TweetFollow Us on Twitter

Bitmapper
Volume Number:9
Issue Number:9
Column Tag:Getting Started

Related Info: Window Manager Color QuickDraw Graphics Devices Quickdraw

Flicker-Free Bitmap animation

You too can do those really cool graphics that are smooooth

By Dave Mark, MacTech Magazine Regular Contributing Author

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Lately, I’ve been getting lots of mail asking about Macintosh animation. Since that was the topic of my presentation at the MacTech Magazine Live! session at this past MacWorld, I thought the time might be right for a series of articles discussing this deep, dark, Macintosh programming mystery. This column (which started life in an old issue of SPLAsh magazine, just in case it looks a little familiar) starts with the basics, covering black and white animation using quickdraw BitMaps. In later columns, once we cover color quickdraw, we’ll revisit this topic, expanding the techniques to include PixMap animation.

What the Heck is Bitmap Animation?

If you’ve ever written an arcade game, you’ve probably tried your hand at bitmap animation, where a bitmap image appears to move over a stationary background. Your Mac’s cursor is a perfect example. As the cursor moves around the screen, it appears to float over the background without flickering. Take a look at this sequence of pictures:

(a) (b) (c)

Figure (a) shows an arrow cursor partially obscuring my hard drive icon. Once the cursor moves, it leaves an area of the hard drive icon undrawn (b). Before this hole gets noticed, the System fills it back up with its previous contents (c).

Most programs deal with repainting the screen by responding to updateEvts generated by the Window Manager. When an area of a window that was previously obscured needs to be redrawn, the Window Manager adds the newly revealed area to the window’s update region and generates an updateEvt for the window.

The problem with this approach is that update events take time. It takes time for the Window Manager to calculate the update region and it takes time to post an event. More importantly, it takes time for your program to respond to an update event. If your program is busy responding to another event, the update event might sit in the queue for a while, leaving the window undrawn until you get around to fixing it.

When you’ve got a rocket ship shooting across a planet’s surface, you don’t want to leave any holes in the planet, waiting for your program to respond to an update event. You want to fill in the holes in real time, just like the System does when it handles your cursor.

The Off-Screen Bitmap Solution

The solution to this problem lies in the use of off-screen bitmaps. An off-screen bitmap is a bitmap that is drawn in memory, but does not appear on screen. In this month’s program, we’ll create three off-screen bitmaps. One of these will act as a master image, which we’ll constantly copy to a window that does appear on the screen. The second bitmap will hold a background image and the third will hold the foreground image. Our goal is to make the foreground image track the cursor, appearing to float on top of the background image.

Here’s a snapshot of our program in action:

The floating hand is our foreground image. The framed gray pattern is the background image. As you move the mouse, the hand appears to float over the gray background, just like a cursor. Here’s how this works.

The Basic Approach

We’ll start by creating the off-screen bitmaps for the foreground and background. Next, we create the master bitmap, which we’ll use to mix our foreground and background. In a loop, we copy the background to the mixer, then copy the foreground to the mixer, on top of the background. Still inside the loop, we copy the mixed image to the window. This loop continues until we click the mouse button.

Even though we are constantly updating the image in the window, there is a minimum of flicker. Why? Well, it helps to understand what causes flicker in the first place. Imagine if you tried to simulate the floating image by constantly drawing the background, then the foreground, images in an endless loop. For example, here’s a sequence using a black background and a white triangular foreground:

(a) (b) (c)

Figure (a) shows the triangle on the black background. Figure (b) shows the screen when you draw the background again. Finally, (c) shows the screen after you redrew the foreground again. The point here is that using this approach, every other image will be completely black. The foreground image will flicker in and out of view.

To convince yourself, write a program that draws a pair of PICTs in a window, in an endless loop. First draw one PICT, then the other, one on top of the other. Without off-screen bitmaps, you can minimize flicker, but there’s no way to avoid it altogether.

BitMapper

OK, let’s get on with the program. Create a folder named BitMapper inside your Development folder. Open up ResEdit and create a new resource file named BitMapper.Π.rsrc inside the BitMapper folder.

Next, create two PICT resources, numbered 128 and 129. PICT 128 will be the background image, so make it larger than PICT 129, which will serve as the foreground image. If you’ve got a graphics program like MacPaint or Canvas, create your background by drawing a nice frame, then pasting another image inside it. Copy the whole thing to the clipboard, then paste it inside ResEdit.

For the foreground, you’ll want something relatively small. Use whatever image you like, but be sure to make it resource ID 129. Note that both images should be black and white only, and not color or gray-scale. You can use a color image, but all colored pixels will be translated to black, so things might not come out as you planned them to.

Once your PICT images are in place, quit ResEdit, making sure you save your changes. Now launch THINK C and create a new project named BitMapper.Π in the BitMapper folder. Select New from the File menu and, when the new source code window appears, type in this source code:


/* 1 */

#define kMoveToFront (WindowPtr)-1L

const short kBackgroundPictID =    128;
const short kForegroundPictID =    129;


/***************/
/*  Functions  */
/***************/

void    ToolboxInit( void );
WindowPtr WindowInit( void );
PicHandle LoadPicture( short resID );
GrafPtr CreateBitMap( const Rect *rPtr );


/****************** main ***************************/

void  main( void )
{
 Rect   r;
 GrafPtrbackPortPtr, forePortPtr, mixerPortPtr;
 WindowPtrwindow;
 PicHandlebackPict, forePict;
 Point  p;
 
 ToolboxInit();
 window = WindowInit();
 
 backPict = LoadPicture( kBackgroundPictID );
 r = (**backPict).picFrame;
 OffsetRect( &r, -r.left, -r.top );
 
 /* Leaves backPortPtr as current port */
 backPortPtr = CreateBitMap( &r ); 
 DrawPicture( backPict, &r );
 
 /* Leaves mixerPortPtr as current port */
 mixerPortPtr = CreateBitMap( &r );
 
 forePict = LoadPicture( kForegroundPictID );
 r = (**forePict).picFrame;
 OffsetRect( &r, -r.left, -r.top );
 
 /* Leaves forePortPtr as current port */
 forePortPtr = CreateBitMap( &r );
 DrawPicture( forePict, &r );
 
 HideCursor();
 
 while ( !Button() )
 {
 CopyBits( &(backPortPtr->portBits),
 &(mixerPortPtr->portBits),
 &(backPortPtr->portBits.bounds),
 &(mixerPortPtr->portBits.bounds), srcCopy, nil );
 
 GetMouse( &p );
 SetPort( window );
 GlobalToLocal( &p );
 r = forePortPtr->portBits.bounds;
 OffsetRect( &r, p.h, p.v );
 
 CopyBits( &(forePortPtr->portBits), 
 &(mixerPortPtr->portBits),
 &(forePortPtr->portBits.bounds), &r,
 srcOr, nil );
 
 CopyBits( &(mixerPortPtr->portBits), &(window->portBits),
 &(mixerPortPtr->portBits.bounds), 
 &(window->portRect), srcCopy, nil );
 }
}


/****************** ToolboxInit *********************/

void  ToolboxInit( void )
{
 InitGraf( &thePort );
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs( nil );
 InitCursor();
}


/****************** WindowInit ***********************/

WindowPtr WindowInit( void )
{
 WindowPtrwindow;
 PicHandlepic;
 Rect   r;
 
 pic = LoadPicture( kBackgroundPictID );
 r = (**pic).picFrame;
 
 OffsetRect( &r, 20 - r.left, 50 - r.top );
 
 window = NewWindow( nil, &r, "\pBitMapper", true, 
 noGrowDocProc, kMoveToFront, false, 0L );
 
 return( window );
}


/****************** LoadPicture *********************/

PicHandle LoadPicture( short resID )
{
 PicHandlepicture;
 
 picture = GetPicture( resID );
 
 if ( picture == nil )
 {
 SysBeep( 10 );  /*  Couldn't load the PICT resource!!!  */
 ExitToShell();
 }
}


/****************** CreateBitMap *********************/

GrafPtr CreateBitMap( const Rect *rPtr )
{
 short  i;
 BitMap *bPtr;
 GrafPtrg;
 
 g = (GrafPtr)NewPtr( sizeof(GrafPort) );
 if ( g == nil )
 SysBeep(20);
 
 bPtr = (BitMap *)NewPtr( sizeof( BitMap ) );
 if ( bPtr == nil )
 SysBeep( 20 );
 bPtr->bounds = *rPtr;
 
 bPtr->rowBytes = (rPtr->right - rPtr->left + 7) /8;
 
 i = rPtr->bottom - rPtr->top;
 bPtr->baseAddr = NewPtr( bPtr->rowBytes * i );
 
 if ( bPtr->baseAddr == nil )
 SysBeep( 20 );
 
 OpenPort( g );
 SetPortBits( bPtr );
 
 return( g );
}

Once your source code is typed in, save it under the name BitMapper.c, then add the code to the project by selecting Add from the Source menu. Run BitMapper by selecting Run from the Project menu. Once your code compiles, a window should appear with your background PICT drawn in it. The window will be the exact size of the background PICT.

As you move the mouse, the foreground PICT should appear, following the mouse’s movement. Click the mouse to exit the program.

Walking Through the BitMapper Source Code

BitMapper starts off with a few constant definitions.

/* 2 */

#define kMoveToFront (WindowPtr)-1L

const short kBackgroundPictID =    128;
const short kForegroundPictID =    129;

These are followed by BitMapper’s function prototypes.

/* 3 */

/***************/
/*  Functions  */
/***************/

void    ToolboxInit( void );
WindowPtr WindowInit( void );
PicHandle LoadPicture( short resID );
GrafPtr CreateBitMap( const Rect *rPtr );

main() starts off by initializing the Toolbox.

/* 4 */

/****************** main ***************************/

void  main( void )
{
 Rect   r;
 GrafPtrbackPortPtr, forePortPtr, mixerPortPtr;
 WindowPtrwindow;
 PicHandlebackPict, forePict;
 Point  p;
 
 ToolboxInit();

Next, a window is created. The WindowPtr is returned and stored in the variable window.

/* 5 */

 window = WindowInit();

Next, the background PICT is loaded from the resource fork. The frame of the PICT (its bounding rectangle) is normalized, so its top and left are both 0.

/* 6 */

 backPict = LoadPicture( kBackgroundPictID );
 r = (**backPict).picFrame;
 OffsetRect( &r, -r.left, -r.top );

This normalized Rect is passed on to CreateBitMap(). CreateBitMap(), listed below, creates an off-screen GrafPort the size of the specified Rect. This GrafPort can be drawn in, just like a window’s GrafPort. You can use SetPort() on it, as well as all the standard Quickdraw routines such as DrawString() and DrawPicture(). While your drawing won’t appear on the screen, the drawing will affect the memory used to implement the GrafPort.

/* 7 */

 /* Leaves backPortPtr as current port */
 backPortPtr = CreateBitMap( &r );

CreateBitMap() returns a pointer to the newly created GrafPort. When CreateBitMap() returns, this port is made the current port. Next, DrawPicture() is called to draw the background PICT in the background GrafPort.

/* 8 */

 DrawPicture( backPict, &r );

Next, the master GrafPort is created. This GrafPort is used to merge the foreground PICT with the background PICT. Once again, when this call of CreateBitMap() returns, the new GrafPort is the current port.

/* 9 */

 /* Leaves mixerPortPtr as current port */
 mixerPortPtr = CreateBitMap( &r );

Just as we did with the background PICT, this next sequence of code loads the foreground PICT, creates a normalized bounding Rect, and finally creates a GrafPort for the foreground PICT.

/* 10 */

 forePict = LoadPicture( kForegroundPictID );
 r = (**forePict).picFrame;
 OffsetRect( &r, -r.left, -r.top );
 
 /* Leaves forePortPtr as current port */
 forePortPtr = CreateBitMap( &r );

The call of CreateBitMap() leaves forePortPtr as the current port. Next, DrawPicture() is used to draw the foreground picture in this newly created GrafPort.

/* 11 */

 DrawPicture( forePict, &r );

OK. That’s about all the preliminary stuff. Now we’re ready to animate. Before we do, we’ll use HideCursor() to make the cursor invisible.

/* 12 */

 HideCursor();

Next, we’ll enter a loop, waiting for the mouse button to be clicked.

/* 13 */

 while ( !Button() )
 {

At the heart of our program is the CopyBits() Toolbox routine. CopyBits() copies one Quickdraw BitMap to another. We’ll get into the BitMap data structure a bit later on. This call of CopyBits() copies the background BitMap into the mixer BitMap, using the bounding rectangle associated with each of the BitMaps. The srcCopy parameter specifies how the BitMap is copied. srcCopy tells CopyBits() to replace all bits in the destination BitMap’s rectangle with the bits in the source BitMap.

/* 14 */

 CopyBits( &(backPortPtr->portBits), 
 &(mixerPortPtr->portBits), 
 &(backPortPtr->portBits.bounds),
 &(mixerPortPtr->portBits.bounds), srcCopy, nil );

Next, we get the current position of the mouse, in global coordinates.

/* 15 */

 GetMouse( &p );

Next, set the port to the BitMapper window, then convert the mouse position to the window’s local coordinates.

/* 16 */

 SetPort( window );
 GlobalToLocal( &p );

Next, the foreground BitMap’s bounding rectangle is copied to a local variable, r, and offset by the mouse’s position. Basically, r is the same size as the foreground BitMap (the pointing hand), positioned on the background BitMap (which is the same size as the window) according to the current location of the mouse.

/* 17 */

 r = forePortPtr->portBits.bounds;
 OffsetRect( &r, p.h, p.v );

Next, the foreground BitMap is copied to the mixer BitMap, using r as the destination bounding rectangle. Notice the use of srcOr instead of srcCopy. This makes the foreground BitMap transparent. To see the effect this has, try changing the srcOr to srcCopy.

/* 18 */

 CopyBits( &(forePortPtr->portBits), 
 &(mixerPortPtr->portBits), 
 &(forePortPtr->portBits.bounds), &r,
 srcOr, nil );

Finally, the mixer BitMap is copied to the window. The loop works like this: Build the window’s image off-screen, copy the combined image to the window.

/* 19 */

 CopyBits( &(mixerPortPtr->portBits), &(window->portBits),
 &(mixerPortPtr->portBits.bounds), 
 &(window->portRect), srcCopy, nil );
 }
}

ToolboxInit() is the same as it ever was...

/* 20 */

/****************** ToolBoxInit *********************/

void  ToolboxInit( void )
{
 InitGraf( &thePort );
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs( nil );
 InitCursor();
}

WindowInit() loads the background PICT, copying its framing rectangle into r.

/* 21 */

/****************** WindowInit ***********************/

WindowPtr WindowInit( void )
{
 WindowPtrwindow;
 PicHandlepic;
 Rect   r;
 
 pic = LoadPicture( kBackgroundPictID );
 r = (**pic).picFrame;

r is normalized, then offset 20 pixels from the left and 50 pixels from the top. r will be used to create a window the same size as the background PICT.

/* 22 */

 OffsetRect( &r, 20 - r.left, 50 - r.top );

NewWindow() is used to create the BitMapper window, using r as a bounding rectangle.

/* 23 */

 window = NewWindow( nil, &r, "\pBitMapper", true, 
 noGrowDocProc, kMoveToFront, false, 0L );

The WindowPtr is returned to the calling routine.

/* 24 */

 return( window );
}

LoadPicture() loads the specified PICT resource.

/* 25 */

/****************** LoadPicture *********************/

PicHandle LoadPicture( short resID )
{
 PicHandlepicture;
 
 picture = GetPicture( resID );

If the PICT wasn’t found, beep once, then exit.

 if ( picture == nil )
 {
 SysBeep( 10 );  /*  Couldn't load the PICT resource!!!  */
 ExitToShell();
 }
}

CreateBitMap() will create a new GrafPort() the size of the specified Rect. A BitMap is a Quickdraw data structure designed to hold a bitmap of an image one pixel deep (black and white). The BitMap is described in Inside Macintosh, Volume I, page 144, and in Inside Macintosh: Overview, page 91.

/* 26 */

/****************** CreateBitMap *********************/

GrafPtr CreateBitMap( const Rect *rPtr )
{
 short  i;
 BitMap *bPtr;
 GrafPtrg;

First, a new GrafPort is allocated using NewPtr(). If the memory couldn’t be allocated, beep once.

/* 27 */

 g = (GrafPtr)NewPtr( sizeof(GrafPort) );
 if ( g == nil )
 SysBeep(20);

Next, a BitMap data structure is allocated. Again, if the memory was not allocated, beep once. These beeps aren’t really effective. They’re put in place as a weak substitute for error checking. You’ll want to weave memory allocation failure into your overall error handling scheme.

/* 28 */

 bPtr = (BitMap *)NewPtr( sizeof( BitMap ) );
 if ( bPtr == nil )
 SysBeep( 20 );

Next, the specified rectangle is copied into the BitMap’s bounds field. This field specifies the coordinates bounding the BitMap.

/* 29 */

 bPtr->bounds = *rPtr;

The rowBytes field specifies how many bytes are used to store one row of the BitMap. For example, 0 through 8 pixels can be stored in 1 byte, 9 through 16 pixels in 2 bytes, etc.

/* 30 */

 bPtr->rowBytes = (rPtr->right - rPtr->left + 7) /8;

Next, i is set to the number of rows in the bounding rectangle, and i * rowBytes bytes are allocated for the bit image itself.

/* 31 */

 i = rPtr->bottom - rPtr->top;
 bPtr->baseAddr = NewPtr( bPtr->rowBytes * i );

Again, if the memory was not allocated, beep once.

/* 32 */

 if ( bPtr->baseAddr == nil )
 SysBeep( 20 );

Next, OpenPort() is called to initialize the new GrafPort, which is pointed to by g. OpenPort() leaves g as the current port. SetPortBits() ties the specified BitMap to the current port.

/* 33 */

 OpenPort( g );
 SetPortBits( bPtr );

Finally, we return a pointer to the newly allocated GrafPort.

/* 34 */

 return( g );
}

Till Next Month...

This sample code should get you on your way to successful bitmap animation. Once you’ve mastered this technique, you’re ready to tackle color animation by using PixMaps and the Toolbox routine CopyPixMap(). These are described in Inside Macintosh, Volume V. As I mentioned at the beginning of the column, we’ll eventually go over PixMap animation, but first we’ll have to cover the basics of programming with color quickdraw.

In next month’s column, we’ll take a break from the Toolbox and explore some of the differences between C and C++. In the meantime, I’ll be busy trying to catch up with Daniel. Oh, how those little feet can fly...

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Challenge those pesky wyverns to a dance...
After recently having you do battle against your foes by wildly flailing Hello Kitty and friends at them, GungHo Online has whipped out another surprising collaboration for Puzzle & Dragons. It is now time to beat your opponents by cha-cha... | Read more »
Pack a magnifying glass and practice you...
Somehow it has already been a year since Torchlight: Infinite launched, and XD Games is celebrating by blending in what sounds like a truly fantastic new update. Fans of Cthulhu rejoice, as Whispering Mist brings some horror elements, and tests... | Read more »
Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »

Price Scanner via MacPrices.net

Free iPhone 15 plus Unlimited service for $60...
Boost Infinite, part of MVNO Boost Mobile using AT&T and T-Mobile’s networks, is offering a free 128GB iPhone 15 for $60 per month including their Unlimited service plan (30GB of premium data).... Read more
$300 off any new iPhone with service at Red P...
Red Pocket Mobile has new Apple iPhones on sale for $300 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Clearance 13-inch M1 MacBook Airs available a...
Apple has clearance 13″ M1 MacBook Airs, Certified Refurbished, available for $759 for 8-Core CPU/7-Core GPU/256GB models and $929 for 8-Core CPU/8-Core GPU/512GB models. Apple’s one-year warranty is... Read more
Updated Apple MacBook Price Trackers
Our Apple award-winning MacBook Price Trackers are continually updated with the latest information on prices, bundles, and availability for 16″ and 14″ MacBook Pros along with 13″ and 15″ MacBook... Read more
Every model of Apple’s 13-inch M3 MacBook Air...
Best Buy has Apple 13″ MacBook Airs with M3 CPUs in stock and on sale today for $100 off MSRP. Prices start at $999. Their prices are the lowest currently available for new 13″ M3 MacBook Airs among... Read more
Sunday Sale: Apple iPad Magic Keyboards for 1...
Walmart has Apple Magic Keyboards for 12.9″ iPad Pros, in Black, on sale for $150 off MSRP on their online store. Sale price for online orders only, in-store price may vary. Order online and choose... Read more
Apple Watch Ultra 2 now available at Apple fo...
Apple has, for the first time, begun offering Certified Refurbished Apple Watch Ultra 2 models in their online store for $679, or $120 off MSRP. Each Watch includes Apple’s standard one-year warranty... Read more
AT&T has the iPhone 14 on sale for only $...
AT&T has the 128GB Apple iPhone 14 available for only $5.99 per month for new and existing customers when you activate unlimited service and use AT&T’s 36 month installment plan. The fine... Read more
Amazon is offering a $100 discount on every M...
Amazon is offering a $100 instant discount on each configuration of Apple’s new 13″ M3 MacBook Air, in Midnight, this weekend. These are the lowest prices currently available for new 13″ M3 MacBook... Read more
You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more

Jobs Board

Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
IT Systems Engineer ( *Apple* Platforms) - S...
IT Systems Engineer ( Apple Platforms) at SpaceX Hawthorne, CA SpaceX was founded under the belief that a future where humanity is out exploring the stars is Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.