Binary Trees
 Volume Number: 6 Issue Number: 8 Column Tag: Language Translation

Binary Trees

By Clifford Story, Mouunt Prospect, IL

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

A. Introduction

This article, Part V, I’m going to take an excursion away from language translation and develop some support routines. In particular, I’m going to create routines to handle binary trees; later, I’ll use these routines to implement a symbol table for the new Canon tool and the fabled Inline tool.

There are a couple of “Why?” questions to answer. First question, why fill MacTutor with a long article on something that is taught in every college computer department in the U.S.? Ah, but not all of us have computer degrees; I don’t, for example. And while you can find the subject in various books, I couldn’t find a decent explanation of balanced binary trees -- I had to figure it out from hints I gleaned from Knuth’s discussion (Searching and Sorting, pages 451 -- 457). Second question, why a binary tree? Aren’t symbol tables usually done with hash tables? Well, yes, this is my impression, and Aho and Ullman state that hashing is “[t]he most efficient and commonly used method” for maintaining symbol tables (The Theory of Parsing, Translation, and Compiling, volume II, page 793). So why a binary tree? I’m sorry, I haven’t got an answer for that one...

If you should ever write your own compiler, I guess you should use a hash table. After all, Aho & Ullman’s opinion carries a lot of weight. In the meantime, binary trees are fun, so sit up and enjoy!

B. Simple Binary Trees

A binary tree is a tree with at most two sub-trees at each node. These are commonly called the left and right sub-trees. Searching a binary tree is very simple: take the left branch if the search key is less than the node’s value, and the right branch if it is greater. Keep going until you get either an exact match (in which case the search succeeds), or a nil pointer (in which case the search fails).

The example program I have written implements search and insertion, as well as a recursive dump routine. It does not do deletions. I haven’t any use for deletions in a symbol table, so I have left that part as an exercise...

B(1). Node Structure

Each node has four fields: the node’s value or key, a pointer to the left sub-tree, a pointer to the right sub-tree, and the data. Here is the node structure I will use in my example:

```/* 1 */

typedef struct node
{
char   *key;
struct node*left;
struct node*right;
char   *data;
} node;
```

The data for this example is some arbitrary character string.

I’ll going to create new nodes with the Mac trap NewPtr. I would usually use an array of nodes with a free list, and allocate them myself; I’m using NewPtr in this case for simplicity’s sake.

```/* 2 */

// createnode

node *createnode(char *thekey,
char *thedata)
{

node   *thenode;
int    thelength;

thenode = (node *)
NewPtr(sizeof(node));
if (thenode == nil)
return(nil);

thelength = 1 + strlen(thekey);
thenode->key = (char *)
NewPtr(thelength);
if (thenode->key == nil)
{
DisposPtr((Ptr)thenode);
return(nil);
}
BlockMove((Ptr)thekey,
(Ptr)thenode->key, thelength);

thenode->left = nil;
thenode->right = nil;

thelength = 1 + strlen(thedata);
thenode->data = (char *)
NewPtr(thelength);
if (thenode->data == nil)
{
DisposPtr((Ptr)thenode->key);
DisposPtr((Ptr)thenode);
return(nil);
}
BlockMove((Ptr)thedata,
(Ptr)thenode->data, thelength);

return(thenode);

}
```

Finally, I’ll start off the table with a head node, a dummy node with no data that points to the true root of the tree. That way, I can create the tree before any insertions; I don’t have to special-case inserting data into a nil tree.

B(2). Finding a Node by Key

As I said above, looking up a node by key is easy. The routine below is passed a pointer to the root node of the tree, and the search key. It starts with the root and follows the algorithm, until either it finds the node it is looking for and falls out of the loop, or finds a nil pointer and returns it.

```/* 3 */

// lookup

node *lookup(node *thetable,
char *thekey)
{

node   *thenode;
int    compare;

thenode = thetable;

while (compare = strcmp(
thekey, thenode->key))
{
if (compare < 0)
thenode = thenode->left;
else
thenode = thenode->right;
if (thenode == nil)
return(nil);
}

return(thenode);

}
```

B(3). Inserting a Node

This routine inserts a new node into the tree. First, it performs a search not unlike that in the “lookup” routine, except that it returns nil (indicating failure) if the search is successful -- i.e., a duplicate key exists. If, on the other hand, it finds a nil pointer, then that is the place for the new node, and the routine inserts it.

```/* 4 */

// insert

node *insert(node *thetable,
char *thekey, char *thedata)
{

node   *thenode;
int    compare;
node   *thechild;

thenode = thetable;

while (compare = strcmp(
thekey, thenode->key))
{

if (compare < 0)
{

thechild = thenode->left;
if (thechild == nil)
{
thenode->left = createnode(
thekey, thedata);
return(thenode->left);
}

}
else
{

thechild = thenode->right;
if (thechild == nil)
{
thenode->right = createnode(
thekey, thedata);
return(thenode->right);
}

}

thenode = thechild;

}

return(nil);

}
```

B(4). Dumping and Destroying

Tree structures are natural candidates for recursive routines, and here are two. The “dump” routine displays the entire tree, in key order. The “destroy” routine disposes of all the dynamic memory used by the tree.

```/* 5 */

// dump

void dump(node *thetable)
{

if (thetable == nil)
return;

dump(thetable->left);

printf(“%10s - %10s - %10s\n”,
thetable->key,
thetable->left ?
thetable->left->key : “nil”,
thetable->right ?
thetable->right->key : “nil”);

dump(thetable->right);

}

// destroy

void destroy(node *thetable)
{

if (thetable == nil)
return;

destroy(thetable->left);
destroy(thetable->right);

DisposPtr((Ptr)thetable->key);
DisposPtr((Ptr)thetable->data);
DisposPtr((Ptr)thetable);

}
```

B(5). A Test Shell

/* 6 */

```// Binary.c
// --------
// Binary tree search and insertion

// Constants and Macros

#define nil 0

// Types

typedef enum {false, true} logical;

typedef struct node
{
char   *key;
struct node*left;
struct node*right;
char   *data;
} node;

// Prototypes

void initmac();
node *createnode(char *thekey,
char *thedata);
node *insert(node *thetable,
char *thekey, char *thedata);
node *lookup(node *thetable,
char *thekey);
void dump(node *thetable);
void destroy(node *thetable);

// main

main()
{

node   *thetable;
char   thestring[256];
char   command;
char   thekey[256];
char   thedata[256];
node   *thenode;

initmac();

thetable = createnode(“”, “”);
if (thetable == nil)
{
printf(“\tUnable to “
“create table\n”);
exit(2);
}

printf(“? “);
while (true)
{

gets(thestring);
sscanf(&thestring[2],
“%c %s %[^\n]”,
&command, thekey, thedata);

switch (command)
{

case ‘A’:
case ‘a’:
if (insert(thetable, thekey,
thedata) == nil)
printf(“\tKey “
“in table\n”);
break;

case ‘D’:
case ‘d’:
dump(thetable->right);
break;

case ‘F’:
case ‘f’:
thenode = lookup(
thetable, thekey);
if (thenode == nil)
{
printf(“\tKey not “
“found in table\n”);
break;
}
printf(“\tData is “%s”\n”,
thenode->data);
break;

case ‘Q’:
case ‘q’:
destroy(thetable);
exit(0);

}

printf(“? “);

}

}

// initmac

void initmac()
{

InitGraf((Ptr)&qd.thePort);
SetFScaleDisable(true);

InitCursorCtl(nil);

}
```

C. Balanced Binary Trees

Simple binary trees are pretty and elegant but they aren’t perfect. Remember, I’ve promised a Canon tool will come out of all this, right? Aren’t most Canon dictionaries in alphabetical order? What happens to a binary tree when you insert already ordered data?

If you insert already ordered data into a simple binary tree, you get a degenerate tree. All the insertions go to the right; all the left pointers are nil. What is left is a linked list. Lookups in a linked list are o(N), instead of the o(log N) we would expect from a binary tree. (This means that the number of comparisons is proportional to the number of nodes, rather than to the log of the number of nodes. o(log N) is much faster than o(N).)

One solution to this problem is to use a balanced binary tree. This involves a little more work, and a more complicated insertion algorithm, but it restores the o(log N) running time.

C(1). What is a Balanced Tree?

The height of a node is the number of steps to its most distant descendant. The height of a tree (or a sub-tree) is the height of its root node. A binary tree is balanced if for every node in the tree, the height of the left sub-tree is within 1 of the height of the right sub-tree.

Here’s another way to say the same thing: each node in a binary tree has a balance factor, which is equal to the height of the left sub-tree minus the height of the right sub-tree. A binary tree is balanced if every balance factor is either 0, 1 or -1.

It’s pretty easy to see that a balanced tree is not going to exhibit the sort of degenerate behavior that simple binary trees can fall into. It’s also easy to see that inserting new nodes into the tree can throw it out of balance, which is why insertion is a bit more complex than in the simple case.

C(2). Searching, Dumping, Destroying

Balancing a binary tree requires a minor change to the node structure. We have to add a “balance” field, to keep track of the balance factor:

```/* 7 */

typedef struct node
{
char   *key;
struct node*left;
struct node*right;
int    balance;
char   *data;
} node;
```

The “createnode” routine initializes this new field to zero.

Searching, dumping and destroying the tree are identical to the routines for the simple binary tree, already shown above.

C(3). Balancing the Tree

We do insertions just the same way as for a simple binary tree, until we unbalance the tree. Then we have to re-balance it. We know the tree is out of balance if we get a node with a balance factor of ±2. Fortunately, balancing a tree turns out to be a localized operation.

Suppose that as we search the tree for the place to insert the new node, H is the last node we pass with a balance factor of ±1. Then the tree is imbalanced after the insertion if and only if H’s balance factor becomes ±2.

Proof: if H’s balance factor is ±2, then the tree is imbalanced by definition. On the other hand, if the tree is imbalanced, where is the ±2 node? It isn’t below H, since those nodes all had zero balance factors and can now be at most ±1 (in fact, they are all ±1; none remains at zero). If H’s balance factor isn’t ±2 after the insertion, then either it stayed ±1 or it went to zero. In the first case, the heights of H’s subtrees didn’t change. In the second, the height of the shorter tree increased. In both cases, the height of H itself remained the same, so the balance factors of all the nodes above H remained the same. Thus, if H isn’t the ±2 node, then the tree is balanced, contrary to assumption.

What’s more, the process of re-balancing H’s sub-tree will leave the height of the sub-tree the same as its height before the insertion. So after balancing the sub-tree, the entire tree will be balanced. This means that we need only concern ourselves with a handful of nodes around H -- four nodes, at most.

C(3)(a). Left-left insertion

The insertion algorithm divides into four cases. After finding node H, we move either left or right to continue searching for the place to insert the new node, and after the next node, we again move left or right. So the “left-left” case is the one in which we took two left branches after finding H.

C(3)(a)(i). Before Inserting the New Node

Here’s the immediate situation before inserting the new node:

Figure 1: Left-left case before insertion.

The ovals represent nodes; the capital letters are node names, and the numbers after the colons are the balance factors. The rectangles represent sub-trees; the lower-case letters are their names, and the expressions under the horizontal lines are tree heights. Node P is the parent of node H, the high node, which is in turn the parent of L, the low node. The new node will go into sub-tree a.

P’s balance factor is irrelevant. H’s is ±1 by definition (this is the same H as was discussed earlier, the last node with a non-zero balance factor), and L’s is zero for the same reason (definition of H). Since we’re adding the new node to the left sub-tree of H, which will increase H’s balance factor and unbalance the tree, H’s balance factor must be +1, not -1.

L’s balance factor is zero, so a and b have the same height, call it h. Then the height of L is h+1. H’s balance factor is +1, so c’s height is one less than L’s, or h.

Also, note that the height of H is h+1. And listing the parts of the sub-tree in order of keys, we get: a, L, b, H, c, since L, a and b are to the left of H and c to the right, and L is between a and b. These facts are important; I have already promised that inserting the new node and re-balancing the tree will not change the sub-tree’s height, and the order of the nodes must be preserved by any balancing transformation.

C(3)(a)(ii). After Inserting the New Node

Now we insert the new node in sub-tree a:

Figure 2: Left-left case after insertion.

The new node increases the height of a by 1, to h+1. The height of b remains h, so L’s balance factor is now +1. The height of L goes to h+2, which makes H’s balance factor +2, since the height of c is unchanged. The tree is now out of balance.

C(3)(a)(iii). After Re-Balancing the Tree

At this point, we need to perform some transformation on the tree that will bring it back into balance. I’m going to just pull it out of the hat:

Figure 3: Left-left case after transformation.

What we did was switch b to H, and lift sub-tree a, the big one, higher. The heights of a, b and c haven’t changed, and it’s easy to show that the new balance factors are correct. The important question is, is this still a properly-ordered binary tree?

Recall the order of nodes before the insertion: a, L, b, H, c. Has the order changed? Now a is to the left of L, and H, b and c to the right; H is between b and c: a, L, b, H, c. The order is the same.

Next, I promised that the height of the sub-tree would be the same after re-balancing as before insertion. The height before was h+1; it’s easy to see that it’s h+1 now. This fact allows us to ignore all the nodes above the sub-tree.

C(3)(b). Left-right insertion

A left-right insertion looks like a left-left insertion, except that the new node goes in sub-tree b instead of sub-tree a:

Figure 4: Left-right case after insertion.

Unfortunately, we can’t employ the same trick. Shifting b to H and raising L will result in exactly the same picture as above, only reversed horizontally. We have to take a different view of the situation:

Figure 5: Left-right case before insertion.

C is the root of our former sub-tree b, which is now split into sub-trees b and c; the former sub-tree c is now sub-tree d. The height of C is the same as the height of the old b, or h, so the heights of the new b and c are both h-1 (they’re equal because the balance factor of C is zero, by definition of H).

The new node goes into either b or c. It doesn’t matter much which; this will only affect balance factors after the re-balancing, and we can handle it then. So the tree after insertion looks like this:

Figure 6: Left-right case after insertion.

(Of course, the new node goes in only one of b and c, not in both! I had to draw it somehow...) The new heights and balance factors are easy to confirm.

And the balancing transformation is:

Figure 7: Left-right case after transformation.

L’s balance factor will be either 0 or +1, and H’s either -1 or 0, depending on whether the new node went into b or c. We have to check to make sure that neither the node order nor the height have changed (they haven’t).

C(3)(c). Right-right insertion

The right-right insertion is just the reverse of the left-left, so I’ll content myself with showing the pictures, and refer you back to left-left insertion for explanation.

Figure 8: Right-right case before insertion.

Figure 9: Right-right case after insertion.

Figure 10: Right-right case after transformation.

C(3)(d). Right-left insertion

The right-left insertion is just the reverse of the left-right, so I’ll content myself with showing the pictures, and refer you back to left-right insertion for explanation.

Figure 11: Right-left case before insertion.

Figure 12: Right-left case after insertion.

Figure 13: Right-left case after transformation.

C(4). The Insertion Algorithm

The above exhausts all possible cases when an insertion unbalances the tree. What about insertions that leave the tree balanced? We can’t simply ignore these, since they change balance factors as well.

Suppose a node has a balance factor of zero (which means its two sub-trees have the same height), and one sub-tree gets higher. There are two results: the node’s balance factor changes to +1 (if the left sub-tree grew) or -1 (if the right sub-tree grew), and the height of the node increases by 1. This second result will force a re-evaluation of the node’s parent, and the process will continue back up the search path so long as balance factors are zero. So we can see inserting the new node as the first child of its parent sets off a chain reaction back up the tree.

What if a node has a balance factor of ±1, and one sub-tree gets higher? If the sub-tree that already is higher is the one to grow, then we’ve unbalanced the tree. If the shorter sub-tree gets higher, then the node’s balance factor goes to zero. The first case we handled above; neither case changes the height of the node, so both kill the chain reaction.

So the high-level view of the insertion algorithm is this: First, insert the new node in the tree. Then, back up along the search path for as long as the nodes have zero balance factors, changing those balance factors to +1 or -1 according to whether the path went left or right when leaving the node. When a non-zero balance factor finally appears, increment or decrement it, according to the same test. If the result is zero, we’re done. If it’s ±2, the tree is unbalanced, so apply the appropriate balancing transformation.

C(5). The “insert” Routine

The following routine uses one cute trick: it keeps a stack of search directions in an int variable, and returns it as its result. This requires some explanation.

The integer has 32 bits. I divide it into 8 4-bit fields. The routine is called recursively going down the search path; it returns values going back up. The value it returns is the value it got, shifted left by one field, and with the direction from “parent” in the rightmost field: 1 for left, 2 for right.

The function result thus shows the direction from “parent” in the rightmost field, the direction from parent’s child in the next field, the direction from parent’s grandchild in the next field, and that’s as far as we need to go.

There are two special values: zero means “no further adjustment of balance factors is necessary”, and 4 means “error”, which in this context means a duplicate key (there are other possible errors but I cleaned out the error-detection code for simplicity’s sake).

```/* 8 */

// insert

unsigned int insert(node *parent,
char *thekey, char *thedata)
{

int    compare;
node   *high;
unsigned int    result;
node   *low;
node   *child;

// if thekey matches this node,
// then return an error
// (duplicate keys)

compare = strcmp(thekey, parent->key);
if (compare == 0)
return(4);

// if there’s a slot for the new node,
// then create it and return
// 1 if it is to the left of
// parent and 2 if to the right
// else determine high, the next step
// in the search path

if (compare < 0)
{
high = parent->left;
if (high == nil)
{
parent->left = createnode(
thekey, thedata);
return(1);
}
}
else
{
high = parent->right;
if (high == nil)
{
parent->right = createnode(
thekey, thedata);
return(2);
}
}

// now continue the search by
//  calling “insert” recursively
// if the result is 0 (no balancing
// needed at this level) or
// the result is 4 (duplicate
// key), return

result = insert(high,
thekey, thedata);
if ((result == 0) || (result == 4))
return(result);

// the low 4 bits of “result” indicate
// the direction of the search path
// leaving “high”;
// increment high’s balance if the path
// goes left, and decrement it if the
// path goes right

if (result % 16 == 1)
high->balance++;
else
high->balance--;

// if the balance is now zero, no further
// correction of balances is needed,
// so return
// if it’s ±1, push the direction away
// from “parent” onto the “result”
// stack and return it
// if it’s ±2, continue to balancing
// transformation

switch (high->balance)
{
case 0:
return(0);
case 1:
case -1:
return((result << 4)
+ ((compare < 0) ? 1 : 2));
case 2:
case -2:
break;
}

// use the direction away from “high” to
// find “low”, then switch on that
// direction and the next one
// the easiest way to follow these
// transformations is to refer to the
// pictures

low = (result % 16 == 1) ?
high->left : high->right;
switch (result % 256)
{

case 0x11: // left-left case

high->left = low->right;
low->right = high;
if (compare < 0)
parent->left = low;
else
parent->right = low;
high->balance = 0;
low->balance = 0;
return(0);

case 0x12: // right-left case

child = low->left;
high->right = child->left;
low->left = child->right;
if (compare < 0)
parent->left = child;
else
parent->right = child;
child->left = high;
child->right = low;
child->balance = 0;
low->balance = 0;
high->balance = 0;
result &= 0xF00;
if (result == 0x100)
low->balance = -1;
else if (result == 0x200)
high->balance = 1;
return(0);

case 0x21: // left-right case

child = low->right;
low->right = child->left;
high->left = child->right;
if (compare < 0)
parent->left = child;
else
parent->right = child;
child->left = low;
child->right = high;
child->balance = 0;
low->balance = 0;
high->balance = 0;
result &= 0xF00;
if (result == 0x100)
high->balance = -1;
else if (result == 0x200)
low->balance = 1;
return(0);

case 0x22: // right-right case

high->right = low->left;
low->left = high;
if (compare < 0)
parent->left = low;
else
parent->right = low;
high->balance = 0;
low->balance = 0;
return(0);

}

}
```

D. Conclusion

Before I depart, let me mention the existence of B-trees, which are sort of generalized binary trees. B-trees have several keys at each node, and several plus one pointers. For example, a 2-3 tree has two keys and three pointers per node. But not all of these keys need be used; a node in a 2-3 tree may have one or two keys. This makes the tree structure flexible enough to add the requirement that all leaves (nodes with no children) be the same distance from the root.

I think there are also B*-trees, or am I confusing this with C* algebras? Anyway, B-trees are a hot topic these days but I have no experience with them.

Next time, I’ll return to lexical analysis and do the new Canon tool. See you then.

Community Search:
MacTech Search:

Latest Forum Discussions

Fresh From the Land Down Under – The Tou...
After a two week hiatus, we are back with another episode of The TouchArcade Show. Eli is fresh off his trip to Australia, which according to him is very similar to America but more upside down. Also kangaroos all over. Other topics this week... | Read more »
TouchArcade Game of the Week: ‘Dungeon T...
I’m a little conflicted on this week’s pick. Pretty much everyone knows the legend of Dungeon Raid, the match-3 RPG hybrid that took the world by storm way back in 2011. Everyone at the time was obsessed with it, but for whatever reason the... | Read more »
Hello gentle readers, and welcome to the SwitchArcade Round-Up for July 19th, 2024. In today’s article, we finish up the week with the unusual appearance of a review. I’ve spent my time with Hot Lap Racing, and I’m ready to give my verdict. After... | Read more »
Draknek Interview: Alan Hazelden on Thin...
Ever since I played my first release from Draknek & Friends years ago, I knew I wanted to sit down with Alan Hazelden and chat about the team, puzzle games, and much more. | Read more »
The Latest ‘Marvel Snap’ OTA Update Buff...
I don’t know about all of you, my fellow Marvel Snap (Free) players, but these days when I see a balance update I find myself clenching my… teeth and bracing for the impact to my decks. They’ve been pretty spicy of late, after all. How will the... | Read more »
‘Honkai Star Rail’ Version 2.4 “Finest D...
HoYoverse just announced the Honkai Star Rail (Free) version 2.4 “Finest Duel Under the Pristine Blue" update alongside a surprising collaboration. Honkai Star Rail 2.4 follows the 2.3 “Farewell, Penacony" update. Read about that here. | Read more »
‘Vampire Survivors+’ on Apple Arcade Wil...
Earlier this month, Apple revealed that poncle’s excellent Vampire Survivors+ () would be heading to Apple Arcade as a new App Store Great. I reached out to poncle to check in on the DLC for Vampire Survivors+ because only the first two DLCs were... | Read more »
Homerun Clash 2: Legends Derby opens for...
Since launching in 2018, Homerun Clash has performed admirably for HAEGIN, racking up 12 million players all eager to prove they could be the next baseball champions. Well, the title will soon be up for grabs again, as Homerun Clash 2: Legends... | Read more »
‘Neverness to Everness’ Is a Free To Pla...
Perfect World Games and Hotta Studio (Tower of Fantasy) announced a new free to play open world RPG in the form of Neverness to Everness a few days ago (via Gematsu). Neverness to Everness has an urban setting, and the two reveal trailers for it... | Read more »
Meditative Puzzler ‘Ouros’ Coming to iOS...
Ouros is a mediative puzzle game from developer Michael Kamm that launched on PC just a couple of months back, and today it has been revealed that the title is now heading to iOS and Android devices next month. Which is good news I say because this... | Read more »

Price Scanner via MacPrices.net

Amazon is still selling 16-inch MacBook Pros...
Prime Day in July is over, but Amazon is still selling 16-inch Apple MacBook Pros for \$500-\$600 off MSRP. Shipping is free. These are the lowest prices available this weekend for new 16″ Apple... Read more
Walmart continues to sell clearance 13-inch M...
Walmart continues to offer clearance, but new, Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for \$699, \$300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBooks... Read more
Apple is offering steep discounts, up to \$600...
Apple has standard-configuration 16″ M3 Max MacBook Pros available, Certified Refurbished, starting at \$2969 and ranging up to \$600 off MSRP. Each model features a new outer case, shipping is free,... Read more
Save up to \$480 with these 14-inch M3 Pro/M3...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at \$1699 and ranging up to \$480 off MSRP. Each model features a new outer case, shipping is... Read more
Amazon has clearance 9th-generation WiFi iPad...
Amazon has Apple’s 9th generation 10.2″ WiFi iPads on sale for \$80-\$100 off MSRP, starting only \$249. Their prices are the lowest available for new iPads anywhere: – 10″ 64GB WiFi iPad (Space Gray or... Read more
Apple is offering a \$50 discount on 2nd-gener...
Apple has Certified Refurbished White and Midnight HomePods available for \$249, Certified Refurbished. That’s \$50 off MSRP and the lowest price currently available for a full-size Apple HomePod today... Read more
The latest MacBook Pro sale at Amazon: 16-inc...
Amazon is offering instant discounts on 16″ M3 Pro and 16″ M3 Max MacBook Pros ranging up to \$400 off MSRP as part of their early July 4th sale. Shipping is free. These are the lowest prices... Read more
14-inch M3 Pro MacBook Pros with 36GB of RAM...
B&H Photo has 14″ M3 Pro MacBook Pros with 36GB of RAM and 512GB or 1TB SSDs in stock today and on sale for \$200 off Apple’s MSRP, each including free 1-2 day shipping: – 14″ M3 Pro MacBook Pro (... Read more
14-inch M3 MacBook Pros with 16GB of RAM on s...
B&H Photo has 14″ M3 MacBook Pros with 16GB of RAM and 512GB or 1TB SSDs in stock today and on sale for \$150-\$200 off Apple’s MSRP, each including free 1-2 day shipping: – 14″ M3 MacBook Pro (... Read more
Amazon is offering \$170-\$200 discounts on new...
Amazon is offering a \$170-\$200 discount on every configuration and color of Apple’s M3-powered 15″ MacBook Airs. Prices start at \$1129 for models with 8GB of RAM and 256GB of storage: – 15″ M3... Read more

Jobs Board

*Apple* Systems Engineer - Chenega Corporati...
…LLC,** a **Chenega Professional Services** ' company, is looking for a ** Apple Systems Engineer** to support the Information Technology Operations and Maintenance Read more
Solutions Engineer - *Apple* - SHI (United...
**Job Summary** An Apple Solution Engineer's primary role is tosupport SHI customers in their efforts to select, deploy, and manage Apple operating systems and Read more
*Apple* / Mac Administrator - JAMF Pro - Ame...
Amentum is seeking an ** Apple / Mac Administrator - JAMF Pro** to provide support with the Apple Ecosystem to include hardware and software to join our team and Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more