TweetFollow Us on Twitter

Real-Time 3D
Volume Number:8
Issue Number:1
Column Tag:C Workshop

Real-Time 3D Animation

Using simple vector calculations to draw objects that move and spin in a 3-D environment

By Lincoln Lydick, Littleton, Colorado

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

Ever felt that real-time 3d animation was meant only for the “computer gods” to create? That mere mortal programmers are destined only to marvel at the feats of greatness? That finding example code on how to accomplish some of these tricks is impossible? Well it turns out not to be difficult at all. This example uses simple vector calculations to draw 6 objects which move and spin in a 3 dimensional environment. The viewer is also free to move, look at, and even follow any of the objects. To optimize the calculations, we’ll do all of this without SANE. This may sound difficult, but stick with me - it’s very simple

The Plan

In order to draw cubes and pyramids (henceforth called objects), we’ll use a single pipeline that translates, rotates and projects each in perspective. But first we need to develop a plan. Our plan will be a Cartesian coordinate system where all objects (including the viewer) will occupy an x, y, & z position. The objects themselves will be further defined by vertices and each vertex is also defined by an x, y, & z coordinate. For instance, cubes will be defined by eight vertices and pyramids by five - with lines drawn between.

Figure 1: Vertex assignment

Changing any value of a vertex represents movement within space. Therefore we can move the viewer or an object by simply changing an x, y, or z. If either the viewer or an object is required to move in the direction of some angle, then we provide a variable called velocity and apply these simple vector equations:

[EQ.1]  Xnew = Xold + sin(angle) * velocity
[EQ.2]  Ynew = Yold + cos(angle) * velocity

Translation

Objects will first be translated (moved) relative to the viewer’s position. This is required because rotation calculations (coming up next) require points to be rotated around a principal axis. Therefore, since the viewer may not be at the origin (Figure 2), we must move the object the same amount we would need to move the viewer to be at the origin (Figure 3). Note: I adopt the convention where the x and y axis are parallel to the plane, and the z axis depicts altitude.

So to perform this “relative” translation, we just subtract the components of the two points:

[EQ.3]  Xnew = Xold - ViewerX
[EQ.4]  Ynew = Yold - ViewerY
[EQ.5]  Znew = ViewerZ - Zold

Now this is all well and good, but what if the viewer is looking at the object? Wouldn’t the object then be directly in front of the viewer - and subsequently drawn at the center of the window? Yes, and this leads us to

Figure 2: Before & Figure 3: After Translation

Rotation

Since we’re providing the viewer with the ability to “look around”, we need to rotate each object by the viewer’s angle. This rotation will occur around the Z axis and is accomplished by applying these calculations to each vertex:

[EQ.6]  Xnew = Xold * cos(angle) - Yold * sin(angle)
[EQ.7]  Ynew = Xold * sin(angle) + Yold * cos(angle)

Figure 4: Before & Figure 5: After Rotation

Figure 4 shows the viewer looking at the object by some angle. Rotating the object by that angle indeed moves it centered on the y axis (Figure 5) and will be drawn centered in the window. Of course if the viewer and the object are at different heights, (it could be above or below us), we might not see it at all - but we’ll deal with that later.

Now if an object is allowed to rotate itself (i.e., spin), then we use the same calculations, although the angle will be unique to the object and not the viewers. Note, this rotation must occur with the object at the origin, and before it is translated relative to the viewer or rotated by the viewer’s angle. Therefore, we’ll first build the object around the origin, spin it, move it to its correct location, then translate and rotate as shown earlier. This may sound costly (and it is a little) but we’ll compute the net movement once and add it in one quick swoop.

Perspective Drawing

After translation and rotation, the final step is to plot each vertex on the window and connect them with lines. This requires describing a 3d scene on a 2d medium (the screen) and is accomplished by perspective projection. Therefore to plot a 3d point, we’ll use the following calculations:

[EQ.8]  H = X * kProjDistance / Y + origin.h
[EQ.9]  V = Z * kProjDistance / Y + origin.v

where origin.h and origin.v are the center of the window. Note: y must not be negative or zero - if it is, let it equal 1 before using the formula. kProjDistance is a constant that describes the distance of the conceptual projection plane from the viewer (see below).

Figure 6: Object being projected onto a projection plane.

This plane is the “window” to which all points get plotted. Points outside this plane are not visible. Experiment with this constant and you’ll notice smaller values (like 100) create a “fish-eye” lens effect. This is due, in part, to the ability of the projection plane to display more than we would normally see. A value between 400 to 500 approximates a 60 degree cone of vision.

Optimizations

1. All of our calculations are ultimately manipulated into integer values (in order to draw to a window) so calculations involving extended variables (decimal accuracy) are not required. However, we do need to find the sine and cosine of angles, which are fractional values, and requires the use of SANE. But SANE is notoriously slow and further requires all angles to be specified by radians - yuk! Our solution to this dilemma is simple, and very accurate: a Sine Table.

What we’ll do is calculate 91 values of sine (angles 0 to 90) once at initialization, multiply each by 1000, and save them in an indexed array of integers (multiplying by 1000 converts them into rounded integer values which are quite suitable). Finally, when we need to multiply by sine or cosine, we just remember to divide the answer back by 1000. If we desire finer rotations, we can break the angles down into minutes (which is provided by the constant kMinutes) having no effect on execution speed. Note: the cosine of an angle is found from the inverse index of the sine index (see procedure GetTrigValues()).

2. Due to object symmetry (and the fact we only rotate on one axis), redundant calculations can be avoided for the top plane of cubes. By calculating only the vertices of the base, we’ll be able to assign them to the top directly (except for the z component) - see the code.

3. Matrices might be employed but the concept of matrix multiplication tends to confuse an otherwise simple explanation, and is well covered in previous MacTutor articles (see references).

4. Finally, avoiding all traps entirely (esp. _LineTo, _CopyBits and _FillRect) and writing the bottleneck routines in assembly. This was done in the assembly version (except for _LineTo).

The Code

The interface code and error checking are minimal - in the interest of clarity. The only surprise might be the offscreen bit map: since double buffering (_CopyBits) is explored in many other articles, I decided to add the bit map.

After initialization, we check the mouse position to see if the viewer has moved. This is done by conceptually dividing the window into a grid and subtracting a couple of points. Once the velocity and angle of the viewer are determined, the sine and cosine values are also calculated. We also check the keyboard to see if either the “q” key or “w” key might be pressed (“q” = move up, “w” = move down). Armed with these values, we start translating and rotating all the points. If an object can spin, it is first built around the origin and rotated. Once all the rotations are complete and the vertices are found, we decide if the object is visible; if it’s not, we skip it and go on to the next. Otherwise, we connect the dots with lines. This continues until all the points and lines are drawn - then we transfer the bit image to the window and start the process all over (or until the mouse button is pressed - then we quit).

Of course more objects can be easily added (or even joined to create a single complex object) but at the expense of the frame rate. Frame rate refers to how many times the screen can be erased and redrawn per second (fps) and is always a major obstacle for real time simulations (usually sacrificing detail for faster animation). This example runs at 30 fps when written in assembly on a Macintosh II. This was clocked when looking at all the objects - and over 108 fps when looking away. This discrepancy is due to the line drawing, since all of the other calculations take place regardless of whether we see the objects or not. Therefore, speeds averaging 60+ fps (instead of 30) might be obtained if we wrote our own line drawing routines as well! Of course this C version runs somewhat slower but for the purpose of this article is much easier to understand.

One final thing worth mentioning - our lines are not mathematically clipped to the window (where the endpoint is recalculated to the intersection of the line and window). This will present a problem if we calculate an end greater than 32767 or less than -32767 (the maximum allowed by QuickDraw). Our solution is to not draw the object if it is too close.

The Future

If interest is shown, perhaps we’ll discuss a technique for real-time hidden line removal. There are a couple of methods that could be incorporated into this example. We might also look at adding rotations around the other two axis and linking them to the same control. This could be the first step to developing a flight simulator. Who knows, terrain mapping using octree intersections, other aircraft and airports, sound... the skies the limit (pun intended). Have fun.

References

Foley, vanDam, Feiner, Hughes. Computer Graphics, (2nd ed.) Addison-Wesley Publishing Company. Good (but very general) explanation of geometrical transformations, rotations and perspective generation using matrix algebra. Also includes line clipping, hidden line removal, solid modeling, etc

Burger & Gillies. Interactive Computer Graphics. Addison-Wesley Publishing Company. Very similar to above and less expensive.

Martin, Jeffrey J. “Line Art Rotation.” MacTutor Vol.6 No.5. Explains some of the concepts presented here, plus rotations around 2 axis, matrix multiplication, and illustrates why we avoid SANE in the event loop.

Listing

/*---------------------------
#
#Program: Tutor3D™
#
#Copyright © 1991 Lincoln Lydick
#All Rights Reserved.
#
#
Include these libraries (for THINK C):
 MacTraps
 SANE

Note:   
 The procedures “RotateObject()” and “Point2Screen()”
 significantly slow this program because THINK C creates a
 JSR to some extra glue code in order to multiply and divide
 long words. Therefore both procs are written in assembly,
 however the C equivalent is provided in comments above.
 Simply replace the asm {} statement with the C code if you
 prefer.

---------------------------*/

#include  “SANE.h”
#include“ColorToolbox.h”

#define kMaxObjects6 /*num. objects*/
#define kMinutes 4 /*minutes per deqree*/
#define kProjDistance450  /*distance to proj. plane*/
#define kWidth   500 /*width of window*/
#define kHeight  280 /*height of window*/
#define kMoveUpKey 0x100000 /*’q’ key = move up*/
#define kMoveDnKey 0x200000 /*’w’ key = move down*/
#define kOriginH (kWidth/2) /*center of window */
#define kOriginV (kHeight/2)/*ditto*/
#define kMapRowBytes (((kWidth+15)/16)*2)

/* Define macros so MoveTo() & LineTo() accept Points.*/
#define QuickMoveTo(pt) asm{move.l pt, gOffPort.pnLoc}
#define QuickLineTo(pt) asm{move.l pt, -(sp)}asm {_LineTo}

enum  ObjectType {cube, pyramid};
typedef struct {shortx, y, z;
} Point3D;/*struct for a 3 dimensional point.*/

typedef struct {
 Point3Dpt3D;
 short  angle, sine, cosine;
} ViewerInfo;  /*struct for viewer’s position.*/

typedef struct { 
 enum   ObjectType objType;
 Point3Dpt3D;
 short  angle, halfWidth, height;
 Booleanrotates, moves;
} ObjectInfo;    /*struct for an object.*/

ViewerInfogViewer;
Point3D gDelta;
Point   gMouse, gVertex[8];
WindowPtr gWindow;
BitMap  gBitMap;
GrafPortgOffPort;
Rect    gVisRect, gWindowRect;
ObjectInfogObject[kMaxObjects];
short   gVelocity, gSineTable[(90*kMinutes)+1];
KeyMap  gKeys;

/****************************************************/
/* 
/* Assign parameters to a new object (a cube or pyramid).
/* 
/****************************************************/
static void NewObject(short index, enum ObjectType theType, short width, 
short height,
 Boolean rotates, Boolean moves, short positionX, short positionY, short 
positionZ)
{
 register ObjectInfo *obj;
 
 obj = &gObject[index];
 obj->angle = 0;
 obj->objType = theType;
 obj->halfWidth = width/2;
 obj->height = height;
 obj->rotates = rotates;
 obj->moves = moves;
 obj->pt3D.x = positionX;
 obj->pt3D.y = positionY;
 obj->pt3D.z = positionZ;
}

/****************************************************/
/* 
/* Initialize all our globals, build the trig table, set up an
/* offscreen buffer, create a new window, and initialize all
/* the objects to be drawn.
/****************************************************/
static void Initialize(void)
{
 extended angle;
 short  i;

 InitGraf(&thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(0L);
 InitCursor();
 FlushEvents(everyEvent, 0);
 SetCursor(*GetCursor(crossCursor));

 if ((*(*GetMainDevice())->gdPMap)->pixelSize > 1)
 ExitToShell();  /*should tell user to switch to B&W.*/

 /*create a table w/ the values of sine from 0-90.*/
 for (i=0, angle=0.0; i<=90*kMinutes; i++, angle+=0.017453292/kMinutes)
 
 gSineTable[i] = sin(angle)*1000;

   /* give the viewer an initial direction and position */
 gViewer.angle = gViewer.sine = gViewer.pt3D.x = gViewer.pt3D.y = 0;
 
 gViewer.cosine = 999;
 gViewer.pt3D.z = 130;

 /*create some objects (0 to kMaxObjects-1).*/
 NewObject(0, cube, 120, 120, false, false, -150, 600, 0);     
 NewObject(1, cube, 300, 300, true, false, -40, 1100, 60);
 NewObject(2, cube, 40, 10, true, true, 0, 500, 0);
 NewObject(3, pyramid, 160, 160, false, false, 200, 700, 0);
 NewObject(4, pyramid, 80, -80, true, false, 200, 700, 240);
 NewObject(5, pyramid, 60, 60, false, false, -40, 1100, 0);

 SetRect(&gBitMap.bounds, 0, 0, kWidth, kHeight);
 SetRect(&gWindowRect, 6, 45, kWidth+6, kHeight+45);
 SetRect(&gVisRect, -150, -150, 650, 450);
 gWindow = NewWindow(0L, &gWindowRect, “\pTutor3D™”, true, 0, (Ptr)-1, 
false, 0);

 /*make an offscreen bitmap and port */
 gBitMap.rowBytes = kMapRowBytes;
 gBitMap.baseAddr = NewPtr(kHeight*kMapRowBytes);
 OpenPort(&gOffPort);
 SetPort(&gOffPort);
 SetPortBits(&gBitMap);
 PenPat(white);
}

/****************************************************/
/* Return the sine and cosine values for an angle.
/****************************************************/
static void GetTrigValues(register short *angle, register short *sine, 
register short *cosine)
{
 if (*angle >= 360*kMinutes)
 *angle -= 360*kMinutes;
 else if (*angle < 0)
 *angle += 360*kMinutes;

 if (*angle <= 90*kMinutes)
 { *sine = gSineTable[*angle];
 *cosine = gSineTable[90*kMinutes - *angle];
 }
 else if (*angle <= 180*kMinutes)
 { *sine = gSineTable[180*kMinutes - *angle];
 *cosine = -gSineTable[*angle - 90*kMinutes];
 }
 else if (*angle <= 270*kMinutes)
 { *sine = -gSineTable[*angle - 180*kMinutes];
 *cosine = -gSineTable[270*kMinutes - *angle];
 }
 else
 { *sine = -gSineTable[360*kMinutes - *angle];
 *cosine = gSineTable[*angle - 270*kMinutes];
}}

/****************************************************/
/* Increment an objects angle and find the sine and cosine
/* values. If the object moves, assign a new x,y position for
/* it as well. Finally, rotate the object’s base around the z
/* axis and translate it to correct position based on delta.
/* 
/* register Point*vertex; short i;
/* 
/* for (i = 0; i < 4; i++)
/* {  vertex = &gVertex[i]; savedH = vertex->h;          
/* vertex->h=((long)savedH*cosine/1000 -
/* (long)vertex->v*sine/1000)+gDelta.x;
/* vertex->v=((long)savedH*sine/1000 +
/* (long)vertex->v*cosine/1000)+gDelta.y;
/* }
/****************************************************/
static void RotateObject(register ObjectInfo       *object)
{
 Point  tempPt;
 short  sine, cosine;

 object->angle += (object->objType == pyramid) ? -8*kMinutes : 2*kMinutes;
 GetTrigValues(&object->angle, &sine, &cosine);
 if (object->moves)
 { object->pt3D.x += sine*20/1000; /*[EQ.1]*/
 object->pt3D.y += cosine*-20/1000;/*[EQ.2]*/
 }

 asm  { moveq    #3, d2   ; loop counter
 lea    gVertex, a0; our array of points
 loop:  move.l   (a0), tempPt ;  ie., tempPt = gVertex[i];
 move.w cosine, d0
 muls   tempPt.h, d0 ;  tempPt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w sine, d1
 muls   tempPt.v, d1 ;  tempPt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract the two
 add.w  gDelta.x, d0 ;  now translate x
 move.w d0, OFFSET(Point, h)(a0);  save new h

 move.w sine, d0
 muls   tempPt.h, d0 ;  tempPt.h * sine
 divs   #1000, d0; divide by 1000
 move.w cosine, d1
 muls   tempPt.v, d1 ;  tempPt.v * cosine
 divs   #1000, d1; divide by 1000
 add.w  d1, d0   ; add em up
 add.w  gDelta.y, d0 ;  now translate y
 move.w d0, OFFSET(Point, v)(a0);  save new v
 addq.l #4, a0   ; next vertex address
 dbra   d2, @loop; loop
 }
}

/****************************************************/
/* Rotate a point around z axis and find it’s location in 2d
/* space using 2pt perspective.
/*
/* saved = pt->h;/*saved is defined as a short.*/
/* pt->h = (long)saved*gViewer.cosine/1000 -
/* (long)pt->v*gViewer.sine/1000;  /*[EQ.6]*/
/* pt->v = (long)saved*gViewer.sine/1000 +
/* (long)pt->v*gViewer.cosine/1000;/*[EQ.7]*/
/* /*[EQ.8 & 9]*/
/* if ((saved = pt->v) <= 0)saved = 1;/*never <= 0*/
/* pt->h = (long)pt->h*kProjDistance/saved+kOriginH;
/* pt->v = (long)gDelta.z*kProjDistance/saved+kOriginV;
/****************************************************/
static void Point2Screen(register Point *pt)
{asm  { 
 move.w gViewer.cosine, d0; [EQ.6]
 muls   OFFSET(Point, h)(pt), d0;  pt.h * cosine
 divs   #1000, d0; divide by 1000
 move.w gViewer.sine, d1
 muls   OFFSET(Point, v)(pt), d1;  pt.v * sine
 divs   #1000, d1; divide by 1000
 sub.w  d1, d0   ; subtract, yields horizontal
 move.w gViewer.sine, d1  ; [EQ.7]
 muls   OFFSET(Point, h)(pt), d1;  pt.h * sine
 divs   #1000, d1; divide by 1000
 move.w gViewer.cosine, d2
 muls   OFFSET(Point, v)(pt), d2;  pt.v * cosine
 divs   #1000, d2; divide by 1000
 add.w  d2, d1   ; add, yields vertical
 bgt    @project ; if (vertical<=0) 
 moveq  #1, d1   ; then vertical=1

project:muls#kProjDistance, d0;  [EQ.8]. horiz*kProjDist
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginH, d0;  add origin.h
 move.w d0, OFFSET(Point, h)(pt);  save the new hor
 move.w #kProjDistance, d0; [EQ.9]
 muls   gDelta.z, d0 ;  height * kProjDistance
 divs   d1, d0   ; divide by the vertical
 addi.w #kOriginV, d0;  add origin.v
 move.w d0, OFFSET(Point, v)(pt);  save the new vert
 }
}

/****************************************************/
/* For all of our cubes and pyramids, index thru each -
/* calculate sizes, translate, rotate, check for visibility,
/* and finally draw them.
/****************************************************/
static void DrawObjects(void)
{
 register ObjectInfo *obj;
 short  i;

 for (i = 0; i < kMaxObjects; i++)
 { obj = &gObject[i];
 gDelta.x = obj->pt3D.x - gViewer.pt3D.x; /*[EQ.3]*/
 gDelta.y = obj->pt3D.y - gViewer.pt3D.y; /*[EQ.4]*/
 gDelta.z = gViewer.pt3D.z - obj->pt3D.z ; /*[EQ.5]*/

 if (obj->rotates) /*does this one rotate?*/
 { gVertex[0].h=gVertex[0].v=gVertex[1].v=gVertex[3].h = -obj->halfWidth;
 gVertex[1].h=gVertex[2].h=gVertex[2].v=gVertex[3].v = obj->halfWidth;
 RotateObject(obj);
 }
 else   /*translate*/
 { gVertex[0].h = gVertex[3].h = -obj->halfWidth + gDelta.x;
 gVertex[0].v = gVertex[1].v = -obj->halfWidth + gDelta.y;
 gVertex[1].h = gVertex[2].h = obj->halfWidth + gDelta.x;
 gVertex[2].v = gVertex[3].v = obj->halfWidth + gDelta.y;
 }

 if (obj->objType == pyramid) /* a pyramid?*/
 { gVertex[4].h = gDelta.x; /*assign apex*/
 gVertex[4].v = gDelta.y;
 }
 else
 { gVertex[4] = gVertex[0]; /*top of cube.*/
 gVertex[5] = gVertex[1];
 gVertex[6] = gVertex[2];
 gVertex[7] = gVertex[3];
 }

 Point2Screen(&gVertex[0]); /*rotate & plot base*/
 Point2Screen(&gVertex[1]);
 Point2Screen(&gVertex[2]);
 Point2Screen(&gVertex[3]);
 gDelta.z -= obj->height;
 Point2Screen(&gVertex[4]);

 if (! PtInRect(gVertex[4], &gVisRect)) /* visible?*/
 continue;

 QuickMoveTo(gVertex[0]);
 QuickLineTo(gVertex[1]);
 QuickLineTo(gVertex[2]);
 QuickLineTo(gVertex[3]);
 QuickLineTo(gVertex[0]);
 QuickLineTo(gVertex[4]);

 if (obj->objType == pyramid)
 { QuickLineTo(gVertex[1]); /*Finish pyramid.*/
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[4]);
 QuickLineTo(gVertex[3]);
 } else {
 Point2Screen(&gVertex[5]); /*Finish cube.*/
 Point2Screen(&gVertex[6]);
 Point2Screen(&gVertex[7]);
 QuickLineTo(gVertex[5]);
 QuickLineTo(gVertex[6]);
 QuickLineTo(gVertex[7]);
 QuickLineTo(gVertex[4]);
 QuickMoveTo(gVertex[1]);
 QuickLineTo(gVertex[5]);
 QuickMoveTo(gVertex[2]);
 QuickLineTo(gVertex[6]);
 QuickMoveTo(gVertex[3]);
 QuickLineTo(gVertex[7]);
}} }

/****************************************************/
/* Check mouse position (velocity is vertical movement,
/* rotation is horiz.), calculate the sine and cosine values of
/* the angle, and update the viewer’s position. Finally, check
/* the keyboard to see if we should move up or down.
/****************************************************/
static void GetViewerPosition(void)
{
 GetMouse(&gMouse);
 if (! PtInRect(gMouse, &gWindowRect))
 return;
 gVelocity = -(gMouse.v-(kOriginV+45))/5;
 gViewer.angle += (gMouse.h-(kOriginH+6))/14;
 GetTrigValues(&gViewer.angle, &gViewer.sine, &gViewer.cosine);

 gViewer.pt3D.x += gViewer.sine*gVelocity/1000; /*[EQ.1]*/
 gViewer.pt3D.y += gViewer.cosine*gVelocity/1000; /*[EQ.2]*/

 GetKeys(&gKeys);
 if (gKeys.Key[0] == kMoveUpKey)
 gViewer.pt3D.z += 5;
 if (gKeys.Key[0] == kMoveDnKey)
 gViewer.pt3D.z -= 5;
}

/****************************************************/
/* Draw a simple crosshair at the center of the window.
/****************************************************/
static void DrawCrossHair(void)
{
 QuickMoveTo(#0x008200fa);/*ie., MoveTo(250, 130)*/
 QuickLineTo(#0x009600fa);/*ie., LineTo(250, 150)*/
 QuickMoveTo(#0x008c00f0);/*ie., MoveTo(240, 140)*/
 QuickLineTo(#0x008c0104);/*ie., LineTo(260, 140)*/
}

/****************************************************/
/* Main event loop - initialize & cycle until the mouse
/* button is pressed.
/****************************************************/
void main(void)
{
 Initialize();
 while (! Button())
 { FillRect(&gBitMap.bounds, black);
 GetViewerPosition();
 DrawObjects();  /*main pipeline*/
 DrawCrossHair();
 CopyBits(&gBitMap, &gWindow->portBits, &gBitMap.bounds, &gBitMap.bounds, 
0, 0L);
 }
 FlushEvents(mDownMask+keyDownMask, 0);
}







  
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Macs Fan Control 1.5.14 - Monitor and co...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
VueScan 9.7.96 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
FileMaker Pro 19.6.1 - Quickly build cus...
FileMaker Pro is the tool you use to create a custom app. You also use FileMaker Pro to access your app on a computer. Start by importing data from a spreadsheet or using a built-in Starter app to... Read more
Duet 3.1.0.0 - Use your iPad as an exter...
Duet is the first app that allows you to use your iDevice as an extra display for your Mac using the Lightning or 30-pin cable. Note: This app requires a iOS companion app. Release notes were... Read more
Firefox 107.0.1 - Fast, safe Web browser...
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
War Thunder 2.21.1.91 - Multiplayer war...
In War Thunder, aircraft, attack helicopters, ground forces and naval ships collaborate in realistic competitive battles. You can choose from over 1,500 vehicles and an extensive variety of combat... Read more
Numbers 12.2.1 - Apple's spreadshee...
With Apple Numbers, sophisticated spreadsheets are just the start. The whole sheet is your canvas. Just add dramatic interactive charts, tables, and images that paint a revealing picture of your data... Read more
DEVONthink Pro 3.8.7 - Knowledge base, i...
DEVONthink is DEVONtechnologies' document and information management solution. It supports a large variety of file formats and stores them in a database enhanced by artificial intelligence (AI). Many... Read more
Drive Genius 6.2.3 - $79.00
Drive Genius features a comprehensive Malware Scan. Automate your malware protection. Protect your investment from any threat. The Malware Scan is part of the automated DrivePulse utility. DrivePulse... Read more
VLC Media Player 3.0.18 - Popular multim...
VLC Media Player is a highly portable multimedia player for various audio and video formats (MPEG-1, MPEG-2, MPEG-4, DivX, MP3, OGG, ...) as well as DVDs, VCDs, and various streaming protocols. It... Read more

Latest Forum Discussions

See All

‘Genshin Impact’ Version 3.3 Pre-Install...
Following the reveal of the release date and more for Genshin Impact (Free) version 3.3 ‘All Senses Clear, All Existence Void’, HoYoverse showcased the Genius Invokation TCG that arrives this week in the update. | Read more »
TouchArcade Game of the Week: ‘Sling Min...
The world of PC games has always blown my mind because there’s just SO MUCH stuff out there that it’s not uncommon at all for there to be a game that’s well-liked and well-reviewed, and seemingly quite popular with a solid fanbase, and have it be... | Read more »
SwitchArcade Round-Up: Reviews Featuring...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 2nd, 2022. So, today turned out a little quieter than the usual Friday. It was so quiet, in fact, that I decided to pen a few reviews. The Knight Witch, Railbound, and Donut... | Read more »
Blue Archive reveals its latest event st...
Nexon has announced the new update for Blue Archive, under the name of An Unconcealed Heart. Featuring a battle between two academies, the story will follow a group struggling to gain recognition, and will bring three new students to recruit. [... | Read more »
Dead Cells+ Is Out Now on Apple Arcade a...
Following the major update for Dead Cells on iOS and Android a few days ago, Playdigious has brought Dead Cells+ () to Apple Arcade. As an App Store Great, Dead Cells+ includes all prior paid DLC and content updates. It also has exclusive mobile... | Read more »
SwitchArcade Round-Up: ‘Romancing SaGa’,...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for December 1st, 2022. Wow, December. We’re already at the last month of the year? Phew. I have a lot of work to finish in the next few weeks. As for today, we’ve got a little news, a... | Read more »
‘Railbound’ Update Now Available Adding...
One of our favorite puzzlers released this year is Railbound from Afterburn Games, which hit in early September and earned our Game of the Week recognition for being an absolutely ace logic puzzler. The goal is to place rail pieces down in order to... | Read more »
The Seven Deadly Sins: Grand Cross celeb...
Netmarble Corporation has pulled out all the stops to celebrate the 3 and a half year anniversary of The Seven Deadly Sins: Grand Cross. The Grand Cross 3.5th Year Anniversary the Ultimate One, a rather wordy title, brings with it a brand new... | Read more »
‘Skullgirls Mobile’ Major Update 5.2 Out...
Developer Hidden Variable pushed out a major update for Skullgirls Mobile (Free) a few hours ago. The version 5.2 update brings in Black Dahlia (before the console and PC game), Retakes, XP Treats, free gifts, and more. Since launch, Skullgirls... | Read more »
Out Now: ‘Disgaea 4’, ‘Romancing SaGa: M...
Each and every day new mobile games are hitting the App Store, and so each week we put together a big old list of all the best new releases of the past seven days. Back in the day the App Store would showcase the same games for a week, and then... | Read more »

Price Scanner via MacPrices.net

Holiday Sale: Apple AirPods Pro for only $199...
Amazon has new 2022 AirPods Pro in stock and on sale for $199.99 shipped as part of their Holiday sale. Their price is $50 off Apple’s MSRP, equaling their Black Friday price, and it’s the lowest... Read more
New Holiday Sale: Apple retailers are offerin...
Several Apple retailers lowered prices on 10.9″ iPad Airs overnight to lows of $100 off MSRP starting at $499. Their prices are the lowest available for iPad Airs anywhere this Holiday season right... Read more
New Holiday sale at Amazon: Take $50 off Appl...
Amazon has Apple’s new 10th-generation iPads in stock and on sale, for the first time, for $50 off MSRP starting at only $399. Their discount applies to all models and all colors. With the discount,... Read more
Holiday Sale: Get an 8.3″ Apple iPad mini for...
Sams Club has 10.9″ 64GB iPad minis on Holiday sale for $80-$100 off MSRP through December 7, 2022. With their discount, prices start at $399 — the cheapest price for a new iPad mini from any of the... Read more
Sams Club Holiday December Event sale: Apple...
Apple AirPods Max headphones are on sale at Sams Club for $110 off MSRP ($439) as part of their December Event sale, ending on December 7, 2022, valid for all colors. Sale price for online orders... Read more
Apple’s 10.2″ 64GB 9th-generation iPads are o...
Sams Club has 9th-generation 64GB iPads on Holiday sale for $60 off MSRP through December 7, 2022. With their discount, prices start at $259 — the cheapest price for a new iPad from any of the Apple... Read more
11″ 128GB WiFi M2 iPad Pro on sale for $749,...
B&H Photo has the new 11″ 128GB WiFi M2-powered iPad Pro (in Space Gray or Silver) on Holiday sale for $749 including free 1-2 day shipping to most US addresses. Their price is $50 off MSRP and... Read more
Find the best Holiday sale price on an iPad u...
We’ve updated our iPad Price Trackers with the latest information on the new 10th-generation iPads, M2-powered iPad Pros, M1 iPad Airs, iPad minis, and 9th generation iPads from Apple’s authorized... Read more
Apple retailers are offering $100-$150 Holida...
Apple retailers have posted their most-recent Holiday sale prices on 13″ MacBook Airs. Take up to $150 off MSRP on M2-powered Airs with these sales with prices starting at only $1099. Free shipping... Read more
Holiday Sale: Apple’s 14″ MacBook Pros with M...
B&H Photo is offering $200-$300 discounts on Apple’s 14″ MacBook Pros with M1 Pro CPUs as part of their Holiday 2022 sale, with prices starting at $1799. Free 1-2 day shipping is available to... Read more

Jobs Board

Support Technician II - *Apple* Support - O...
…problems and acting as a liaison between customers and resolving groups. As an Apple Technical Specialist, you will be supporting many of our popular Apple Read more
*Apple* Electronic Repair Technician - PlanI...
…a highly motivated individual to join our Production Department as an Apple Electronic Repair Technician. The computer repair technician will diagnose, assemble, Read more
Lead Developer - *Apple* tvOS - Rumble (Uni...
…earnings, and positive sentiment About the role: We are looking for a Lead Apple tvOS Developer to join our application engineering team to expand our video centric Read more
Tier 1 Endpoint Engineer - *Apple* - Red Ri...
…Desk on site, at our Client's location, with a focus on support to Apple products. This position will handle technical support requests directly from customers and Read more
Product Manager II - *Apple* - DISH (United...
…you will be doing We seek an ambitious, data-driven thinker to assist the Apple Product Development team as our new Retail Wireless division continues to grow and Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.