Munger? Perhaps something like a Boyer-Moore algorithm would be much faster. Remember, the key is to work smarter. Brute force is not the answer - it’s a matter of brains over brawn.

Sometimes simply a small change to your existing algorithm will make things much faster. I sped up a search algorithm I wrote years ago by a factor of three by simply adding two lines of code. Look at your algorithm and examine how it operates with common data that goes through it. Perhaps certain shortcuts can be taken when the most common data runs through it.

If you don’t have many books on fundamental computer algorithms, now is the time to stock up. I am a firm believer that you cannot have enough books on algorithms. At the end of this article I have listed several books that will help broaden and round out your algorithm skills. I highly recommend all of them.

Once you have analyzed the specific parts of your program that are bottlenecks, it is time to look at the architecture of your program as a whole. If your program is rather large you may want to look at it as several modules working together.

Is the underlying architecture of your program going to be a bottleneck? Are there time consuming tasks that can be done in the background at idle time rather than being done while the user must wait? Are you doing network communication synchronously when you could do it asynchronously and give the user their machine back? Are there tasks that need to be performed but don’t need to give immediate feedback to the user? These kinds of tasks are good candidates for idle time processing, additional user feedback, modeless dialog boxes, asynchronous programming, and other methods of helping the user feel as if they are not waiting on your program, or at least aren’t prevented from doing something else while you get your thing done. If you keep the user occupied or help them feel productive while your program is working, they’ll be more patient with whatever performance you have.

How to write the code in Assembly Language

If, after careful examination, you have determined a bottleneck in your program, analyzed the algorithms as best you can, rewritten them to be as efficient as possible, and still it is not fast enough, perhaps it is time to code a small part in assembly. The best place to start is to disassemble compiler- generated code for the routine you want to code in assembly. Look at the code. What is inefficient about it? Are registers constantly being reloaded? Are the registers being used efficiently? Are the instructions scheduled for maximum pipelining? Very often you can take the disassembled code, make a few minor modifications to it and see a very nice speed increase.

Perform accurate timing tests on the code you are optimizing. Unless you completely understand the PowerPC Architecture Manual and the PowerPC 601 User’s Guide, more often than not you will make PowerPC code slower than a good compiler. The bottom line is that it must run faster, not look faster.

Maintain an exact high-level equivalent of the assembly code, and keep it right there in the same file. This way if you port your code to a different architecture, you’ve got what you need to get up and running quickly. In many cases the bottleneck on one machine will not be a bottleneck on another.

In Conclusion

This article has discussed some alternate methods of speeding up your program execution that are in many ways better than traditional methods used by many programmers. The goal is to maximize your gain and minimize your effort. By working smarter rather than harder, you can have a faster program in less time.

Recommended Books

[1] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT Press, 1990.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] Saumyendra Sengupta and Paul Edwards. Data Structures in ANSI C. Academic Press, 1991.

[4] Donald Knuth. The Art of Computer Programming, Volumes 1-3. Addison-Wesley, 1973

[5] Daniel H. Greene and Donald E. Knuth. Mathematics for the Analysis of Algorithms., Third Edition Birkhäuser, 1990.

[6] P. D. Eastman. Go, Dog, Go! Random House, 1961.

[7] Manoochehr Azmoodeh. Abstract Data Types and Algorithms, Second Edition. Macmillan, 1990.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.