TweetFollow Us on Twitter

Real-Time 3D
Volume Number:8
Issue Number:1
Column Tag:C Workshop

Real-Time 3D Animation

Using simple vector calculations to draw objects that move and spin in a 3-D environment

By Lincoln Lydick, Littleton, Colorado

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ever felt that real-time 3d animation was meant only for the “computer gods” to create? That mere mortal programmers are destined only to marvel at the feats of greatness? That finding example code on how to accomplish some of these tricks is impossible? Well it turns out not to be difficult at all. This example uses simple vector calculations to draw 6 objects which move and spin in a 3 dimensional environment. The viewer is also free to move, look at, and even follow any of the objects. To optimize the calculations, we’ll do all of this without SANE. This may sound difficult, but stick with me - it’s very simple

The Plan

In order to draw cubes and pyramids (henceforth called objects), we’ll use a single pipeline that translates, rotates and projects each in perspective. But first we need to develop a plan. Our plan will be a Cartesian coordinate system where all objects (including the viewer) will occupy an x, y, & z position. The objects themselves will be further defined by vertices and each vertex is also defined by an x, y, & z coordinate. For instance, cubes will be defined by eight vertices and pyramids by five - with lines drawn between.

Figure 1: Vertex assignment

Changing any value of a vertex represents movement within space. Therefore we can move the viewer or an object by simply changing an x, y, or z. If either the viewer or an object is required to move in the direction of some angle, then we provide a variable called velocity and apply these simple vector equations:

[EQ.1]  Xnew = Xold + sin(angle) * velocity
[EQ.2]  Ynew = Yold + cos(angle) * velocity

Translation

Objects will first be translated (moved) relative to the viewer’s position. This is required because rotation calculations (coming up next) require points to be rotated around a principal axis. Therefore, since the viewer may not be at the origin (Figure 2), we must move the object the same amount we would need to move the viewer to be at the origin (Figure 3). Note: I adopt the convention where the x and y axis are parallel to the plane, and the z axis depicts altitude.

So to perform this “relative” translation, we just subtract the components of the two points:

[EQ.3]  Xnew = Xold - ViewerX
[EQ.4]  Ynew = Yold - ViewerY
[EQ.5]  Znew = ViewerZ - Zold

Now this is all well and good, but what if the viewer is looking at the object? Wouldn’t the object then be directly in front of the viewer - and subsequently drawn at the center of the window? Yes, and this leads us to

Figure 2: Before & Figure 3: After Translation

Rotation

Since we’re providing the viewer with the ability to “look around”, we need to rotate each object by the viewer’s angle. This rotation will occur around the Z axis and is accomplished by applying these calculations to each vertex:

[EQ.6]  Xnew = Xold * cos(angle) - Yold * sin(angle)
[EQ.7]  Ynew = Xold * sin(angle) + Yold * cos(angle)

Figure 4: Before & Figure 5: After Rotation

Figure 4 shows the viewer looking at the object by some angle. Rotating the object by that angle indeed moves it centered on the y axis (Figure 5) and will be drawn centered in the window. Of course if the viewer and the object are at different heights, (it could be above or below us), we might not see it at all - but we’ll deal with that later.

Now if an object is allowed to rotate itself (i.e., spin), then we use the same calculations, although the angle will be unique to the object and not the viewers. Note, this rotation must occur with the object at the origin, and before it is translated relative to the viewer or rotated by the viewer’s angle. Therefore, we’ll first build the object around the origin, spin it, move it to its correct location, then translate and rotate as shown earlier. This may sound costly (and it is a little) but we’ll compute the net movement once and add it in one quick swoop.

Perspective Drawing

After translation and rotation, the final step is to plot each vertex on the window and connect them with lines. This requires describing a 3d scene on a 2d medium (the screen) and is accomplished by perspective projection. Therefore to plot a 3d point, we’ll use the following calculations:

[EQ.8]  H = X * kProjDistance / Y + origin.h
[EQ.9]  V = Z * kProjDistance / Y + origin.v

where origin.h and origin.v are the center of the window. Note: y must not be negative or zero - if it is, let it equal 1 before using the formula. kProjDistance is a constant that describes the distance of the conceptual projection plane from the viewer (see below).

Figure 6: Object being projected onto a projection plane.

This plane is the “window” to which all points get plotted. Points outside this plane are not visible. Experiment with this constant and you’ll notice smaller values (like 100) create a “fish-eye” lens effect. This is due, in part, to the ability of the projection plane to display more than we would normally see. A value between 400 to 500 approximates a 60 degree cone of vision.

Optimizations

1. All of our calculations are ultimately manipulated into integer values (in order to draw to a window) so calculations involving extended variables (decimal accuracy) are not required. However, we do need to find the sine and cosine of angles, which are fractional values, and requires the use of SANE. But SANE is notoriously slow and further requires all angles to be specified by radians - yuk! Our solution to this dilemma is simple, and very accurate: a Sine Table.

What we’ll do is calculate 91 values of sine (angles 0 to 90) once at initialization, multiply each by 1000, and save them in an indexed array of integers (multiplying by 1000 converts them into rounded integer values which are quite suitable). Finally, when we need to multiply by sine or cosine, we just remember to divide the answer back by 1000. If we desire finer rotations, we can break the angles down into minutes (which is provided by the constant kMinutes) having no effect on execution speed. Note: the cosine of an angle is found from the inverse index of the sine index (see procedure GetTrigValues()).

2. Due to object symmetry (and the fact we only rotate on one axis), redundant calculations can be avoided for the top plane of cubes. By calculating only the vertices of the base, we’ll be able to assign them to the top directly (except for the z component) - see the code.

3. Matrices might be employed but the concept of matrix multiplication tends to confuse an otherwise simple explanation, and is well covered in previous MacTutor articles (see references).

4. Finally, avoiding all traps entirely (esp. _LineTo, _CopyBits and _FillRect) and writing the bottleneck routines in assembly. This was done in the assembly version (except for _LineTo).

The Code

The interface code and error checking are minimal - in the interest of clarity. The only surprise might be the offscreen bit map: since double buffering (_CopyBits) is explored in many other articles, I decided to add the bit map.

After initialization, we check the mouse position to see if the viewer has moved. This is done by conceptually dividing the window into a grid and subtracting a couple of points. Once the velocity and angle of the viewer are determined, the sine and cosine values are also calculated. We also check the keyboard to see if either the “q” key or “w” key might be pressed (“q” = move up, “w” = move down). Armed with these values, we start translating and rotating all the points. If an object can spin, it is first built around the origin and rotated. Once all the rotations are complete and the vertices are found, we decide if the object is visible; if it’s not, we skip it and go on to the next. Otherwise, we connect the dots with lines. This continues until all the points and lines are drawn - then we transfer the bit image to the window and start the process all over (or until the mouse button is pressed - then we quit).

Of course more objects can be easily added (or even joined to create a single complex object) but at the expense of the frame rate. Frame rate refers to how many times the screen can be erased and redrawn per second (fps) and is always a major obstacle for real time simulations (usually sacrificing detail for faster animation). This example runs at 30 fps when written in assembly on a Macintosh II. This was clocked when looking at all the objects - and over 108 fps when looking away. This discrepancy is due to the line drawing, since all of the other calculations take place regardless of whether we see the objects or not. Therefore, speeds averaging 60+ fps (instead of 30) might be obtained if we wrote our own line drawing routines as well! Of course this C version runs somewhat slower but for the purpose of this article is much easier to understand.

One final thing worth mentioning - our lines are not mathematically clipped to the window (where the endpoint is recalculated to the intersection of the line and window). This will present a problem if we calculate an end greater than 32767 or less than -32767 (the maximum allowed by QuickDraw). Our solution is to not draw the object if it is too close.

The Future

If interest is shown, perhaps we’ll discuss a technique for real-time hidden line removal. There are a couple of methods that could be incorporated into this example. We might also look at adding rotations around the other two axis and linking them to the same control. This could be the first step to developing a flight simulator. Who knows, terrain mapping using octree intersections, other aircraft and airports, sound... the skies the limit (pun intended). Have fun.

References

Foley, vanDam, Feiner, Hughes. Computer Graphics, (2nd ed.) Addison-Wesley Publishing Company. Good (but very general) explanation of geometrical transformations, rotations and perspective generation using matrix algebra. Also includes line clipping, hidden line removal, solid modeling, etc

Burger & Gillies. Interactive Computer Graphics. Addison-Wesley Publishing Company. Very similar to above and less expensive.

Martin, Jeffrey J. “Line Art Rotation.” MacTutor Vol.6 No.5. Explains some of the concepts presented here, plus rotations around 2 axis, matrix multiplication, and illustrates why we avoid SANE in the event loop.

Listing

/*---------------------------
#
#Program: Tutor3D™
#
#Copyright © 1991 Lincoln Lydick
#All Rights Reserved.
#
#
Include these libraries (for THINK C):
 MacTraps
 SANE

Note:   
 The procedures “RotateObject()” and “Point2Screen()”
 significantly slow this program because THINK C creates a
 JSR to some extra glue code in order to multiply and divide
 long words. Therefore both procs are written in assembly,
 however the C equivalent is provided in comments above.
 Simply replace the asm {} statement with the C code if you
 prefer.

---------------------------*/

#include  “SANE.h”
#include“ColorToolbox.h”

#define kMaxObjects6 /*num. objects*/
#define kMinutes 4 /*minutes per deqree*/
#define kProjDistance450  /*distance to proj. plane*/
#define kWidth   500 /*width of window*/
#define kHeight  280 /*height of window*/
#define kMoveUpKey 0x100000 /*’q’ key = move up*/
#define kMoveDnKey 0x200000 /*’w’ key = move down*/
#define kOriginH (kWidth/2) /*center of window */
#define kOriginV (kHeight/2)/*ditto*/
#define kMapRowBytes (((kWidth+15)/16)*2)

/* Define macros so MoveTo() & LineTo() accept Points.*/
#define QuickMoveTo(pt) asm{move.l pt, gOffPort.pnLoc}
#define QuickLineTo(pt) asm{move.l pt, -(sp)}asm {_LineTo}

enum  ObjectType {cube, pyramid};
typedef struct {shortx, y, z;
} Point3D;/*struct for a 3 dimensional point.*/

typedef struct {
 Point3Dpt3D;
 short  angle, sine, cosine;
} ViewerInfo;  /*struct for viewer’s position.*/

typedef struct { 
 enum   ObjectType objType;
 Point3Dpt3D;
 short  angle, halfWidth, height;
 Booleanrotates, moves;
} ObjectInfo;    /*struct for an object.*/

ViewerInfogViewer;
Point3D gDelta;
Point   gMouse, gVertex[8];
WindowPtr gWindow;
BitMap  gBitMap;
GrafPortgOffPort;
Rect    gVisRect, gWindowRect;
ObjectInfogObject[kMaxObjects];
short   gVelocity, gSineTable[(90*kMinutes)+1];
KeyMap  gKeys;

/****************************************************/
/* 
/* Assign parameters to a new object (a cube or pyramid).
/* 
/****************************************************/
static void NewObject(short index, enum ObjectType theType, short width, 
short height,
 Boolean rotates, Boolean moves, short positionX, short positionY, short 
positionZ)
{
 register ObjectInfo *obj;
 
 obj = &gObject[index];
 obj->angle = 0;
 obj->objType = theType;
 obj->halfWidth = width/2;
 obj->height = height;
 obj->rotates = rotates;
 obj->moves = moves;
 obj->pt3D.x = positionX;
 obj->pt3D.y = positionY;
 obj->pt3D.z = positionZ;
}

/****************************************************/
/* 
/* Initialize all our globals, build the trig table, set up an
/* offscreen buffer, create a new window, and initialize all
/* the objects to be drawn.
/****************************************************/
static void Initialize(void)
{
 extended angle;
 short  i;

 InitGraf(&thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(0L);
 InitCursor();
 FlushEvents(everyEvent, 0);
 SetCursor(*GetCursor(crossCursor));

 if ((*(*GetMainDevice())->gdPMap)->pixelSize > 1)
 ExitToShell();  /*should tell user to switch to B&W.*/

 /*create a table w/ the values of sine from 0-90.*/
 for (i=0, angle=0.0; i<=90*kMinutes; i++, angle+=0.017453292/kMinutes)
 
 gSineTable[i] = sin(angle)*1000;

   /* give the viewer an initial direction and position */
 gViewer.angle = gViewer.sine = gViewer.pt3D.x = gViewer.pt3D.y = 0;
 
 gViewer.cosine = 999;
 gViewer.pt3D.z = 130;

 /*create some objects (0 to kMaxObjects-1).*/
 NewObject(0, cube, 120, 120, false, false, -150, 600, 0);     
 NewObject(1, cube, 300, 300, true, false, -40, 1100, 60);
 NewObject(2, cube, 40, 10, true, true, 0, 500, 0);
 NewObject(3, pyramid, 160, 160, false, false, 200, 700, 0);
 NewObject(4, pyramid, 80, -80, true, false, 200, 700, 240);
 NewObject(5, pyramid, 60, 60, false, false, -40, 1100, 0);

 SetRect(&gBitMap.bounds, 0, 0, kWidth, kHeight);
 SetRect(&gWindowRect, 6, 45, kWidth+6, kHeight+45);
 SetRect(&gVisRect, -150, -150, 650, 450);
 gWindow = NewWindow(0L, &gWindowRect, “\pTutor3D™”, true, 0, (Ptr)-1, 
false, 0);

 /*make an offscreen bitmap and port */
 gBitMap.rowBytes = kMapRowBytes;
 gBitMap.baseAddr = NewPtr(kHeight*kMapRowBytes);
 OpenPort(&gOffPort);
 SetPort(&gOffPort);
 SetPortBits(&gBitMap);
 PenPat(white);
}

/****************************************************/
/* Return the sine and cosine values for an angle.
/****************************************************/
static void GetTrigValues(register short *angle, register short *sine, 
register short *cosine)
{
 if (*angle >= 360*kMinutes)
 *angle -= 360*kMinutes;
 else if (*angle < 0)
 *angle += 360*kMinutes;

 if (*angle <= 90*kMinutes)
 { *sine = gSineTable[*angle];
 *cosine = gSineTable[90*kMinutes - *angle];
 }
 else if (*angle <= 180*kMinutes)
 { *sine = gSineTable[180*kMinutes - *angle];
 *cosine = -gSineTable[*angle - 90*kMinutes];
 }
 else if (*angle <= 270*kMinutes)
 { *sine = -gSineTable[*angle - 180*kMinutes];
 *cosine = -gSineTable[270*kMinutes - *angle];
 }
 else
 { *sine = -gSineTable[360*kMinutes - *angle];
 *cosine = gSineTable[*angle - 270*kMinutes];
}}

/****************************************************/
/* Increment an objects angle and find the sine and cosine
/* values. If the object moves, assign a new x,y position for
/* it as well. Finally, rotate the object’s base around the z
/* axis and translate it to correct position based on delta.
/* 
/* register Point*vertex; short i;
/* 
/* for (i = 0; i < 4; i++)
/* {  vertex = &gVertex[i]; savedH = vertex->h;          
/* vertex->h=((long)savedH*cosine/1000 -
/* (long)vertex->v*sine/1000)+gDelta.x;
/* vertex->v=((long)savedH*sine/1000 +
/* (long)vertex->v*cosine/1000)+gDelta.y;
/* }
/****************************************************/
static void RotateObject(register ObjectInfo       *object)
{
 Point  tempPt;
 short  sine, cosine;

 object->angle += (object->objType == pyramid) ? -8*kMinutes : 2*kMinutes;
 GetTrigValues(&object->angle, &sine, &cosine);
 if (object->moves)
 { object->pt3D.x += sine*20/1000; /*[EQ.1]*/
 object->pt3D.y += cosine*-20/1000;/*[EQ.2]*/
 }

 asm  { moveq    #3, d2   ; loop counter
 lea    gVertex, a0; our array of points
 loop:  move.l   (a0), tempPt ;  ie., tempPt = gVertex[i];
 move.w cosine, d0
 muls   tempPt.h, d0 ;  tempPt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w sine, d1
 muls   tempPt.v, d1 ;  tempPt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract the two
 add.w  gDelta.x, d0 ;  now translate x
 move.w d0, OFFSET(Point, h)(a0);  save new h

 move.w sine, d0
 muls   tempPt.h, d0 ;  tempPt.h * sine
 divs   #1000, d0; divide by 1000
 move.w cosine, d1
 muls   tempPt.v, d1 ;  tempPt.v * cosine
 divs   #1000, d1; divide by 1000
 add.w  d1, d0   ; add em up
 add.w  gDelta.y, d0 ;  now translate y
 move.w d0, OFFSET(Point, v)(a0);  save new v
 addq.l #4, a0   ; next vertex address
 dbra   d2, @loop; loop
 }
}

/****************************************************/
/* Rotate a point around z axis and find it’s location in 2d
/* space using 2pt perspective.
/*
/* saved = pt->h;/*saved is defined as a short.*/
/* pt->h = (long)saved*gViewer.cosine/1000 -
/* (long)pt->v*gViewer.sine/1000;  /*[EQ.6]*/
/* pt->v = (long)saved*gViewer.sine/1000 +
/* (long)pt->v*gViewer.cosine/1000;/*[EQ.7]*/
/* /*[EQ.8 & 9]*/
/* if ((saved = pt->v) <= 0)saved = 1;/*never <= 0*/
/* pt->h = (long)pt->h*kProjDistance/saved+kOriginH;
/* pt->v = (long)gDelta.z*kProjDistance/saved+kOriginV;
/****************************************************/
static void Point2Screen(register Point *pt)
{asm  { 
 move.w gViewer.cosine, d0; [EQ.6]
 muls   OFFSET(Point, h)(pt), d0;  pt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w gViewer.sine, d1
 muls   OFFSET(Point, v)(pt), d1;  pt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract, yields horizontal
 move.w gViewer.sine, d1  ; [EQ.7]
 muls   OFFSET(Point, h)(pt), d1;  pt.h * sine
 divs   #1000, d1; divide by 1000
 move.w gViewer.cosine, d2
 muls   OFFSET(Point, v)(pt), d2;  pt.v * cosine
 divs   #1000, d2; divide by 1000
 add.w  d2, d1   ; add, yields vertical
 bgt    @project ; if (vertical<=0) 
 moveq  #1, d1   ; then vertical=1

project:muls#kProjDistance, d0;  [EQ.8]. horiz*kProjDist
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginH, d0;  add origin.h
 move.w d0, OFFSET(Point, h)(pt);  save the new hor
 move.w #kProjDistance, d0; [EQ.9]
 muls   gDelta.z, d0 ;  height * kProjDistance
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginV, d0;  add origin.v
 move.w d0, OFFSET(Point, v)(pt);  save the new vert
 }
}

/****************************************************/
/* For all of our cubes and pyramids, index thru each -
/* calculate sizes, translate, rotate, check for visibility,
/* and finally draw them.
/****************************************************/
static void DrawObjects(void)
{
 register ObjectInfo *obj;
 short  i;

 for (i = 0; i < kMaxObjects; i++)
 { obj = &gObject[i];
 gDelta.x = obj->pt3D.x - gViewer.pt3D.x; /*[EQ.3]*/
 gDelta.y = obj->pt3D.y - gViewer.pt3D.y; /*[EQ.4]*/
 gDelta.z = gViewer.pt3D.z - obj->pt3D.z ; /*[EQ.5]*/

 if (obj->rotates) /*does this one rotate?*/
 { gVertex[0].h=gVertex[0].v=gVertex[1].v=gVertex[3].h = -obj->halfWidth;
 gVertex[1].h=gVertex[2].h=gVertex[2].v=gVertex[3].v = obj->halfWidth;
 RotateObject(obj);
 }
 else   /*translate*/
 { gVertex[0].h = gVertex[3].h = -obj->halfWidth + gDelta.x;
 gVertex[0].v = gVertex[1].v = -obj->halfWidth + gDelta.y;
 gVertex[1].h = gVertex[2].h = obj->halfWidth + gDelta.x;
 gVertex[2].v = gVertex[3].v = obj->halfWidth + gDelta.y;
 }

 if (obj->objType == pyramid) /* a pyramid?*/
 { gVertex[4].h = gDelta.x; /*assign apex*/
 gVertex[4].v = gDelta.y;
 }
 else
 { gVertex[4] = gVertex[0]; /*top of cube.*/
 gVertex[5] = gVertex[1];
 gVertex[6] = gVertex[2];
 gVertex[7] = gVertex[3];
 }

 Point2Screen(&gVertex[0]); /*rotate & plot base*/
 Point2Screen(&gVertex[1]);
 Point2Screen(&gVertex[2]);
 Point2Screen(&gVertex[3]);
 gDelta.z -= obj->height;
 Point2Screen(&gVertex[4]);

 if (! PtInRect(gVertex[4], &gVisRect)) /* visible?*/
 continue;

 QuickMoveTo(gVertex[0]);
 QuickLineTo(gVertex[1]);
 QuickLineTo(gVertex[2]);
 QuickLineTo(gVertex[3]);
 QuickLineTo(gVertex[0]);
 QuickLineTo(gVertex[4]);

 if (obj->objType == pyramid)
 { QuickLineTo(gVertex[1]); /*Finish pyramid.*/
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[4]);
 QuickLineTo(gVertex[3]);
 } else {
 Point2Screen(&gVertex[5]); /*Finish cube.*/
 Point2Screen(&gVertex[6]);
 Point2Screen(&gVertex[7]);
 QuickLineTo(gVertex[5]);
 QuickLineTo(gVertex[6]);
 QuickLineTo(gVertex[7]);
 QuickLineTo(gVertex[4]);
 QuickMoveTo(gVertex[1]);
 QuickLineTo(gVertex[5]);
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[6]);
 QuickMoveTo(gVertex[3]);
 QuickLineTo(gVertex[7]);
}} }

/****************************************************/
/* Check mouse position (velocity is vertical movement,
/* rotation is horiz.), calculate the sine and cosine values of
/* the angle, and update the viewer’s position. Finally, check
/* the keyboard to see if we should move up or down.
/****************************************************/
static void GetViewerPosition(void)
{
 GetMouse(&gMouse);
 if (! PtInRect(gMouse, &gWindowRect))
 return;
 gVelocity = -(gMouse.v-(kOriginV+45))/5;
 gViewer.angle += (gMouse.h-(kOriginH+6))/14;
 GetTrigValues(&gViewer.angle, &gViewer.sine, &gViewer.cosine);

 gViewer.pt3D.x += gViewer.sine*gVelocity/1000; /*[EQ.1]*/
 gViewer.pt3D.y += gViewer.cosine*gVelocity/1000; /*[EQ.2]*/

 GetKeys(&gKeys);
 if (gKeys.Key[0] == kMoveUpKey)
 gViewer.pt3D.z += 5;
 if (gKeys.Key[0] == kMoveDnKey)
 gViewer.pt3D.z -= 5;
}

/****************************************************/
/* Draw a simple crosshair at the center of the window.
/****************************************************/
static void DrawCrossHair(void)
{
 QuickMoveTo(#0x008200fa);/*ie., MoveTo(250, 130)*/
 QuickLineTo(#0x009600fa);/*ie., LineTo(250, 150)*/
 QuickMoveTo(#0x008c00f0);/*ie., MoveTo(240, 140)*/
 QuickLineTo(#0x008c0104);/*ie., LineTo(260, 140)*/
}

/****************************************************/
/* Main event loop - initialize & cycle until the mouse
/* button is pressed.
/****************************************************/
void main(void)
{
 Initialize();
 while (! Button())
 { FillRect(&gBitMap.bounds, black);
 GetViewerPosition();
 DrawObjects();  /*main pipeline*/
 DrawCrossHair();
 CopyBits(&gBitMap, &gWindow->portBits, &gBitMap.bounds, &gBitMap.bounds, 
0, 0L);
 }
 FlushEvents(mDownMask+keyDownMask, 0);
}







  
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

LaunchBar 6.18.5 - Powerful file/URL/ema...
LaunchBar is an award-winning productivity utility that offers an amazingly intuitive and efficient way to search and access any kind of information stored on your computer or on the Web. It provides... Read more
Affinity Designer 2.3.0 - Vector graphic...
Affinity Designer is an incredibly accurate vector illustrator that feels fast and at home in the hands of creative professionals. It intuitively combines rock solid and crisp vector art with... Read more
Affinity Photo 2.3.0 - Digital editing f...
Affinity Photo - redefines the boundaries for professional photo editing software for the Mac. With a meticulous focus on workflow it offers sophisticated tools for enhancing, editing and retouching... Read more
WhatsApp 23.24.78 - Desktop client for W...
WhatsApp is the desktop client for WhatsApp Messenger, a cross-platform mobile messaging app which allows you to exchange messages without having to pay for SMS. WhatsApp Messenger is available for... Read more
Adobe Photoshop 25.2 - Professional imag...
You can download Adobe Photoshop as a part of Creative Cloud for only $54.99/month Adobe Photoshop is a recognized classic of photo-enhancing software. It offers a broad spectrum of tools that can... Read more
PDFKey Pro 4.5.1 - Edit and print passwo...
PDFKey Pro can unlock PDF documents protected for printing and copying when you've forgotten your password. It can now also protect your PDF files with a password to prevent unauthorized access and/... Read more
Skype 8.109.0.209 - Voice-over-internet...
Skype is a telecommunications app that provides HD video calls, instant messaging, calling to any phone number or landline, and Skype for Business for productive cooperation on the projects. This... Read more
OnyX 4.5.3 - Maintenance and optimizatio...
OnyX is a multifunction utility that you can use to verify the startup disk and the structure of its system files, to run miscellaneous maintenance and cleaning tasks, to configure parameters in the... Read more
CrossOver 23.7.0 - Run Windows apps on y...
CrossOver can get your Windows productivity applications and PC games up and running on your Mac quickly and easily. CrossOver runs the Windows software that you need on Mac at home, in the office,... Read more
Tower 10.2.1 - Version control with Git...
Tower is a Git client for OS X that makes using Git easy and more efficient. Users benefit from its elegant and comprehensive interface and a feature set that lets them enjoy the full power of Git.... Read more

Latest Forum Discussions

See All

Pour One Out for Black Friday – The Touc...
After taking Thanksgiving week off we’re back with another action-packed episode of The TouchArcade Show! Well, maybe not quite action-packed, but certainly discussion-packed! The topics might sound familiar to you: The new Steam Deck OLED, the... | Read more »
TouchArcade Game of the Week: ‘Hitman: B...
Nowadays, with where I’m at in my life with a family and plenty of responsibilities outside of gaming, I kind of appreciate the smaller-scale mobile games a bit more since more of my “serious" gaming is now done on a Steam Deck or Nintendo Switch.... | Read more »
SwitchArcade Round-Up: ‘Batman: Arkham T...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 1st, 2023. We’ve got a lot of big games hitting today, new DLC For Samba de Amigo, and this is probably going to be the last day this year with so many heavy hitters. I... | Read more »
Steam Deck Weekly: Tales of Arise Beyond...
Last week, there was a ton of Steam Deck coverage over here focused on the Steam Deck OLED. | Read more »
World of Tanks Blitz adds celebrity amba...
Wargaming is celebrating the season within World of Tanks Blitz with a new celebrity ambassador joining this year's Holiday Ops. In particular, British footballer and movie star Vinnie Jones will be brightening up the game with plenty of themed in-... | Read more »
KartRider Drift secures collaboration wi...
Nexon and Nitro Studios have kicked off the fifth Season of their platform racer, KartRider Dift, in quite a big way. As well as a bevvy of new tracks to take your skills to, and the new racing pass with its rewards, KartRider has also teamed up... | Read more »
‘SaGa Emerald Beyond’ From Square Enix G...
One of my most-anticipated releases of 2024 is Square Enix’s brand-new SaGa game which was announced during a Nintendo Direct. SaGa Emerald Beyond will launch next year for iOS, Android, Switch, Steam, PS5, and PS4 featuring 17 worlds that can be... | Read more »
Apple Arcade Weekly Round-Up: Updates fo...
This week, there is no new release for Apple Arcade, but many notable games have gotten updates ahead of next week’s holiday set of games. If you haven’t followed it, we are getting a brand-new 3D Sonic game exclusive to Apple Arcade on December... | Read more »
New ‘Honkai Star Rail’ Version 1.5 Phase...
The major Honkai Star Rail’s 1.5 update “The Crepuscule Zone" recently released on all platforms bringing in the Fyxestroll Garden new location in the Xianzhou Luofu which features many paranormal cases, players forming a ghost-hunting squad,... | Read more »
SwitchArcade Round-Up: ‘Arcadian Atlas’,...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for November 30th, 2023. It’s Thursday, and unlike last Thursday this is a regular-sized big-pants release day. If you like video games, and I have to believe you do, you’ll want to... | Read more »

Price Scanner via MacPrices.net

Deal Alert! Apple Smart Folio Keyboard for iP...
Apple iPad Smart Keyboard Folio prices are on Holiday sale for only $79 at Amazon, or 50% off MSRP: – iPad Smart Folio Keyboard for iPad (7th-9th gen)/iPad Air (3rd gen): $79 $79 (50%) off MSRP This... Read more
Apple Watch Series 9 models are now on Holida...
Walmart has Apple Watch Series 9 models now on Holiday sale for $70 off MSRP on their online store. Sale prices available for online orders only, in-store prices may vary. Order online, and choose... Read more
Holiday sale this weekend at Xfinity Mobile:...
Switch to Xfinity Mobile (Mobile Virtual Network Operator..using Verizon’s network) and save $500 instantly on any iPhone 15, 14, or 13 and up to $800 off with eligible trade-in. The total is applied... Read more
13-inch M2 MacBook Airs with 512GB of storage...
Best Buy has the 13″ M2 MacBook Air with 512GB of storage on Holiday sale this weekend for $220 off MSRP on their online store. Sale price is $1179. Price valid for online orders only, in-store price... Read more
B&H Photo has Apple’s 14-inch M3/M3 Pro/M...
B&H Photo has new Gray and Black 14″ M3, M3 Pro, and M3 Max MacBook Pros on Holiday sale this weekend for $100-$200 off MSRP, starting at only $1499. B&H offers free 1-2 day delivery to most... Read more
15-inch M2 MacBook Airs are $200 off MSRP on...
Best Buy has Apple 15″ MacBook Airs with M2 CPUs in stock and on Holiday sale for $200 off MSRP on their online store. Their prices are among the lowest currently available for new 15″ M2 MacBook... Read more
Get a 9th-generation Apple iPad for only $249...
Walmart has Apple’s 9th generation 10.2″ iPads on sale for $80 off MSRP on their online store as part of their Cyber Week Holiday sale, only $249. Their prices are the lowest new prices available for... Read more
Space Gray Apple AirPods Max headphones are o...
Amazon has Apple AirPods Max headphones in stock and on Holiday sale for $100 off MSRP. The sale price is valid for Space Gray at the time of this post. Shipping is free: – AirPods Max (Space Gray... Read more
Apple AirTags 4-Pack back on Holiday sale for...
Amazon has Apple AirTags 4 Pack back on Holiday sale for $79.99 including free shipping. That’s 19% ($20) off Apple’s MSRP. Their price is the lowest available for 4 Pack AirTags from any of the... Read more
New Holiday promo at Verizon: Buy one set of...
Looking for more than one set of Apple AirPods this Holiday shopping season? Verizon has a great deal for you. From today through December 31st, buy one set of AirPods on Verizon’s online store, and... Read more

Jobs Board

Senior Software Engineer - *Apple* Fundamen...
…center of Microsoft's efforts to empower our users to do more. The Apple Fundamentals team focused on defining and improving the end-to-end developer experience in Read more
Omnichannel Associate - *Apple* Blossom Mal...
Omnichannel Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Housekeeper, *Apple* Valley Villa - Cassia...
Apple Valley Villa, part of a senior living community, is hiring entry-level Full-Time Housekeepers to join our team! We will train you for this position and offer a Read more
Senior Manager, Product Management - *Apple*...
…Responsibilities** We are seeking an ambitious, data-driven thinker to assist the Apple Product Development team as our Wireless Product division continues to grow Read more
Mobile Platform Engineer ( *Apple* /AirWatch)...
…systems, installing and maintaining certificates, navigating multiple network segments and Apple /IOS devices, Mobile Device Management systems such as AirWatch, and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.