TweetFollow Us on Twitter

Background TCL
Volume Number:9
Issue Number:12
Column Tag:TCL Workshop

A Piece of Apple Pi

Background processing with TCL

By Malcolm H. Teas, Rye, New Hampshire

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Malcolm Teas has been programming the Macintosh for five years. He’s active with object programming in TCL and also uses C with Think and MPW. He lives, works, and consults from his house on the seacoast of New Hampshire.

I needed a project to test the new Think C version, since I have an interest in number theory, the project I picked was a Π calculation program. Most similar programs take over the machine while they’re at work. I wanted this one (just to keep life interesting) to optionally calculate Π in the background and let other applications continue. As the Mac doesn’t have preemptive multitasking, background applications only get time as permitted from the foreground application and vice versa. So, when we program time-intensive tasks, we’ve got to be nice to other software that may be running. The approach I took here is to let the user decide if this application should hog the system or not by setting an option in a menu. The default is to not hog.

To do this, I break the calculation up into a number of steps. The steps are implemented by a subclass of a TCL Chore object. This work is done at idle event time indirectly by the Dawdle() method of the bureaurocrats. The amount of CPU time that the calculation takes is the same if it’s done in the background or if the application hogs the system. However, the amount of time to the user is significantly longer if the work’s done in the background. This is due to the overhead of the time through the toolbox getting the idle event to run the calculation code. In addition, the calculation code is done in small steps and interspersed with other applications, etc. In the hog mode, it never leaves the calculation code at all but other apps don’t get CPU time.

Backgrounding is best for an application that’s got pre-calculation to do or can intersperse work with user input. As humans are so slow compared to the computer, the imbalance of speed can be put to good use this way.

Designing a chore for background processing

There are a couple of issues for chore-based background work. First, the chore has to be handled or know where to get all the information it needs for it’s processing. Second, if it’s work that gets completed that something else depends on, the chore has to be able to signal work complete. Last, chores need to be disposed of. One thing at a time.

In my case, my CPiChore class is a subclass of the CChore class. You’ll have to subclass the CChore class too as the standard class does nothing. The only method in CChore is the Perform() method (and of course those methods it inherits from CObject). My CPiChore subclass overrides the Perform() and Dispose() methods. It also has two new methods InitChore() and GetTicks() for setting the necessary data and getting information.

The InitChore() method takes all the necessary data as parameters. If I’d had a lot of data I could’ve passed a structure with the data loaded into it. However, as I only had four items, that seemed overkill for this project. Another alternative would’ve been for the chore to ask the necessary objects for the relevant data.

InitChore() takes the number of digits of Π to calculate, a pointer to the document object, and two flags to determine if the calculation should be timed and if hog mode is on. This data is stored locally. Note that the flags are stored in the object, but the document and the number of digits are stored in global variables that are defined and declared in the CPiChore.cp file. This makes them local to that file. The document object CAppPiDoc declares the CPiChore in it’s include file (CAppPiDoc.h). As a short-cut, I included the CAppPiDoc.h file in the CPiChore.cp file, and declared a global “document”. This means that I don’t have to type-cast as often when I use the “document” variable. The “Digits” variable is where the numDigits value is put. As this Π calculation code is ported, I didn’t convert all the calculation code to methods, instead, I left them and their global data in this CPiChore.cp file as straight C functions and data.

Perform() is the function in a chore that actually does the work. It’s called by the Idle() function in CApplication which is called every time an idle event happens. TCL considers an idle event to occur when we either receive a null event or a mouse-moved event. Note that if you’re doing background processing, you want null events while you’re app is in the background. To get them, the “Background null events” flag in the Size resource must be set. Use the SIZE flags popup in the Set Project Type dialog to do this.

The Idle() function also does some other things like check memory and do the Dawdle() method in the CBureaucrat object. Idle() runs through the chain of command to call all the Dawdle() methods there. It then runs through the list of chores to call Perform() on all the chores in the list.

When it gets to the Perform() method in CPiChore, CPiChore uses a stage counter to figure out what’s been done and what to do next. Basically, this determines and remembers what step it’s on. CPiChore uses the Machin algorithm to calculate Π (see the sidebar). The last step in the calculation stops the count of the time and tells the CAppPiDoc object that the chore is done by calling PiDone() in the document with the result of the calculation as it’s parameter.

The document gets the time the calculation took, sets flags for the state of the calculation and sends the result to the pane for display. The next time and idle event happens and the document’s Dawdle() method is called, the chore will be disposed of. This approach to deallocating the chore is known as lazy management of memory. It has the advantage that, as the Dawdle() method is called all the time, it’s more sure in deallocating the chore. The completion and the deallocation are in independent routines.

The pane to display this information isn’t a standard text edit pane. Text edit can only handle information up to around 30K of text characters. It’s easy to generate a value of Π that takes more space that this. I subclassed CPanorama to make a pane that just displayed a lot of text for this application. In addition, this CPiPane object also knows how to translate the digit numbers to text characters and how to display the time information too.

Implementation details

All the key user actions are handled through the DoCommand() method of the CAppPiDoc object. The one exception is the about box which is handled in the application’s DoCommand() method.

The number of digits is set in a dialog box that I use the regular TCL dialog classes to run. The DoCommand() method extracts the digit count from the dialog before it’s disposed. Although Symantec’s documentation states that the dialog objects must be subclassed to be really useful, I didn’t find the need to do that with the number of dialog view objects that know about the format and range of information. In this case, I used an integer text dialog view object that was told, via the template, what range of numbers to accept. Then, I use the FindViewByID() method to get that object and extract the now-conditioned value.

The time and hog (or “faster”) commands just toggle their values. In the UpdateMenus() method, these values are used to determine if those menu items are checked or not.

The start command is the important one. If the Π calculation chore is running, then this item is labeled “Stop”. If selected, it cancels and disposes of the chore. If the chore isn’t running, it starts it using the currently set number of digits and the timing and faster flags. It then assigns the chore to the application, this puts the chore in the chore list to be processed on an idle event. The chore will stay in the list until removed.

Once the chore is in the list, then the Perform() method is called with every idle event. If the faster or hog mode is on, then the Perform() method doesn’t return until the calculation is complete. Otherwise, it does one step and returns.

When the calculation is complete, the Perform() method calls the PiDone() method in the document which hands the result data off to the pane for display with the pane’s SetContent() method. This result data looks like the other data used in the calculation. It’s an array of character, but I use the characters as small integers. Actually, there’s a fair amount of wasted space as the integers range from 0-9. The calculation is carried out in decimal and there are custom routines to handle multiple place arithmetic.

The SetContent() method disposes any previous pointer to data (the data is held as pointers due to the ported code) and converts the data to characters for display. It does this by simply adding the integer value of the character zero to each number in the array.

When the Draw() method for the pane is called (it’s called automatically when the pane needs to be refreshed or when Refresh() is called), it sets the font and size of the text to draw. Draw() then creates a header line, draws it, skips down a little and draws the characters for Π. To do the drawing of the text, Draw() calls a routine called DrawWrapText() to wrap the text at the margins correctly.

DrawWrapText() takes parameters to the text, it’s size, and the margin, line information and whether or not to force a margin. This latter is similar to typing the return key to force a new line.

Listing:  CPiChore.cp
/*
 CPiChore
 Written and copyright by Malcolm H. Teas 1993.
 All rights reserved.
 
*/

#include "CAppPiDoc.h"

/*
 * Global variables
 */
int   Sign, 
 Zero, 
 Digits, 
 Pass,  /* two passes */
 Exp, /* exponent for divide */
 Divide;
static int constant[3]={0,25,239};

CAppPiDoc *document;
 
/*
 * These character arrays represent the digits for extended
 * precision arithmatic. (These may need to be int on 
 * some machines).
 */
#define DIGIT char
DIGIT *Power, *Term, *Result;

void copy (void);
void init(void);
void divi(register DIGIT *array);
void sub (void);
void add (void);

void CPiChore::Perform (long *maxSleep)
{
 long start;
 
 if (timeCalc)
 start = TickCount ();
 
 do  {
 switch (stage)  {
 case 0:
 init ();
 stage++;
 break;
 
 case 1:
 copy();
 Divide = Exp;
 divi(Term);
 if ( Sign > 0 ) 
 add();
 if ( Sign < 0 ) 
 sub();
 Exp = Exp + 2;
 Sign *= -1;
 Divide = constant[Pass];
 divi(Power);
 if (Pass == 2) 
 divi(Power);
 if (Zero == 0)
 stage++;
 break;
 
 case 2:
 Pass++;
 init ();
 stage++;
 break;
 
 case 3:
 copy();
 Divide = Exp;
 divi(Term);
 if ( Sign > 0 ) 
 add();
 if ( Sign < 0 ) 
 sub();
 Exp = Exp + 2;
 Sign *= -1;
 Divide = constant[Pass];
 divi(Power);
 if (Pass == 2) 
 divi(Power);
 if (Zero == 0)
 stage++;
 break;
 
 case 4:
 if (timeCalc)  {
 ticks += TickCount() - start;
 timeCalc = false;
 }
 document->PiDone (Result);
 stage++;
 break;
 
 case 5:
 break;
 }
 }  while (faster && stage != 5);
 
 if (timeCalc)
 ticks += TickCount() - start;
}

void CPiChore::InitChore (long numDigits, CDocument *doc, 
 Boolean timeIt, Boolean faster)
{
 stage = 0;
 Pass = 1;
 document = (CAppPiDoc *) doc;
 timeCalc = timeIt;
 ticks = 0;
 this->faster = faster;
 
 Digits = numDigits;
 FailNIL (Power = (char *) NewPtr (numDigits + 1));
 FailNIL (Term = (char *) NewPtr (numDigits + 1));
 FailNIL (Result = (char *) NewPtr (numDigits + 1));
}

long CPiChore::GetTicks (void)
{
 return ticks;
}

void CPiChore::Dispose (void)
{
 DisposPtr (Power);
 DisposPtr (Term);

 inherited::Dispose (); 
}

void add (void)
{
 register DIGIT *r, *t;
 register int sum, carry = 0;
    
 r = Result + Digits;
 t = Term + Digits;
 
 while( r >= Result )
 {
 sum = *r + *t + carry;
 carry = 0;
 if( sum >= 10 )
 {
 sum -= 10;
 carry++;
 }
 *r-- = sum;
 --t;
 }
}
 
void sub (void)
{
 register DIGIT *r, *t;
 register int diff, loan = 0; 
 
 r = Result + Digits;
 t = Term + Digits;
 
 while( r >= Result )
 {
 diff = *r - *t - loan;
 loan = 0;
 if( diff < 0 )
 {
 diff += 10;
 loan++;
 }
 *r-- = diff;
 --t;
 }
}
 
void divi(register DIGIT *array)
{
 register DIGIT *end;
 register int quotient, residue, digit = 0;
 
 Zero = 0;
 
 for( end = array + Digits; array <= end; )
 {
 digit    += *array;
 quotient =  digit / Divide;
 residue  =  digit % Divide;
 
 if((Zero !=0) || ((quotient+residue) != 0)) 
 Zero = 1;
 else 
 Zero = 0;
 
 *array++ = quotient;
 digit = 10 * residue;
 }
}
 
void init(void)
{
 register DIGIT *p, *t, *r, *end;
 
 p = Power;
 t = Term;
 r = Result;
 end = Power+Digits;
 
 while( p <= end )
 {
 *p++ = 0;
 *t++ = 0;
 
 if (Pass == 1) 
 *r++ = 0;
 }
 
 *Power = 16 / (Pass * Pass);
 
 if( Pass == 1 ) 
 {
 Divide = 5;
 }
 else
 {
 Divide = 239;
 }
 
 divi(Power);
 Exp = 1;
 Sign = 3 - (2 * Pass);
}
 
void copy (void)
{
 register DIGIT *t, *p, *end;
 
 t = Term;
 p = Power;
 end = Term + Digits;
 
 while (t <= end)
 {
 *t++ = *p++;
 }
}

How to calculate Π

The number Π in it’s simplest form, is the ratio of the circumference of a circle to that circle’s diameter. It’s an irrational number so it can’t be represented exactly by a ratio, or fraction, between two integers. As decimal numbering systems are essentially another way of expressing a fraction (i.e. the number 2.5 is actually the fraction 25/10), then Π, expressed as a decimal number, has an infinite number of places. A good reference for Π calculations is the book “History of Π” by Petr Beckmann.

The Π calculation algorithms work by interating over an approximation to Π. Each iteration, or time through the algorithm, the accuracy of the Π estimate increases. We say that we’re calculating Π, but we’re actually calculating an approximation to it. John Wallis, a sixteenth-century mathemetician, discovered a series of fractions, that when multiplied together result in Π. These are two ways to write Wallis’ product:

While this works fine, it’s also quite slow to converge or increase in accuracy, each fraction added doesn’t increase the accuracy very much. The Apple Π program in the article uses the Machin algorithm which converges much faster. It sums more complex fractions to speed up the process. More recently, mathemeticians using elliptical integrals discovered the holy grail of Π calculations: an algorithm, that while quite complex, doubles the number of accurate digits of Π for each iteration.

I ported the Machin algorithm from a version by Bryan Costales, who in turn ported it from a version by Robert Bishop. The algorithm is based on the equation:

[This is a Taylor expansion of 16 * Arctan(1/5) - 4 * Arctan(1/239). Tech. Ed.]

I use arrays of digits to implement the numbers and have written my own routines to do the arithmetic with these numbers. The calculation above is broken down into a number of steps. A step is done each time through the idle loop in the application.

Some have claimed that calculating Π to ever increasing numbers of digits (the record is around 40 million digits currently) is unecessary and not useful. However, when companies install a new supercomputer, this kind of calculation can be used for testing as it repeats intensive CPU work.

Number theorists use the results of long Π calculations to analyze the characteristics of the number, and through it, other similar numbers. Since number theory is a fundamental branch of mathematics that’s used in cryptography and computer theory this work may shed light on some aspects of mathematics that can be of practical use. Besides, it’s fun.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

TotalFinder 1.12.2 - Adds tabs, hotkeys,...
TotalFinder is a universally acclaimed navigational companion for your Mac. Enhance your Mac's Finder with features so smart and convenient, you won't believe you ever lived without them. Features... Read more
Duet 2.3.0.3 - Use your iPad as an exter...
Duet is the first app that allows you to use your iDevice as an extra display for your Mac using the Lightning or 30-pin cable. Note: This app requires a $9.99 iOS companion app. Version 2.3.0.3:... Read more
FileMaker Pro Advanced 18.0.3 - Powerful...
FileMaker Pro Advanced is the tool you use to create a custom app. You also use FileMaker Pro Advanced to access your app on a computer. Start by importing data from a spreadsheet or using a built-in... Read more
OsiriX Lite 10.0.6 - 3D medical image pr...
OsiriX Lite is an image processing software dedicated to DICOM images (".dcm" / ".DCM" extension) produced by medical equipment (MRI, CT, PET, PET-CT, ...) and confocal microscopy (LSM and BioRAD-PIC... Read more
Ableton Live 10.1.5 - Record music using...
Ableton Live lets you create and record music on your Mac. Use digital instruments, pre-recorded sounds, and sampled loops to arrange, produce, and perform your music like never before. Ableton Live... Read more
Burn 2.7.8 - Easily burn data, audio, vi...
Burn... There are a lot of ways to approach burning discs. Burn keeps it simple, but still offers a lot of advanced options. Create data discs with advanced data settings like, file permissions, the... Read more
Malwarebytes 4.0.30.3073 - Adware remova...
Malwarebytes (was AdwareMedic) helps you get your Mac experience back. Malwarebytes scans for and removes code that degrades system performance or attacks your system. Making your Mac once again your... Read more
Acorn 6.5.3 - Bitmap image editor.
Acorn is a new image editor built with one goal in mind - simplicity. Fast, easy, and fluid, Acorn provides the options you'll need without any overhead. Acorn feels right, and won't drain your bank... Read more
Fantastical 2.5.13 - Create calendar eve...
Fantastical is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event... Read more
A Better Finder Rename 11.05 - File, pho...
A Better Finder Rename is the most complete renaming solution available on the market today. That's why, since 1996, tens of thousands of hobbyists, professionals and businesses depend on A Better... Read more

Latest Forum Discussions

See All

Eternal Warfare is a new idle clicker fo...
Idle games are a popular genre on mobile, they might not be to everyone's taste but they're made with such regularity and receive a lot of downloads, so it's hard to argue it's not big business. Eternal Warfare is set to join the sea of idle games... | Read more »
New heroes and balance updates set to ar...
It feels like Hearthstone: Battlegrounds only launched yesterday, and already the auto batter addition to Blizzard's megahit card game is set to receive new heroes and balance updates. [Read more] | Read more »
Pre-register for Hello Kitty AR: Kawaii...
Hello Kitty — the cute cat that launched a multi-billion-pound franchise — has been brought to life… sort of. Sanrio has teamed up with the Bublar Group to create a new mobile game that uses AR tech to turn the real world into Hello Kitty’s... | Read more »
Gorgeous and tranquil puzzler Spring Fal...
One-man indie studio SPARSE//GameDev has now launched its tranquil puzzler, Spring Falls. It's described as "a peaceful puzzle game about water, erosion, and watching things grow". [Read more] | Read more »
Black Desert Mobile gets an official rel...
Pearl Abyss has just announced that its highly-anticipated MMO, Black Desert Mobile, will launch globally for iOS and Android on December 11th. [Read more] | Read more »
Another Eden receives new a episode, cha...
Another Eden, WFS' popular RPG, has received another update that brings new story content to the game alongside a few new heroes to discover. [Read more] | Read more »
Overdox guide - Tips and tricks for begi...
Overdox is a clever battle royale that changes things up by adding MOBA mechanics and melee combat to the mix. This new hybrid game can be quite a bit to take in at first, so we’ve put together a list of tips to help you get a leg up on the... | Read more »
Roterra Extreme - Great Escape is a pers...
Roterra Extreme – Great Escape has been described by developers Dig-It Games as a mini-sequel to their acclaimed title Roterra: Flip the Fairytale. It continues that game's tradition of messing with which way is up, tasking you with solving... | Read more »
Hearthstone: Battlegrounds open beta lau...
Remember earlier this year when auto battlers were the latest hotness? We had Auto Chess, DOTA Underlords, Chess Rush, and more all gunning for our attention. They all had their own reasons to play, but, at least from where I'm standing, most... | Read more »
The House of Da Vinci 2 gets a new gamep...
The House of Da Vinci launched all the way back in 2017. Now, developer Blue Brain Games is gearing up to deliver a second dose of The Room-inspired puzzling. Some fresh details have now emerged, alongside the game's first official trailer. [Read... | Read more »

Price Scanner via MacPrices.net

B&H offers $100 discounts on 4-Core and 6...
B&H Photo has new 4-Core and 6-Core Mac minis in stock and on sale today for $100 off Apple’s MSRP. Prices start at $699. Overnight shipping is free to many addresses in the US: – 3.6GHz Quad-... Read more
Save $200 today on a 2019 13″ MacBook Air wit...
Apple has a full line of Certified Refurbished 2019 13″ MacBook Airs available starting at only $929 and up to $200 off the cost of new Airs. Each MacBook features a new outer case, comes with a... Read more
New Verizon Pre-Black Friday 2019 deal: Buy o...
Buy one new Apple iPhone 11 model or 2018 iPhone XS model at Verizon and get a second one for free. One new line of service required. Offer is valid from November 21, 2019 to November 27, 2019. Here... Read more
AirPods with Wireless Charging Case on sale t...
Abt Electronics has 2019 AirPods with the Wireless Charging Case on sale today for $163 shipped. Their price is $36 off Apple’s MSRP, and it’s currently the cheapest price for these AirPods from any... Read more
Apple continues to offer 2017 13″ Dual-Core n...
Apple has Certified Refurbished 2017 13″ 2.3GHz Dual-Core non-Touch Bar MacBook Pros still available starting at $1019. An standard Apple one-year warranty is included with each model, outer cases... Read more
Save up to $120 on the new 16″ MacBook Pro at...
Apple’s resellers are starting to receive stock of new 16″ MacBook Pros, and the first set of sales & deals are now available: (1) Amazon 16″ MacBook Pros start on sale for $100-$116 off Apple’s... Read more
Apple Watch Series 3 models on sale at Amazon...
Amazon has Apple Watch Series 3 GPS models on sale for $30 off MSRP, starting at only $169. There prices are the lowest we’ve ever seen for these models from any Apple reseller. Choose Amazon as the... Read more
The ‘Mac Potpourri’ Mailbag: Edition #1- Info...
COMMENTARY: 11.20.19- Welcome to the inaugural edition of the “Mac Potpourri” Mailbag where we take a look at correspondence received from readers of this column from all over the world who write in... Read more
13″ 2.4GHz MacBook Pros available for up to $...
Apple has a full line of Certified Refurbished 2019 13″ 2.4GHz 4-Core Touch Bar MacBook Pros available starting at $1529 and up to $300 off MSRP. Apple’s one-year warranty is included, shipping is... Read more
New at T-Mobile: Switch to T-Mobile, and get...
T-Mobile is offering a free 64GB iPhone 8 for new customers who switch to T-Mobile and open a new line of service. Eligible trade-in required, and discount applied over a 24 month period. The fine... Read more

Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**747303BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Store NUmber or Department:** 001413-Cypress-Store **Job Description:** **What Read more
*Apple* Mobility Pro - Best Buy (United Stat...
**743221BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Store NUmber or Department:** 000230-Greenwood-Store **Job Description:** At Best Read more
*Apple* Mobility Pro - Best Buy (United Stat...
**747338BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Store NUmber or Department:** 000254-Superstition Springs-Store **Job Read more
Best Buy *Apple* Computing Master - Best Bu...
**745516BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Store Associates **Store NUmber or Department:** 001101-Manhattan-Store **Job Read more
Best Buy *Apple* Computing Master - Best Bu...
**746655BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Store NUmber or Department:** 002518-Atlantic Center-Store **Job Description:** Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.