TweetFollow Us on Twitter

Background TCL
Volume Number:9
Issue Number:12
Column Tag:TCL Workshop

A Piece of Apple Pi

Background processing with TCL

By Malcolm H. Teas, Rye, New Hampshire

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

About the author

Malcolm Teas has been programming the Macintosh for five years. He’s active with object programming in TCL and also uses C with Think and MPW. He lives, works, and consults from his house on the seacoast of New Hampshire.

I needed a project to test the new Think C version, since I have an interest in number theory, the project I picked was a Π calculation program. Most similar programs take over the machine while they’re at work. I wanted this one (just to keep life interesting) to optionally calculate Π in the background and let other applications continue. As the Mac doesn’t have preemptive multitasking, background applications only get time as permitted from the foreground application and vice versa. So, when we program time-intensive tasks, we’ve got to be nice to other software that may be running. The approach I took here is to let the user decide if this application should hog the system or not by setting an option in a menu. The default is to not hog.

To do this, I break the calculation up into a number of steps. The steps are implemented by a subclass of a TCL Chore object. This work is done at idle event time indirectly by the Dawdle() method of the bureaurocrats. The amount of CPU time that the calculation takes is the same if it’s done in the background or if the application hogs the system. However, the amount of time to the user is significantly longer if the work’s done in the background. This is due to the overhead of the time through the toolbox getting the idle event to run the calculation code. In addition, the calculation code is done in small steps and interspersed with other applications, etc. In the hog mode, it never leaves the calculation code at all but other apps don’t get CPU time.

Backgrounding is best for an application that’s got pre-calculation to do or can intersperse work with user input. As humans are so slow compared to the computer, the imbalance of speed can be put to good use this way.

Designing a chore for background processing

There are a couple of issues for chore-based background work. First, the chore has to be handled or know where to get all the information it needs for it’s processing. Second, if it’s work that gets completed that something else depends on, the chore has to be able to signal work complete. Last, chores need to be disposed of. One thing at a time.

In my case, my CPiChore class is a subclass of the CChore class. You’ll have to subclass the CChore class too as the standard class does nothing. The only method in CChore is the Perform() method (and of course those methods it inherits from CObject). My CPiChore subclass overrides the Perform() and Dispose() methods. It also has two new methods InitChore() and GetTicks() for setting the necessary data and getting information.

The InitChore() method takes all the necessary data as parameters. If I’d had a lot of data I could’ve passed a structure with the data loaded into it. However, as I only had four items, that seemed overkill for this project. Another alternative would’ve been for the chore to ask the necessary objects for the relevant data.

InitChore() takes the number of digits of Π to calculate, a pointer to the document object, and two flags to determine if the calculation should be timed and if hog mode is on. This data is stored locally. Note that the flags are stored in the object, but the document and the number of digits are stored in global variables that are defined and declared in the CPiChore.cp file. This makes them local to that file. The document object CAppPiDoc declares the CPiChore in it’s include file (CAppPiDoc.h). As a short-cut, I included the CAppPiDoc.h file in the CPiChore.cp file, and declared a global “document”. This means that I don’t have to type-cast as often when I use the “document” variable. The “Digits” variable is where the numDigits value is put. As this Π calculation code is ported, I didn’t convert all the calculation code to methods, instead, I left them and their global data in this CPiChore.cp file as straight C functions and data.

Perform() is the function in a chore that actually does the work. It’s called by the Idle() function in CApplication which is called every time an idle event happens. TCL considers an idle event to occur when we either receive a null event or a mouse-moved event. Note that if you’re doing background processing, you want null events while you’re app is in the background. To get them, the “Background null events” flag in the Size resource must be set. Use the SIZE flags popup in the Set Project Type dialog to do this.

The Idle() function also does some other things like check memory and do the Dawdle() method in the CBureaucrat object. Idle() runs through the chain of command to call all the Dawdle() methods there. It then runs through the list of chores to call Perform() on all the chores in the list.

When it gets to the Perform() method in CPiChore, CPiChore uses a stage counter to figure out what’s been done and what to do next. Basically, this determines and remembers what step it’s on. CPiChore uses the Machin algorithm to calculate Π (see the sidebar). The last step in the calculation stops the count of the time and tells the CAppPiDoc object that the chore is done by calling PiDone() in the document with the result of the calculation as it’s parameter.

The document gets the time the calculation took, sets flags for the state of the calculation and sends the result to the pane for display. The next time and idle event happens and the document’s Dawdle() method is called, the chore will be disposed of. This approach to deallocating the chore is known as lazy management of memory. It has the advantage that, as the Dawdle() method is called all the time, it’s more sure in deallocating the chore. The completion and the deallocation are in independent routines.

The pane to display this information isn’t a standard text edit pane. Text edit can only handle information up to around 30K of text characters. It’s easy to generate a value of Π that takes more space that this. I subclassed CPanorama to make a pane that just displayed a lot of text for this application. In addition, this CPiPane object also knows how to translate the digit numbers to text characters and how to display the time information too.

Implementation details

All the key user actions are handled through the DoCommand() method of the CAppPiDoc object. The one exception is the about box which is handled in the application’s DoCommand() method.

The number of digits is set in a dialog box that I use the regular TCL dialog classes to run. The DoCommand() method extracts the digit count from the dialog before it’s disposed. Although Symantec’s documentation states that the dialog objects must be subclassed to be really useful, I didn’t find the need to do that with the number of dialog view objects that know about the format and range of information. In this case, I used an integer text dialog view object that was told, via the template, what range of numbers to accept. Then, I use the FindViewByID() method to get that object and extract the now-conditioned value.

The time and hog (or “faster”) commands just toggle their values. In the UpdateMenus() method, these values are used to determine if those menu items are checked or not.

The start command is the important one. If the Π calculation chore is running, then this item is labeled “Stop”. If selected, it cancels and disposes of the chore. If the chore isn’t running, it starts it using the currently set number of digits and the timing and faster flags. It then assigns the chore to the application, this puts the chore in the chore list to be processed on an idle event. The chore will stay in the list until removed.

Once the chore is in the list, then the Perform() method is called with every idle event. If the faster or hog mode is on, then the Perform() method doesn’t return until the calculation is complete. Otherwise, it does one step and returns.

When the calculation is complete, the Perform() method calls the PiDone() method in the document which hands the result data off to the pane for display with the pane’s SetContent() method. This result data looks like the other data used in the calculation. It’s an array of character, but I use the characters as small integers. Actually, there’s a fair amount of wasted space as the integers range from 0-9. The calculation is carried out in decimal and there are custom routines to handle multiple place arithmetic.

The SetContent() method disposes any previous pointer to data (the data is held as pointers due to the ported code) and converts the data to characters for display. It does this by simply adding the integer value of the character zero to each number in the array.

When the Draw() method for the pane is called (it’s called automatically when the pane needs to be refreshed or when Refresh() is called), it sets the font and size of the text to draw. Draw() then creates a header line, draws it, skips down a little and draws the characters for Π. To do the drawing of the text, Draw() calls a routine called DrawWrapText() to wrap the text at the margins correctly.

DrawWrapText() takes parameters to the text, it’s size, and the margin, line information and whether or not to force a margin. This latter is similar to typing the return key to force a new line.

Listing:  CPiChore.cp
/*
 CPiChore
 Written and copyright by Malcolm H. Teas 1993.
 All rights reserved.
 
*/

#include "CAppPiDoc.h"

/*
 * Global variables
 */
int   Sign, 
 Zero, 
 Digits, 
 Pass,  /* two passes */
 Exp, /* exponent for divide */
 Divide;
static int constant[3]={0,25,239};

CAppPiDoc *document;
 
/*
 * These character arrays represent the digits for extended
 * precision arithmatic. (These may need to be int on 
 * some machines).
 */
#define DIGIT char
DIGIT *Power, *Term, *Result;

void copy (void);
void init(void);
void divi(register DIGIT *array);
void sub (void);
void add (void);

void CPiChore::Perform (long *maxSleep)
{
 long start;
 
 if (timeCalc)
 start = TickCount ();
 
 do  {
 switch (stage)  {
 case 0:
 init ();
 stage++;
 break;
 
 case 1:
 copy();
 Divide = Exp;
 divi(Term);
 if ( Sign > 0 ) 
 add();
 if ( Sign < 0 ) 
 sub();
 Exp = Exp + 2;
 Sign *= -1;
 Divide = constant[Pass];
 divi(Power);
 if (Pass == 2) 
 divi(Power);
 if (Zero == 0)
 stage++;
 break;
 
 case 2:
 Pass++;
 init ();
 stage++;
 break;
 
 case 3:
 copy();
 Divide = Exp;
 divi(Term);
 if ( Sign > 0 ) 
 add();
 if ( Sign < 0 ) 
 sub();
 Exp = Exp + 2;
 Sign *= -1;
 Divide = constant[Pass];
 divi(Power);
 if (Pass == 2) 
 divi(Power);
 if (Zero == 0)
 stage++;
 break;
 
 case 4:
 if (timeCalc)  {
 ticks += TickCount() - start;
 timeCalc = false;
 }
 document->PiDone (Result);
 stage++;
 break;
 
 case 5:
 break;
 }
 }  while (faster && stage != 5);
 
 if (timeCalc)
 ticks += TickCount() - start;
}

void CPiChore::InitChore (long numDigits, CDocument *doc, 
 Boolean timeIt, Boolean faster)
{
 stage = 0;
 Pass = 1;
 document = (CAppPiDoc *) doc;
 timeCalc = timeIt;
 ticks = 0;
 this->faster = faster;
 
 Digits = numDigits;
 FailNIL (Power = (char *) NewPtr (numDigits + 1));
 FailNIL (Term = (char *) NewPtr (numDigits + 1));
 FailNIL (Result = (char *) NewPtr (numDigits + 1));
}

long CPiChore::GetTicks (void)
{
 return ticks;
}

void CPiChore::Dispose (void)
{
 DisposPtr (Power);
 DisposPtr (Term);

 inherited::Dispose (); 
}

void add (void)
{
 register DIGIT *r, *t;
 register int sum, carry = 0;
    
 r = Result + Digits;
 t = Term + Digits;
 
 while( r >= Result )
 {
 sum = *r + *t + carry;
 carry = 0;
 if( sum >= 10 )
 {
 sum -= 10;
 carry++;
 }
 *r-- = sum;
 --t;
 }
}
 
void sub (void)
{
 register DIGIT *r, *t;
 register int diff, loan = 0; 
 
 r = Result + Digits;
 t = Term + Digits;
 
 while( r >= Result )
 {
 diff = *r - *t - loan;
 loan = 0;
 if( diff < 0 )
 {
 diff += 10;
 loan++;
 }
 *r-- = diff;
 --t;
 }
}
 
void divi(register DIGIT *array)
{
 register DIGIT *end;
 register int quotient, residue, digit = 0;
 
 Zero = 0;
 
 for( end = array + Digits; array <= end; )
 {
 digit    += *array;
 quotient =  digit / Divide;
 residue  =  digit % Divide;
 
 if((Zero !=0) || ((quotient+residue) != 0)) 
 Zero = 1;
 else 
 Zero = 0;
 
 *array++ = quotient;
 digit = 10 * residue;
 }
}
 
void init(void)
{
 register DIGIT *p, *t, *r, *end;
 
 p = Power;
 t = Term;
 r = Result;
 end = Power+Digits;
 
 while( p <= end )
 {
 *p++ = 0;
 *t++ = 0;
 
 if (Pass == 1) 
 *r++ = 0;
 }
 
 *Power = 16 / (Pass * Pass);
 
 if( Pass == 1 ) 
 {
 Divide = 5;
 }
 else
 {
 Divide = 239;
 }
 
 divi(Power);
 Exp = 1;
 Sign = 3 - (2 * Pass);
}
 
void copy (void)
{
 register DIGIT *t, *p, *end;
 
 t = Term;
 p = Power;
 end = Term + Digits;
 
 while (t <= end)
 {
 *t++ = *p++;
 }
}

How to calculate Π

The number Π in it’s simplest form, is the ratio of the circumference of a circle to that circle’s diameter. It’s an irrational number so it can’t be represented exactly by a ratio, or fraction, between two integers. As decimal numbering systems are essentially another way of expressing a fraction (i.e. the number 2.5 is actually the fraction 25/10), then Π, expressed as a decimal number, has an infinite number of places. A good reference for Π calculations is the book “History of Π” by Petr Beckmann.

The Π calculation algorithms work by interating over an approximation to Π. Each iteration, or time through the algorithm, the accuracy of the Π estimate increases. We say that we’re calculating Π, but we’re actually calculating an approximation to it. John Wallis, a sixteenth-century mathemetician, discovered a series of fractions, that when multiplied together result in Π. These are two ways to write Wallis’ product:

While this works fine, it’s also quite slow to converge or increase in accuracy, each fraction added doesn’t increase the accuracy very much. The Apple Π program in the article uses the Machin algorithm which converges much faster. It sums more complex fractions to speed up the process. More recently, mathemeticians using elliptical integrals discovered the holy grail of Π calculations: an algorithm, that while quite complex, doubles the number of accurate digits of Π for each iteration.

I ported the Machin algorithm from a version by Bryan Costales, who in turn ported it from a version by Robert Bishop. The algorithm is based on the equation:

[This is a Taylor expansion of 16 * Arctan(1/5) - 4 * Arctan(1/239). Tech. Ed.]

I use arrays of digits to implement the numbers and have written my own routines to do the arithmetic with these numbers. The calculation above is broken down into a number of steps. A step is done each time through the idle loop in the application.

Some have claimed that calculating Π to ever increasing numbers of digits (the record is around 40 million digits currently) is unecessary and not useful. However, when companies install a new supercomputer, this kind of calculation can be used for testing as it repeats intensive CPU work.

Number theorists use the results of long Π calculations to analyze the characteristics of the number, and through it, other similar numbers. Since number theory is a fundamental branch of mathematics that’s used in cryptography and computer theory this work may shed light on some aspects of mathematics that can be of practical use. Besides, it’s fun.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

calibre 5.0.1 - Complete e-book library...
Calibre is a complete e-book library manager. Organize your collection, convert your books to multiple formats, and sync with all of your devices. Let Calibre be your multi-tasking digital librarian... Read more
Compressor 4.4.8 - Adds power and flexib...
Compressor adds power and flexibility to Final Cut Pro X export. Customize output settings, work faster with distributed encoding, and tap into a comprehensive set of delivery features. Features:... Read more
Adobe Acrobat Reader 20.012.20048 - View...
Adobe Acrobat Reader allows users to view PDF documents. You may not know what a PDF file is, but you've probably come across one at some point. PDF files are used by companies and even the IRS to... Read more
Adobe Acrobat DC 20.012.20048 - Powerful...
Acrobat DC is available only as a part of Adobe Creative Cloud, and can only be installed and/or updated through Adobe's Creative Cloud app. Adobe Acrobat DC with Adobe Document Cloud services is... Read more
Box Sync 4.0.8009 - Online synchronizati...
Box Sync gives you a hard-drive in the Cloud for online storage. Note: You must first sign up to use Box. What if the files you need are on your laptop -- but you're on the road with your iPhone? No... Read more
Daylite 2020.36.1 - Dynamic business org...
Daylite helps businesses organize themselves with tools such as shared calendars, contacts, tasks, projects, notes, and more. Enable easy collaboration with features such as task and project... Read more
Catalina Cache Cleaner 15.0.6 - Clear ca...
Catalina Cache Cleaner is an award-winning general-purpose tool for macOS X. CCC makes system maintenance simple with an easy point-and-click interface to many macOS X functions. Novice and expert... Read more
Final Cut Pro X 10.4.10 - Professional v...
Final Cut Pro X is a professional video editing solution. Completely redesigned from the ground up, Final Cut Pro adds extraordinary speed, quality, and flexibility to every part of the post-... Read more
Civilization VI 1.3.4 - Next iteration o...
Civilization® VI is the award-winning experience. Expand your empire across the map, advance your culture, and compete against history’s greatest leaders to build a civilization that will stand the... Read more
iTubeDownloader 6.5.23 - Easily download...
iTubeDownloader is a powerful-yet-simple YouTube downloader for the masses. Because it contains a proprietary browser, you can browse YouTube like you normally would. When you see something you want... Read more

Latest Forum Discussions

See All

Undercrawl is a procedurally generated r...
Undercrawl is a roguelike dungeon crawler from indie developer Monster Shop Games. It's a genre that's popular in gaming in general but features even more frequently on mobile devices since the shorter, 'run' style of playthrough suits playing in... | Read more »
Distract Yourself With These Great Mobil...
There’s a lot going on right now, and I don’t really feel like trying to write some kind of pithy intro for it. All I’ll say is lots of people have been coming together and helping each other in small ways, and I’m choosing to focus on that as I... | Read more »
BTS Universe Story, the social game that...
Netmarble's highly anticipated social game, BTS Universe Story, is available now for iOS and Android. It's the second collaboration between the hugely successful mobile developer and the K-pop superstars following BTS World. [Read more] | Read more »
The 5 Best Mobile Games Like Hades
Supergiant Games finally released Hades upon the world this week, and we’re loving it. The game plays to all of the studio’s strengths while still retaining a strong sense of identity. It also just so happens to play rather well using the Steam... | Read more »
A Year of Apple Arcade: The Good, The Ba...
Apple Arcade has persisted for just over a year at this point, and although that means I've been busy ranking and re-ranking every game on the service for just about as long, I haven't done much reflection on the service as a whole. [Read more] | Read more »
Animal Restaurant anniversary event team...
Animal idle simulator Animal Restaurant is celebrating its first-year anniversary with a crossover event with popular YouTube series Aaron’s Animals. [Read more] | Read more »
Raziel: Dungeon Arena is a hack 'n...
Raziel: Dungeon Arena is available now on mobile and will appeal to fans of both comic books and old school dungeon crawlers. Not only will you hack 'n' slash your way through mobs of enemies but there's also fully-narrated animated comic to enjoy... | Read more »
Steam Link Spotlight - Hades
Steam Link Spotlight is a feature where we look at PC games that play exceptionally well using the Steam Link app. Our last entry was on Disco Elysium. Read about how it plays using Steam Link over here. | Read more »
Microsoft has acquired ZeniMax Media and...
In the latest of a series of blockbuster moves, Microsoft has now acquired Zenimax Media and its subsidiary, Bethesda Softworks, for $7.5 billion. [Read more] | Read more »
Infinity Mechs is an upcoming idle game...
Indie developer SkullStar studio has announced an upcoming idle mech game called Infinity Mechs. It draws inspiration from the mobile game Iron Saga and has been officially licensed by Game Duchy. It's set to launch for both iOS and Android on... | Read more »

Price Scanner via MacPrices.net

Clearance 8-core iMac Pro available for $3819...
Apple has Certified Refurbished, clearance, 27″ 3.2GHz 8-Core iMac Pros available $3819 including free shipping. Their price is $1180 off the original MSRP of new models. A standard Apple one-year... Read more
How The Upcoming Mac Transition To Apple Sili...
FEATURE: 09.25.20 – Apple’s plan to transition all of its desktop and notebook computers away from Intel processors to Apple silicon, chips designed by the company itself, has been eclipsed by the... Read more
New low price! Apple Watch SE for only $269
B&H Photo is reporting limited stock of Apple’s new Apple Watch SE GPS models for $10 off MSRP and including free shipping. Their $269 price for the 40mm model is the lowest price we’ve seen so... Read more
Lowest price anywhere: New 13″ 2.0GHz MacBook...
Amazon has new 2020 13″ 2.0GHz/512GB MacBook Pros with 10th generation Intel processors back in stock on sale today for $200 off Apple’s MSRP. Shipping is free. Be sure to purchase the MacBook Pro... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Amazon Apple Premier Partner GatorTec has the Apple Pro Display XDR with Nano-Texture Glass on sale for $5599 shipped, on Amazon. Their price is $400 off Apple’s MSRP, and it’s the cheapest price... Read more
Get a 2019 13″ MacBook Air for only $779 toda...
Apple has clearance, Certified Refurbished, 2019 13″ 1.6GHz/128GB MacBook Airs available again for $779. Each MacBook features a new outer case, comes with a standard Apple one-year warranty, and is... Read more
2020 11″ iPad Pros on sale today for $50-$75...
Apple reseller Expercom has new 2020 11″ Apple iPad Pros on sale for $50-$75 off MSRP, with prices starting at $749. These are the same iPad Pros sold by Apple in their retail and online stores: – 11... Read more
Apple has restocked 2020 13″ MacBook Airs sta...
Apple has restocked Certified Refurbished 2020 13″ MacBook Airs starting at only $849 and up to $200 off the cost of new Airs. Each MacBook features a new outer case, comes with a standard Apple one-... Read more
Apple’s new 8th generation 10.2″ iPads are on...
Amazon is discounting new 2020 8th generation 10.2″ Apple iPads by up to $35 off MSRP with prices starting at only $299. Shipping is free. These are the same iPads sold by Apple in their retail and... Read more
Today on Woot: Apple refurbished 16″ MacBook...
Amazon-owned Woot has Apple refurbished 16″ MacBook Pros available today for up to $605 off the cost of new models. Shipping is free for Prime members: – 16″ 6-Core MacBook Pros: $1874.99 $525 off... Read more

Jobs Board

Freelance *Apple* Technology Journalist - V...
…freelance basis. Valnet Inc. is looking for journalists with strong knowledge of Apple technology for our website MakeUseOf.com MakeUseOf is one of the largest Read more
*Apple* Certified Macintosh Technician - Exc...
Apple Certified Macintosh Technician Summary Title: Apple Certified Macintosh Technician ID:350 Department:All Location:Bethesda, MD Description Apple Read more
Security Officer ($23.00/Hourly) - *Apple*...
**Security Officer \($23\.00/Hourly\) \- Apple Store** **Description** About NMS Built on a culture of safety and integrity, NMSdelivers award\-winning, integrated Read more
Security Officer ($23.00/Hourly) - *Apple*...
**Security Officer \($23\.00/Hourly\) \- Apple Store** **Description** About NMS Built on a culture of safety and integrity, NMSdelivers award\-winning, integrated Read more
*Apple* Certified Macintosh Technician - Exc...
Apple Certified Macintosh Technician Summary Title: Apple Certified Macintosh Technician ID:350 Department:All Location:Falls Church, VA Description Apple Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.