TweetFollow Us on Twitter

Real-Time 3D
Volume Number:8
Issue Number:1
Column Tag:C Workshop

Real-Time 3D Animation

Using simple vector calculations to draw objects that move and spin in a 3-D environment

By Lincoln Lydick, Littleton, Colorado

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ever felt that real-time 3d animation was meant only for the “computer gods” to create? That mere mortal programmers are destined only to marvel at the feats of greatness? That finding example code on how to accomplish some of these tricks is impossible? Well it turns out not to be difficult at all. This example uses simple vector calculations to draw 6 objects which move and spin in a 3 dimensional environment. The viewer is also free to move, look at, and even follow any of the objects. To optimize the calculations, we’ll do all of this without SANE. This may sound difficult, but stick with me - it’s very simple

The Plan

In order to draw cubes and pyramids (henceforth called objects), we’ll use a single pipeline that translates, rotates and projects each in perspective. But first we need to develop a plan. Our plan will be a Cartesian coordinate system where all objects (including the viewer) will occupy an x, y, & z position. The objects themselves will be further defined by vertices and each vertex is also defined by an x, y, & z coordinate. For instance, cubes will be defined by eight vertices and pyramids by five - with lines drawn between.

Figure 1: Vertex assignment

Changing any value of a vertex represents movement within space. Therefore we can move the viewer or an object by simply changing an x, y, or z. If either the viewer or an object is required to move in the direction of some angle, then we provide a variable called velocity and apply these simple vector equations:

[EQ.1]  Xnew = Xold + sin(angle) * velocity
[EQ.2]  Ynew = Yold + cos(angle) * velocity

Translation

Objects will first be translated (moved) relative to the viewer’s position. This is required because rotation calculations (coming up next) require points to be rotated around a principal axis. Therefore, since the viewer may not be at the origin (Figure 2), we must move the object the same amount we would need to move the viewer to be at the origin (Figure 3). Note: I adopt the convention where the x and y axis are parallel to the plane, and the z axis depicts altitude.

So to perform this “relative” translation, we just subtract the components of the two points:

[EQ.3]  Xnew = Xold - ViewerX
[EQ.4]  Ynew = Yold - ViewerY
[EQ.5]  Znew = ViewerZ - Zold

Now this is all well and good, but what if the viewer is looking at the object? Wouldn’t the object then be directly in front of the viewer - and subsequently drawn at the center of the window? Yes, and this leads us to

Figure 2: Before & Figure 3: After Translation

Rotation

Since we’re providing the viewer with the ability to “look around”, we need to rotate each object by the viewer’s angle. This rotation will occur around the Z axis and is accomplished by applying these calculations to each vertex:

[EQ.6]  Xnew = Xold * cos(angle) - Yold * sin(angle)
[EQ.7]  Ynew = Xold * sin(angle) + Yold * cos(angle)

Figure 4: Before & Figure 5: After Rotation

Figure 4 shows the viewer looking at the object by some angle. Rotating the object by that angle indeed moves it centered on the y axis (Figure 5) and will be drawn centered in the window. Of course if the viewer and the object are at different heights, (it could be above or below us), we might not see it at all - but we’ll deal with that later.

Now if an object is allowed to rotate itself (i.e., spin), then we use the same calculations, although the angle will be unique to the object and not the viewers. Note, this rotation must occur with the object at the origin, and before it is translated relative to the viewer or rotated by the viewer’s angle. Therefore, we’ll first build the object around the origin, spin it, move it to its correct location, then translate and rotate as shown earlier. This may sound costly (and it is a little) but we’ll compute the net movement once and add it in one quick swoop.

Perspective Drawing

After translation and rotation, the final step is to plot each vertex on the window and connect them with lines. This requires describing a 3d scene on a 2d medium (the screen) and is accomplished by perspective projection. Therefore to plot a 3d point, we’ll use the following calculations:

[EQ.8]  H = X * kProjDistance / Y + origin.h
[EQ.9]  V = Z * kProjDistance / Y + origin.v

where origin.h and origin.v are the center of the window. Note: y must not be negative or zero - if it is, let it equal 1 before using the formula. kProjDistance is a constant that describes the distance of the conceptual projection plane from the viewer (see below).

Figure 6: Object being projected onto a projection plane.

This plane is the “window” to which all points get plotted. Points outside this plane are not visible. Experiment with this constant and you’ll notice smaller values (like 100) create a “fish-eye” lens effect. This is due, in part, to the ability of the projection plane to display more than we would normally see. A value between 400 to 500 approximates a 60 degree cone of vision.

Optimizations

1. All of our calculations are ultimately manipulated into integer values (in order to draw to a window) so calculations involving extended variables (decimal accuracy) are not required. However, we do need to find the sine and cosine of angles, which are fractional values, and requires the use of SANE. But SANE is notoriously slow and further requires all angles to be specified by radians - yuk! Our solution to this dilemma is simple, and very accurate: a Sine Table.

What we’ll do is calculate 91 values of sine (angles 0 to 90) once at initialization, multiply each by 1000, and save them in an indexed array of integers (multiplying by 1000 converts them into rounded integer values which are quite suitable). Finally, when we need to multiply by sine or cosine, we just remember to divide the answer back by 1000. If we desire finer rotations, we can break the angles down into minutes (which is provided by the constant kMinutes) having no effect on execution speed. Note: the cosine of an angle is found from the inverse index of the sine index (see procedure GetTrigValues()).

2. Due to object symmetry (and the fact we only rotate on one axis), redundant calculations can be avoided for the top plane of cubes. By calculating only the vertices of the base, we’ll be able to assign them to the top directly (except for the z component) - see the code.

3. Matrices might be employed but the concept of matrix multiplication tends to confuse an otherwise simple explanation, and is well covered in previous MacTutor articles (see references).

4. Finally, avoiding all traps entirely (esp. _LineTo, _CopyBits and _FillRect) and writing the bottleneck routines in assembly. This was done in the assembly version (except for _LineTo).

The Code

The interface code and error checking are minimal - in the interest of clarity. The only surprise might be the offscreen bit map: since double buffering (_CopyBits) is explored in many other articles, I decided to add the bit map.

After initialization, we check the mouse position to see if the viewer has moved. This is done by conceptually dividing the window into a grid and subtracting a couple of points. Once the velocity and angle of the viewer are determined, the sine and cosine values are also calculated. We also check the keyboard to see if either the “q” key or “w” key might be pressed (“q” = move up, “w” = move down). Armed with these values, we start translating and rotating all the points. If an object can spin, it is first built around the origin and rotated. Once all the rotations are complete and the vertices are found, we decide if the object is visible; if it’s not, we skip it and go on to the next. Otherwise, we connect the dots with lines. This continues until all the points and lines are drawn - then we transfer the bit image to the window and start the process all over (or until the mouse button is pressed - then we quit).

Of course more objects can be easily added (or even joined to create a single complex object) but at the expense of the frame rate. Frame rate refers to how many times the screen can be erased and redrawn per second (fps) and is always a major obstacle for real time simulations (usually sacrificing detail for faster animation). This example runs at 30 fps when written in assembly on a Macintosh II. This was clocked when looking at all the objects - and over 108 fps when looking away. This discrepancy is due to the line drawing, since all of the other calculations take place regardless of whether we see the objects or not. Therefore, speeds averaging 60+ fps (instead of 30) might be obtained if we wrote our own line drawing routines as well! Of course this C version runs somewhat slower but for the purpose of this article is much easier to understand.

One final thing worth mentioning - our lines are not mathematically clipped to the window (where the endpoint is recalculated to the intersection of the line and window). This will present a problem if we calculate an end greater than 32767 or less than -32767 (the maximum allowed by QuickDraw). Our solution is to not draw the object if it is too close.

The Future

If interest is shown, perhaps we’ll discuss a technique for real-time hidden line removal. There are a couple of methods that could be incorporated into this example. We might also look at adding rotations around the other two axis and linking them to the same control. This could be the first step to developing a flight simulator. Who knows, terrain mapping using octree intersections, other aircraft and airports, sound... the skies the limit (pun intended). Have fun.

References

Foley, vanDam, Feiner, Hughes. Computer Graphics, (2nd ed.) Addison-Wesley Publishing Company. Good (but very general) explanation of geometrical transformations, rotations and perspective generation using matrix algebra. Also includes line clipping, hidden line removal, solid modeling, etc

Burger & Gillies. Interactive Computer Graphics. Addison-Wesley Publishing Company. Very similar to above and less expensive.

Martin, Jeffrey J. “Line Art Rotation.” MacTutor Vol.6 No.5. Explains some of the concepts presented here, plus rotations around 2 axis, matrix multiplication, and illustrates why we avoid SANE in the event loop.

Listing

/*---------------------------
#
#Program: Tutor3D™
#
#Copyright © 1991 Lincoln Lydick
#All Rights Reserved.
#
#
Include these libraries (for THINK C):
 MacTraps
 SANE

Note:   
 The procedures “RotateObject()” and “Point2Screen()”
 significantly slow this program because THINK C creates a
 JSR to some extra glue code in order to multiply and divide
 long words. Therefore both procs are written in assembly,
 however the C equivalent is provided in comments above.
 Simply replace the asm {} statement with the C code if you
 prefer.

---------------------------*/

#include  “SANE.h”
#include“ColorToolbox.h”

#define kMaxObjects6 /*num. objects*/
#define kMinutes 4 /*minutes per deqree*/
#define kProjDistance450  /*distance to proj. plane*/
#define kWidth   500 /*width of window*/
#define kHeight  280 /*height of window*/
#define kMoveUpKey 0x100000 /*’q’ key = move up*/
#define kMoveDnKey 0x200000 /*’w’ key = move down*/
#define kOriginH (kWidth/2) /*center of window */
#define kOriginV (kHeight/2)/*ditto*/
#define kMapRowBytes (((kWidth+15)/16)*2)

/* Define macros so MoveTo() & LineTo() accept Points.*/
#define QuickMoveTo(pt) asm{move.l pt, gOffPort.pnLoc}
#define QuickLineTo(pt) asm{move.l pt, -(sp)}asm {_LineTo}

enum  ObjectType {cube, pyramid};
typedef struct {shortx, y, z;
} Point3D;/*struct for a 3 dimensional point.*/

typedef struct {
 Point3Dpt3D;
 short  angle, sine, cosine;
} ViewerInfo;  /*struct for viewer’s position.*/

typedef struct { 
 enum   ObjectType objType;
 Point3Dpt3D;
 short  angle, halfWidth, height;
 Booleanrotates, moves;
} ObjectInfo;    /*struct for an object.*/

ViewerInfogViewer;
Point3D gDelta;
Point   gMouse, gVertex[8];
WindowPtr gWindow;
BitMap  gBitMap;
GrafPortgOffPort;
Rect    gVisRect, gWindowRect;
ObjectInfogObject[kMaxObjects];
short   gVelocity, gSineTable[(90*kMinutes)+1];
KeyMap  gKeys;

/****************************************************/
/* 
/* Assign parameters to a new object (a cube or pyramid).
/* 
/****************************************************/
static void NewObject(short index, enum ObjectType theType, short width, 
short height,
 Boolean rotates, Boolean moves, short positionX, short positionY, short 
positionZ)
{
 register ObjectInfo *obj;
 
 obj = &gObject[index];
 obj->angle = 0;
 obj->objType = theType;
 obj->halfWidth = width/2;
 obj->height = height;
 obj->rotates = rotates;
 obj->moves = moves;
 obj->pt3D.x = positionX;
 obj->pt3D.y = positionY;
 obj->pt3D.z = positionZ;
}

/****************************************************/
/* 
/* Initialize all our globals, build the trig table, set up an
/* offscreen buffer, create a new window, and initialize all
/* the objects to be drawn.
/****************************************************/
static void Initialize(void)
{
 extended angle;
 short  i;

 InitGraf(&thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(0L);
 InitCursor();
 FlushEvents(everyEvent, 0);
 SetCursor(*GetCursor(crossCursor));

 if ((*(*GetMainDevice())->gdPMap)->pixelSize > 1)
 ExitToShell();  /*should tell user to switch to B&W.*/

 /*create a table w/ the values of sine from 0-90.*/
 for (i=0, angle=0.0; i<=90*kMinutes; i++, angle+=0.017453292/kMinutes)
 
 gSineTable[i] = sin(angle)*1000;

   /* give the viewer an initial direction and position */
 gViewer.angle = gViewer.sine = gViewer.pt3D.x = gViewer.pt3D.y = 0;
 
 gViewer.cosine = 999;
 gViewer.pt3D.z = 130;

 /*create some objects (0 to kMaxObjects-1).*/
 NewObject(0, cube, 120, 120, false, false, -150, 600, 0);     
 NewObject(1, cube, 300, 300, true, false, -40, 1100, 60);
 NewObject(2, cube, 40, 10, true, true, 0, 500, 0);
 NewObject(3, pyramid, 160, 160, false, false, 200, 700, 0);
 NewObject(4, pyramid, 80, -80, true, false, 200, 700, 240);
 NewObject(5, pyramid, 60, 60, false, false, -40, 1100, 0);

 SetRect(&gBitMap.bounds, 0, 0, kWidth, kHeight);
 SetRect(&gWindowRect, 6, 45, kWidth+6, kHeight+45);
 SetRect(&gVisRect, -150, -150, 650, 450);
 gWindow = NewWindow(0L, &gWindowRect, “\pTutor3D™”, true, 0, (Ptr)-1, 
false, 0);

 /*make an offscreen bitmap and port */
 gBitMap.rowBytes = kMapRowBytes;
 gBitMap.baseAddr = NewPtr(kHeight*kMapRowBytes);
 OpenPort(&gOffPort);
 SetPort(&gOffPort);
 SetPortBits(&gBitMap);
 PenPat(white);
}

/****************************************************/
/* Return the sine and cosine values for an angle.
/****************************************************/
static void GetTrigValues(register short *angle, register short *sine, 
register short *cosine)
{
 if (*angle >= 360*kMinutes)
 *angle -= 360*kMinutes;
 else if (*angle < 0)
 *angle += 360*kMinutes;

 if (*angle <= 90*kMinutes)
 { *sine = gSineTable[*angle];
 *cosine = gSineTable[90*kMinutes - *angle];
 }
 else if (*angle <= 180*kMinutes)
 { *sine = gSineTable[180*kMinutes - *angle];
 *cosine = -gSineTable[*angle - 90*kMinutes];
 }
 else if (*angle <= 270*kMinutes)
 { *sine = -gSineTable[*angle - 180*kMinutes];
 *cosine = -gSineTable[270*kMinutes - *angle];
 }
 else
 { *sine = -gSineTable[360*kMinutes - *angle];
 *cosine = gSineTable[*angle - 270*kMinutes];
}}

/****************************************************/
/* Increment an objects angle and find the sine and cosine
/* values. If the object moves, assign a new x,y position for
/* it as well. Finally, rotate the object’s base around the z
/* axis and translate it to correct position based on delta.
/* 
/* register Point*vertex; short i;
/* 
/* for (i = 0; i < 4; i++)
/* {  vertex = &gVertex[i]; savedH = vertex->h;          
/* vertex->h=((long)savedH*cosine/1000 -
/* (long)vertex->v*sine/1000)+gDelta.x;
/* vertex->v=((long)savedH*sine/1000 +
/* (long)vertex->v*cosine/1000)+gDelta.y;
/* }
/****************************************************/
static void RotateObject(register ObjectInfo       *object)
{
 Point  tempPt;
 short  sine, cosine;

 object->angle += (object->objType == pyramid) ? -8*kMinutes : 2*kMinutes;
 GetTrigValues(&object->angle, &sine, &cosine);
 if (object->moves)
 { object->pt3D.x += sine*20/1000; /*[EQ.1]*/
 object->pt3D.y += cosine*-20/1000;/*[EQ.2]*/
 }

 asm  { moveq    #3, d2   ; loop counter
 lea    gVertex, a0; our array of points
 loop:  move.l   (a0), tempPt ;  ie., tempPt = gVertex[i];
 move.w cosine, d0
 muls   tempPt.h, d0 ;  tempPt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w sine, d1
 muls   tempPt.v, d1 ;  tempPt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract the two
 add.w  gDelta.x, d0 ;  now translate x
 move.w d0, OFFSET(Point, h)(a0);  save new h

 move.w sine, d0
 muls   tempPt.h, d0 ;  tempPt.h * sine
 divs   #1000, d0; divide by 1000
 move.w cosine, d1
 muls   tempPt.v, d1 ;  tempPt.v * cosine
 divs   #1000, d1; divide by 1000
 add.w  d1, d0   ; add em up
 add.w  gDelta.y, d0 ;  now translate y
 move.w d0, OFFSET(Point, v)(a0);  save new v
 addq.l #4, a0   ; next vertex address
 dbra   d2, @loop; loop
 }
}

/****************************************************/
/* Rotate a point around z axis and find it’s location in 2d
/* space using 2pt perspective.
/*
/* saved = pt->h;/*saved is defined as a short.*/
/* pt->h = (long)saved*gViewer.cosine/1000 -
/* (long)pt->v*gViewer.sine/1000;  /*[EQ.6]*/
/* pt->v = (long)saved*gViewer.sine/1000 +
/* (long)pt->v*gViewer.cosine/1000;/*[EQ.7]*/
/* /*[EQ.8 & 9]*/
/* if ((saved = pt->v) <= 0)saved = 1;/*never <= 0*/
/* pt->h = (long)pt->h*kProjDistance/saved+kOriginH;
/* pt->v = (long)gDelta.z*kProjDistance/saved+kOriginV;
/****************************************************/
static void Point2Screen(register Point *pt)
{asm  { 
 move.w gViewer.cosine, d0; [EQ.6]
 muls   OFFSET(Point, h)(pt), d0;  pt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w gViewer.sine, d1
 muls   OFFSET(Point, v)(pt), d1;  pt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract, yields horizontal
 move.w gViewer.sine, d1  ; [EQ.7]
 muls   OFFSET(Point, h)(pt), d1;  pt.h * sine
 divs   #1000, d1; divide by 1000
 move.w gViewer.cosine, d2
 muls   OFFSET(Point, v)(pt), d2;  pt.v * cosine
 divs   #1000, d2; divide by 1000
 add.w  d2, d1   ; add, yields vertical
 bgt    @project ; if (vertical<=0) 
 moveq  #1, d1   ; then vertical=1

project:muls#kProjDistance, d0;  [EQ.8]. horiz*kProjDist
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginH, d0;  add origin.h
 move.w d0, OFFSET(Point, h)(pt);  save the new hor
 move.w #kProjDistance, d0; [EQ.9]
 muls   gDelta.z, d0 ;  height * kProjDistance
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginV, d0;  add origin.v
 move.w d0, OFFSET(Point, v)(pt);  save the new vert
 }
}

/****************************************************/
/* For all of our cubes and pyramids, index thru each -
/* calculate sizes, translate, rotate, check for visibility,
/* and finally draw them.
/****************************************************/
static void DrawObjects(void)
{
 register ObjectInfo *obj;
 short  i;

 for (i = 0; i < kMaxObjects; i++)
 { obj = &gObject[i];
 gDelta.x = obj->pt3D.x - gViewer.pt3D.x; /*[EQ.3]*/
 gDelta.y = obj->pt3D.y - gViewer.pt3D.y; /*[EQ.4]*/
 gDelta.z = gViewer.pt3D.z - obj->pt3D.z ; /*[EQ.5]*/

 if (obj->rotates) /*does this one rotate?*/
 { gVertex[0].h=gVertex[0].v=gVertex[1].v=gVertex[3].h = -obj->halfWidth;
 gVertex[1].h=gVertex[2].h=gVertex[2].v=gVertex[3].v = obj->halfWidth;
 RotateObject(obj);
 }
 else   /*translate*/
 { gVertex[0].h = gVertex[3].h = -obj->halfWidth + gDelta.x;
 gVertex[0].v = gVertex[1].v = -obj->halfWidth + gDelta.y;
 gVertex[1].h = gVertex[2].h = obj->halfWidth + gDelta.x;
 gVertex[2].v = gVertex[3].v = obj->halfWidth + gDelta.y;
 }

 if (obj->objType == pyramid) /* a pyramid?*/
 { gVertex[4].h = gDelta.x; /*assign apex*/
 gVertex[4].v = gDelta.y;
 }
 else
 { gVertex[4] = gVertex[0]; /*top of cube.*/
 gVertex[5] = gVertex[1];
 gVertex[6] = gVertex[2];
 gVertex[7] = gVertex[3];
 }

 Point2Screen(&gVertex[0]); /*rotate & plot base*/
 Point2Screen(&gVertex[1]);
 Point2Screen(&gVertex[2]);
 Point2Screen(&gVertex[3]);
 gDelta.z -= obj->height;
 Point2Screen(&gVertex[4]);

 if (! PtInRect(gVertex[4], &gVisRect)) /* visible?*/
 continue;

 QuickMoveTo(gVertex[0]);
 QuickLineTo(gVertex[1]);
 QuickLineTo(gVertex[2]);
 QuickLineTo(gVertex[3]);
 QuickLineTo(gVertex[0]);
 QuickLineTo(gVertex[4]);

 if (obj->objType == pyramid)
 { QuickLineTo(gVertex[1]); /*Finish pyramid.*/
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[4]);
 QuickLineTo(gVertex[3]);
 } else {
 Point2Screen(&gVertex[5]); /*Finish cube.*/
 Point2Screen(&gVertex[6]);
 Point2Screen(&gVertex[7]);
 QuickLineTo(gVertex[5]);
 QuickLineTo(gVertex[6]);
 QuickLineTo(gVertex[7]);
 QuickLineTo(gVertex[4]);
 QuickMoveTo(gVertex[1]);
 QuickLineTo(gVertex[5]);
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[6]);
 QuickMoveTo(gVertex[3]);
 QuickLineTo(gVertex[7]);
}} }

/****************************************************/
/* Check mouse position (velocity is vertical movement,
/* rotation is horiz.), calculate the sine and cosine values of
/* the angle, and update the viewer’s position. Finally, check
/* the keyboard to see if we should move up or down.
/****************************************************/
static void GetViewerPosition(void)
{
 GetMouse(&gMouse);
 if (! PtInRect(gMouse, &gWindowRect))
 return;
 gVelocity = -(gMouse.v-(kOriginV+45))/5;
 gViewer.angle += (gMouse.h-(kOriginH+6))/14;
 GetTrigValues(&gViewer.angle, &gViewer.sine, &gViewer.cosine);

 gViewer.pt3D.x += gViewer.sine*gVelocity/1000; /*[EQ.1]*/
 gViewer.pt3D.y += gViewer.cosine*gVelocity/1000; /*[EQ.2]*/

 GetKeys(&gKeys);
 if (gKeys.Key[0] == kMoveUpKey)
 gViewer.pt3D.z += 5;
 if (gKeys.Key[0] == kMoveDnKey)
 gViewer.pt3D.z -= 5;
}

/****************************************************/
/* Draw a simple crosshair at the center of the window.
/****************************************************/
static void DrawCrossHair(void)
{
 QuickMoveTo(#0x008200fa);/*ie., MoveTo(250, 130)*/
 QuickLineTo(#0x009600fa);/*ie., LineTo(250, 150)*/
 QuickMoveTo(#0x008c00f0);/*ie., MoveTo(240, 140)*/
 QuickLineTo(#0x008c0104);/*ie., LineTo(260, 140)*/
}

/****************************************************/
/* Main event loop - initialize & cycle until the mouse
/* button is pressed.
/****************************************************/
void main(void)
{
 Initialize();
 while (! Button())
 { FillRect(&gBitMap.bounds, black);
 GetViewerPosition();
 DrawObjects();  /*main pipeline*/
 DrawCrossHair();
 CopyBits(&gBitMap, &gWindow->portBits, &gBitMap.bounds, &gBitMap.bounds, 
0, 0L);
 }
 FlushEvents(mDownMask+keyDownMask, 0);
}







  
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

FileZilla 3.51.0 - Fast and reliable FTP...
FileZilla (ported from Windows) is a fast and reliable FTP client and server with lots of useful features and an intuitive interface. Version 3.51.0: Bugfixes and minor changes: Fixed import of... Read more
KeyCue 9.8 - Displays all menu shortcut...
KeyCue has always been a handy tool for learning and remembering keyboard shortcuts. With a simple keystroke or click, KeyCue displays a table with all available keyboard shortcuts, system-wide... Read more
AppCleaner 3.5.1 - Uninstall your apps e...
AppCleaner allows you to uninstall your apps easily. It searches the files created by the applications and you can delete them quickly. Version 3.5.1: Fixed a code-signing issue causing AppCleaner... Read more
A Better Finder Attributes 7.03 - Change...
A Better Finder Attributes allows you to change JPEG & RAW shooting dates, JPEG EXIF meta-data tags, file creation & modification dates, file flags and deal with invisible files. Correct EXIF... Read more
Postbox 7.0.33 - Powerful and flexible e...
Postbox is a desktop feature-stuffed email client, news application, and feed reader that helps you manage your work life and increase productivity. Now you can organize all your email accounts in... Read more
Adobe InCopy 16.0 - Create streamlined e...
InCopy is available as part of Adobe Creative Cloud for $52.99/month (or $4.99/month for InCopy app only). Adobe InCopy, ideal for large team projects involving both written copy and design work,... Read more
Steam 2.0 - Multiplayer and communicatio...
Steam is a digital distribution, digital rights management, multiplayer and communications platform developed by Valve Corporation. It is used to distribute a large number of games and related media... Read more
Adobe Lightroom Classic 10.0 - Import, d...
You can download Lightroom for Mac as a part of Creative Cloud for only $9.99/month with Photoshop, included as part of the photography package. The latest version of Lightroom gives you all of the... Read more
Adobe InDesign 16.0 - Professional print...
InDesign is available as part of Adobe Creative Cloud for as little as $20.99/month (or $9.99/month if you're a previous InDesign customer). Adobe InDesign is part of Creative Cloud. That means you... Read more
Adobe After Effects 17.5 - Create profes...
After Effects is available as part of Adobe Creative Cloud for $52.99/month (or $20.99/month for a single app license). The new, more connected After Effects can make the impossible possible. Get... Read more

Latest Forum Discussions

See All

Genshin Impact Guide - Gacha Strategy: W...
If you're playing Genshin Impact without spending money, you'll always need to be looking for ways to optimize your play to maximize rewards without getting stuck in a position where you're tempted to spend. The most obvious trap here is the game'... | Read more »
Genshin Impact Adventurer's Guide
Hello and well met, fellow adventurers of Teyvat! Check out our all-in-one resource for all things Genshin Impact. We'll be sure to add more as we keep playing the game, so be sure to come back here to check for updates! [Read more] | Read more »
Genshin Impact Currency Guide - What...
Genshin Impact is great fun, but make no mistake: this is a gacha game. It is designed specifically to suck away time and money from you, and one of the ways the game does this is by offering a drip-feed of currencies you will feel compelled to... | Read more »
XCOM 2 Collection on iOS now available f...
The XCOM 2 Collection, which was recently announced to be coming to iOS in November, is now available to pre-order on the App Store. [Read more] | Read more »
Presidents Run has returned for the 2020...
IKIN's popular endless runner Presidents Run has returned to iOS and Android just in time for the 2020 election season. It will see players choosing their favourite candidate and guiding them on a literal run for presidency to gather as many votes... | Read more »
New update for Cookies Must Die adds new...
A new update for Rebel Twins’ platformer shooter Cookies Must Die is coming out this week. The update adds quite a bit to the game, including new levels and characters to play around with. [Read more] | Read more »
Genshin Impact Guide - How to Beat Pyro...
The end game of Genshin Impact largely revolves around spending resin to take on world bosses and clear domain challenges. These fights grant amazing rewards like rare artifacts and ascension materials for weapons and adventurers, but obviously... | Read more »
Moto Rider GO has received a huge update...
Moto Rider GO: Highway Traffic is a popular free-to-play racing game that initially launched back in 2017 and has since racked up over 100 million downloads. Today it has received a sizeable update that introduces several KTM and Husqvarna... | Read more »
ORDESA is a spooky interactive film that...
French studio Cinétévé Experience and ARTE have released interactive movie ORDESA for iOS and Android today. It arrives at the perfect time of year, telling a story about a mysterious haunted house that the viewer suddenly finds themselves lost in... | Read more »
Genshin Impact Guide - How to Beat Storm...
If you've followed our progression guide for Genshin Impact up to Adventure Rank 25, you have reached the point where you can face off against Stormterror on a weekly basis for some pretty sweet rewards. Beating this deadly dragon isn't as easy as... | Read more »

Price Scanner via MacPrices.net

Apple’s 2020 11″ iPad Pros on sale today for...
Apple reseller Expercom has new 2020 11″ Apple iPad Pros on sale for $50-$75 off MSRP, with prices starting at $749. These are the same iPad Pros sold by Apple in their retail and online stores: – 11... Read more
Did Apple Drop The Ball By Not Branding Its C...
EDITORIAL: 10.21.20 – In the branding game, your marketing strategy can either be a hit or a miss and the latter is the case for Apple when it missed out on an opportunity to brand its “SE” series of... Read more
27″ 6-core and 8-core iMacs on sale for up to...
Adorama has Apple’s 2020 27″ 6-core and 8-core iMacs on sale today for $50-$100 off MSRP, with prices starting at $1749. Shipping is free: – 27″ 3.1GHz 6-core iMac: $1749, save $50 – 27″ 3.3GHz 6-... Read more
Apple’s 16″ MacBook Pros are on sale for $300...
B&H Photo has 16″ MacBook Pros on sale today for $300-$350 off Apple’s MSRP, starting at $2099. Expedited shipping is free to many addresses in the US. Their prices are among the lowest available... Read more
Apple has 2020 13″ MacBook Airs available sta...
Apple has a full line of Certified Refurbished 2020 13″ MacBook Airs available starting at only $849 and up to $200 off the cost of new Airs. Each MacBook features a new outer case, comes with a... Read more
These major wireless carriers will give you a...
Apple’s wireless partners are offering several deals on iPhone 12 pre-orders right now. If you’re willing to switch carriers, you can get a free iPhone 12 right now. Here’s where to take advantage of... Read more
4 day sale at Sams Club: Save $24-$29 on Appl...
Sams Club has Apple Watch Series 6 GPS models on sale this week for $24-$29 off Apple’s MSRP, starting at $374. Sale ends this Thursday, October 22nd: – 40mm Apple Watch Series 6 GPS: $374.98, save $... Read more
US Cellular offers Apple iPhone 12 Pro for $8...
US Cellular has the 2020 128GB iPhone 12 Pro available for $829 off MSRP for new customers signing up for an Unlimited data plan, or $5.66 per month. Cost of the phone is spread over a 30 month... Read more
Buy one Apple Watch SE or Series 6 at AT&...
Buy one Apple Watch SE or Series 6 at AT&T, and get $200 off the price of a second Apple Watch. One new line required, and price discounted reflected in bill credits over a 30 month period. The... Read more
AT&T offers free iPhone 12, $800 off iPho...
AT&T is offering Apple’s new iPhone 12 for free, or up to $800 off the iPhone 12 Pro, for customers opening a new line of service plus an eligible trade-in. Discount is applied via monthly bill... Read more

Jobs Board

*Apple* Endpoint Engineer - Argonne National...
Apple Endpoint Engineer **Requisition Number:** **408932** **Location:** **Lemont, IL** **Functional Area:** **Information Technology** **Division:** **BIS\-Business Read more
Core *Apple* Computing Pro - Best Buy (Unit...
**786358BR** **Job Title:** Core Apple Computing Pro **Job Category:** Store Associates **Store Number or Department:** 001080-Lake Charles-Store **Job Read more
Department Manager- Tech Shop/ *Apple* Stor...
…their parents want, and our faculty needs. As a Department Manager in our Tech Shop/ Apple Store you will spend the majority of your time on the sales floor engaging Read more
Geek Squad *Apple* Consultation Professiona...
**782284BR** **Job Title:** Geek Squad Apple Consultation Professional **Job Category:** Store Associates **Store Number or Department:** 000140-San Carlos-Store Read more
*Apple* /Mac IT Support - Randstad (United St...
Apple /Mac IT Support **job details:** + location:San Francisco, CA + salary:$45 - $50 per hour + date posted:Thursday, October 8, 2020 + job type:Contract + Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.