TweetFollow Us on Twitter

Fine Tune MPW
Volume Number:6
Issue Number:7
Column Tag:Mac Workshop

Fine Tuning Code With MPW

By Allen Stenger, Gardena, CA

Tuning with MPW

[Allen Stenger works on the F-15 radar software for Hughes Aircraft Co. His technical interests are software reliability, computer architecture, and computer languages. Programming the Macintosh has been his hobby for the past five years.]

The Macintosh Programmer’s Workshop documentation does a good job of describing how to use the performance analysis tools, but it does not explain what to do with the results. This article is a tutorial on how to tune a program with MPW, using the performance reports as a guide to which areas of the program are most in need of improvement.

For the example program we will use a dragon-curve drawer. This is an example in the Smalltalk books, and Listing 1 is a straightforward translation of the Smalltalk-80 program into SemperSoft Modula-2. This straightforward program takes about 8 seconds (477 ticks) to draw the dragon. This is not extremely slow, but one imagines that it could be done faster. In fact, we will be able to get a 16-times speedup with some simple transformations, and by being a little trickier we will get a 22-times speedup.

This is an artificial example, for a couple of reasons. First, for any imaginable use to which DrawDragon might be put, its present performance is adequate--there is no practical value to speeding it up. Second, the MPW tools would normally be applied to much larger programs, and are in some ways an overkill for this simple example.

Speculations

We will start out with some speculations on the causes of the slowness of the straightforward dragon. After doing the tuning we will revisit these and see how good our intuition was.

From inspecting the code, one might generate a list of possible “problem areas” such as the following:

Use of recursion. According to the folklore of programming, recursive programs are slow, and certainly the Dragon procedure seems to spend most of its time calling itself rather than doing any useful work.

Use of high-order language. Traditionally, in order to get the highest performance, one must write in assembly language. The SemperSoft compiler is a one-pass compiler, and presumably does little optimization.

Use of range-checking. This example is compiled with checks on, which in some programs can cause a significant slowdown.

Use of floating-point. This example was run on a Macintosh Plus, which has no floating-point hardware and does all floating point in software.

Graphics operations. These typically take a lot of CPU time. (There might not be much we can do about this one, since the program’s whole purpose is to draw on the screen.)

Tuning -- Preparation

We can instrument the dragon program following the recipes in the MPW manual, Chapter 14 (the method is the same regardless of language, although the interface details vary slightly). Here we will only change the calling program, DrawDragon, and leave the other modules undisturbed. Since the performance measurements are done by random sampling of the program counter, the whole program will be instrumented merely by starting the measurement at the beginning of the run and ending it at the end - it is not necessary to modify each routine. The instrumented DrawDragon module is shown in Listing 2.

The performance analyzer yields an execution “profile” of the program, characterizing it by where it spends its time. It is usually only helpful to look at the top five routines - everything below that takes such a small amount of time that, even if we could eliminate a routine totally, it would have a negligible effect on the timing. Here, on our first run, we need only look at the #1 routine, since it takes 72.6% of the time (total time for the program is 493 ticks). This is the Pack4 routine, which is not in the Dragon program -- it is the SANE floating-point routines, as may be looked up in Inside Macintosh. So our first tuning step is to reduce the amount of time spent doing floating-point work.

Tuning -- First Pass

Some people (particularly FORTH fans) advocate doing no floating point at all, but using instead scaled integer arithmetic. For most programs, eliminating floating point altogether would be a drastic operation. For our little DrawDragon program it is not so bad, but let’s see what else we could do first. Unfortunately the report does not break down the floating-point operations used, but by examining the code we see that each line drawn requires 2 integer-to-float conversions, 2 float-to-integer conversions, 3 floating-point multiplies, and 1 each sine and cosine. It seems likely that most of the floating-point time is spent on the sine and cosine, with the multiplies coming in a distant second. Further examination of the program reveals that sine and cosine are called with only 4 possible arguments (0, 90, 180, and 270 degrees), so this suggests the use of a look-up table storing the values of sine and cosine for these arguments.

Making this change and re-running the program and reports shows that this does cause a large speedup - the timing is now 86 ticks, or 5.7 times faster. The top item on the performance report is still Pack4 with 41.6%, so our next step is to try to eliminate still more floating-point operations.

Tuning -- Second Pass

After scrutinizing the improved program some more, we may remember that the reason we put in the sines and cosines in the first place was to handle drawing of lines at arbitrary angles. For the 4 angles that we actually use, the sines and cosines have integer values, so (for our particular case) there is no need for floating point anyway! We therefore make a simple re-coding of the Go procedure to do all calculations as integers. (Since the routine is now getting faster, there are not enough program-counter samples to get a good breakdown of where the time is spent, so we will also draw the dragon 10 times in a loop and divide by 10 to get the time per dragon.) Upon re-running this, we find that the time has decreased to 30 ticks (2.9 times faster), and the top 5 routines in the performance report are all QuickDraw routines and comprise 73.2% of the time. Further improvement seems to depend on inventing some way of drawing lines faster than QuickDraw can, which seems a dim hope.

Tuning -- Third Pass

Surprisingly, this is possible, in the special case we are dealing with (which has only horizontal and vertical lines). By trying some separate timing tests, it appears that our lines can be drawn in 1/3 less time by using FillRect rather than Line. Implementing this leads to a program which runs in 22 ticks (1.4 times faster), for an overall improvement over the straightforward Dragon of 22:1. This speedup requires changes to only one routine, Go. The revised Pen module is shown in Listing 3.

Speculations Inspected

The big winners among our speculations were floating point and graphics operations. Floating point took up most of the time in the original program, and by eliminating it we were able to get most of the speedup. Graphics operations take up most of the remaining time, and although we made some reduction in this, it seems unlikely that there is much more we can do. Possibly we could do something sneaky such as building the whole picture in memory without using graphics operations, then copying it to the screen with CopyBits; but this would be very complicated and perhaps not much of an improvement. (One of the hardest parts of tuning is knowing when to stop. Most programs can be improved indefinitely, but they gradually get more complicated and error-prone.)

The issue of recursion turned out to be a red herring. The total time spent in the Dragon procedure is only 3.9% of the total, and this includes the recursive calls. Recursion has a bad reputation, for two reasons. First is the bad recursion examples often given in textbooks (usually factorials or Fibonacci numbers), which can be done more simply and faster by iteration. Second, in some older languages and implementations, either there is no recursion in the language, so it must be simulated by the program (FORTRAN), or it is treated as a special case (JOVIAL, PL/I) and really is much slower because it requires a special dynamic allocation of variables rather than the normal static allocation. In more modern languages such as Pascal or Modula-2, all variables are dynamically allocated and recursive calls are no different (and therefore no slower) than other calls.

The impact of using a high-order language or of range checking varies a great deal depending on the program and on the language implementation. In this example most of the time was taken by things outside the generated code, which seems to be inherent in the particular problem being solved and not likely to be affected much by the implementation language. In the final version of the program, the Modula-2 routines take a total of only 13.3%, so re-writing in assembly or taking out the range checks could not possibly save more than this. The typical Macintosh application tends to consist mainly of calls to the Toolbox, interspersed with occasional calculations, so the timing of a tuned program tends to be dominated by the Toolbox time and does not depend greatly on the implementation language. For programs such as spreadsheets and compilers this is not true, since they really do spend a great deal of time on internal calculations, but it is true of most applications.

Conclusion

By applying the MPW performance analysis tools and making the improvements suggested by the program profile, we were able to speed up the dragon-drawer 22 times. The value of the execution profile is in telling us what not to look at. Most of a program’s execution time is spent in a few very places, and we should concentrate our efforts on those few places. (In Quality Control this is called the principle of the “vital few and the trivial many.”) Profiles are more valuable for large programs, since there is more to ignore there. In any case, success in tuning depends on measurement.

For Further Reading

Jon Louis Bentley, Writing Efficient Programs. Prentice-Hall, 1982. An excellent book on tuning; of value both to the professional programmer and the hobbyist. Our Dragon example illustrates his principles Space-For-Time Rule 2 -- Store Precomputed Results (sine and cosine tables), and Procedure Rule 2 -- Exploit Common Cases (eliminate floating-point since not needed in our case, and use FillRect for faster horizontal and vertical line drawing). He gives many other principles which we did not have a chance to use. In the beginning of the book he goes through 10 steps of optimizing an Approximate Travelling-Salesman Tour to get an overall improvement of 17:1.

Adele Goldberg and David Robson, Smalltalk-80: The Language and Its Implementation. Addison-Wesley, 1983. The source of the Dragon program (on pp. 372-3).

Donald E. Knuth, “An Empirical Study of FORTRAN Programs”, Software--Practice and Experience, v. 1 (1971), pp. 105-133. Source of the term “profile.” This article is written from the viewpoint of a compiler developer, and considers several levels of optimization which can be applied to programs. Many examples of optimization.

Mike Morton, “Faster Bitmap Rotation”. MacTutor, v. 4 (1988), no. 11, pp. 86-90 (reprinted in The Definitive MacTutor, pp. 56-60). Another example of tuning, using only the total time of the routine as a measure and yielding a speedup of 3:1. Morton was careful to measure each attempted improvement to the routine; the exact method of measurement is not important, but you must measure.

Stephen Dubin, Thomas W. Moore, and Sheel Kishore, “Using Regions in Medicine with C”. MacTutor, v. 3 (1987), no. 10, pp. 27-31 (reprinted in The Essential MacTutor, pp. 146-150). Description of re-coding a routine to calculate the area of a region from Pascal or C to assembler, yielding a 1000:1 speedup.

James Plamondon, “Finding The Area Of A Region in C” (letter). MacTutor, v. 4 (1988), no. 4 (reprinted in The Definitive MacTutor, p. 699). Criticizes the previous reference for solving the wrong problem (i.e., working very hard to get a very good estimate of the area of a region drawn freehand). Gives a faster C routine for doing a less-accurate but adequate estimate. In most applications you have some leeway in the problem you solve, and you can use this to make the solution easier and faster. We did not take advantage of this in the DrawDragon program; one speedup we might have applied is to draw the line only one pixel wide (which is about twice as fast as drawing it 4 pixels wide). Bentley (reference above) also considers this in his Approximate Travelling-Salesman Tour -- since it is only an approximate solution anyway, there is little harm in going from floating-point to slightly less accurate scaled fixed point numbers.

Source Listings

Listing 1 - Straightforward Dragon

(******************************************************)
(*   *)
(* file:  DrawDragon.m      *)
(*   *)
(* Main program to test Dragon method.   *)
(*   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(*   *)
(* Allen Stenger August 1989    *)
(*   *)
(******************************************************)

MODULE DrawDragon;

FROM InOutIMPORT WriteLong, WriteString, Read;
FROM InsideMac   IMPORT TickCount;
FROM DragonModuleIMPORT Dragon;
FROM PenIMPORT Home;

VAR
 oldTime,
 newTime: LONGINT;
 ch     : CHAR;

BEGIN
 oldTime := TickCount();
 
 Home;
 Dragon( 8 );
 
 newTime := TickCount();
 WriteString( “Run time is “ );
 WriteLong( newTime - oldTime, 6 );
 WriteString( “ -- press space to exit “ );
 Read( ch );
END DrawDragon.

(******************************************************)
(*   *)
(* file:  DragonModule.d    *)
(*   *)
(* Implementation of Dragon method from                    *)
(* Goldberg and Robson,     *)
(* Smalltalk-80:  The Language and Its   *)
(*   Implementation, pp. 372-3.      *)
(*   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(*   *)
(* Allen Stenger August 1989    *)
(*   *)
(******************************************************)

DEFINITION MODULE DragonModule;

PROCEDURE Dragon( order : INTEGER );

END DragonModule.

(******************************************************)
(* file:  DragonModule.m    *)
(* Dragon method - see definition module for         *)
(* description.    *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE DragonModule;

FROM PenIMPORT Go, Turn;

PROCEDURE Dragon( order : INTEGER );
BEGIN
 IF order = 0
 THEN 
 Go( 10 );
 ELSE
 IF order > 0
 THEN
 Dragon( order - 1 );
 Turn( 90 );
 Dragon( 1 - order );
 ELSE
 Dragon( -1 - order );
 Turn( -90 );
 Dragon( 1 + order );
 END; (* IF *)
 END; (* IF *)
END Dragon;

BEGIN
END DragonModule.

(******************************************************)
(* file:  Pen.d    *)
(* Implements some of the methods for the Pen class  *)
(* in Smalltalk-80.  *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

DEFINITION MODULE Pen;

(*
 Go in the current direction the specified distance
 (units of pixels).
*)
PROCEDURE Go( distance : CARDINAL );

(*
 Change the current direction by turning degrees 
 (positive degrees = clockwise).
*)
PROCEDURE Turn( degrees : INTEGER );

(*
 Move to original pen position.
*)
PROCEDURE Home;

END Pen.

(******************************************************)
(* file:  Pen.m    *)
(* Pen methods - see definition module for                 *)
(* descriptions.   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE Pen;

FROM Terminal  IMPORT ClearScreen;
FROM InOutIMPORT Write;
FROM MathLib0  IMPORT sin, cos, entier, real, pi;
FROM InsideMac IMPORT Line, MoveTo, PenSize;

CONST
 DegreesToRadians = pi / 180.;
 (* conversion factor *)

VAR
 currentDegrees  : [0..359];
 (* direction we are
 facing -- 0 = right. *)

PROCEDURE Go( distance : CARDINAL );
VAR
 currentRadians  : REAL;
 realDistance  : REAL;
BEGIN
 currentRadians := DegreesToRadians 
 * real( currentDegrees );
 realDistance := real( distance );
 Line(  entier( realDistance 
 * cos( currentRadians ) ),
 entier( realDistance 
 * sin( currentRadians ) )
 );
END Go;

PROCEDURE Turn( degrees : INTEGER );
VAR
 tempDegrees:  INTEGER; 
BEGIN
 tempDegrees := INTEGER(currentDegrees) + degrees;
 DEC( tempDegrees, 360 * ( tempDegrees DIV 360 ) );
 IF tempDegrees < 0 
 THEN INC( tempDegrees, 360 );
 END; (* IF *)
 currentDegrees := tempDegrees;
END Turn;

PROCEDURE Home;
BEGIN
 MoveTo( 110, 200 );
 currentDegrees := 270; (* facing up *)
END Home;

BEGIN
 ClearScreen;
 Write( 0C );  (* graphics initialization kludge *)
 PenSize( 4, 4 );
END Pen.
Listing 2 - Instrumented DrawDragon module
(******************************************************)
(* Main program to test Dragon method.   *)
(* This version includes MPW performance analyzer    *)
(* calls.   *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

MODULE DrawDragon;

FROM InOutIMPORT WriteLong, WriteString, Read;
FROM InsideMac   IMPORT TickCount;
FROM PerformIMPORT InitPerf, PerfControl, 
 PerfDump, TermPerf, 
 TP2PerfGlobals;
FROM DragonModuleIMPORT Dragon;
FROM PenIMPORT Home;

VAR
 oldTime,
 newTime: LONGINT;
 ch     : CHAR;
 thePerfGlobals : TP2PerfGlobals;
 junk : BOOLEAN;

BEGIN
 (* Initialize performance measurement *)
 thePerfGlobals := NIL;
 IF InitPerf(  
 thePerfGlobals, (* measurement block *)
 20,    (* sample interval *)
 8,(* bucket size *)
 TRUE,  (* measure ROM *)
 TRUE,  (* measure application *)
 “CODE”,(* resource type to 
 measure *)
 0,(* ROM ID *)
 ‘’,    (* ROM name *)
 FALSE, (* measure RAM misses *)
 0,0,0  (* for RAM misses *)
 )
 THEN
 ELSE WriteString( “Initialization failed” );
 END; (* IF *)
 
 (* Start performance measurement *)
 junk := PerfControl( thePerfGlobals, TRUE );
 
 oldTime := TickCount();

 Home;
 Dragon( 8 );
 
 newTime := TickCount();
 
 (* End performance measurement *)
 IF 0 = PerfDump(  thePerfGlobals,
 “DrawDragon.dump”,(* dump file for 
 results *)
 FALSE, (* histograms *)
 0 (* histograms *)
 )
 THEN
 ELSE WriteString( “PerfDump failed” );
 END; (* IF *)
 TermPerf( thePerfGlobals );
 
 WriteString( “Run time is “ );
 WriteLong( newTime - oldTime, 6 );
 WriteString( “ -- press space to exit “ );
 Read( ch );
END DrawDragon.
Listing 3 - Tuned Pen module
(******************************************************)
(* file:  Pen.m    *)
(* Pen methods - see definition module for                 *)
(* descriptions.   *)
(* This version contains improvements suggested by   *)
(* running MPW performance analysis tools.                 *)
(* Written in SemperSoft Modula-2 v.1.1.2                  *)
(* Allen Stenger August 1989    *)
(******************************************************)

IMPLEMENTATION MODULE Pen;

FROM Terminal  IMPORT ClearScreen;
FROM InOutIMPORT Write;
FROM InsideMac   IMPORT FillRect, SetRect;
FROM InsideMac   IMPORT black, Rect;

VAR
 currentDegrees  : [0..359];
 (* direction we are
 facing -- 0 = right. *)
 currentH,
 currentV : CARDINAL;(* where situated *)
 
PROCEDURE Go( distance : CARDINAL );
CONST
 LineSize = 4;
VAR
 lineRect : Rect;
BEGIN
 CASE currentDegrees OF
 0:SetRect( lineRect, currentH, currentV, 
 currentH + distance + LineSize,
 currentV + LineSize ); 
 INC( currentH, distance ); |
 90:    SetRect( lineRect, currentH, currentV, 
 currentH + LineSize,
 currentV + distance + LineSize
 ); 
 INC( currentV, distance ); |
 180: SetRect( lineRect, currentH - distance,
 currentV, 
 currentH + LineSize,
 currentV + LineSize ); 
 DEC( currentH, distance ); |
 270: SetRect( lineRect, currentH, 
 currentV - distance, 
 currentH + LineSize,
 currentV + LineSize ); 
 DEC( currentV, distance ); 
 END; (* CASE *)
 FillRect( lineRect, black );
END Go;

PROCEDURE Turn( degrees : INTEGER );
VAR
 tempDegrees:  INTEGER; 
BEGIN
 tempDegrees := INTEGER(currentDegrees) + degrees;
 DEC( tempDegrees, 360 * ( tempDegrees DIV 360 ) );
 IF tempDegrees < 0 
 THEN INC( tempDegrees, 360 );
 END; (* IF *)
 currentDegrees := tempDegrees;
END Turn;

PROCEDURE Home;
BEGIN
 currentH := 110;
 currentV := 200;
 currentDegrees := 270; (* facing up *)
END Home;

BEGIN
 ClearScreen;
 Write( 0C );  (* graphics initialization kludge *)
END Pen.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Ableton Live 10.1.1 - Record music using...
Ableton Live lets you create and record music on your Mac. Use digital instruments, pre-recorded sounds, and sampled loops to arrange, produce, and perform your music like never before. Ableton Live... Read more
BetterTouchTool 3.202 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom)... Read more
Fission 2.4.6 - Streamlined audio editor...
Fission can crop and trim audio, paste in or join files, or just rapidly split one long file into many. It's streamlined for fast editing. Plus, it works without the quality loss caused by other... Read more
Drama 1.0.27 - Prototyping, animation...
Drama's handy 3-in-1 functionality uniquely integrates design, animation and prototyping into a single familiar tool. No more frustrating switching between apps or learning new stuff. And by... Read more
Adobe Lightroom Classic CC 8.4.1 - Impor...
Adobe Lightroom Classic is available as part of Adobe Creative Cloud for as little as $9.99/month bundled with Photoshop CC as part of the photography package. Adobe Lightroom Classic CC (was Adobe... Read more
iExplorer 4.3.2 - View and transfer file...
iExplorer is an iPhone browser for Mac lets you view the files on your iOS device. By using a drag and drop interface, you can quickly copy files and folders between your Mac and your iPhone or... Read more
Adobe After Effects CC 2018 16.1.3 - Cre...
After Effects CC 2018 is available as part of Adobe Creative Cloud for $52.99/month (or $20.99/month for a single app license). The new, more connected After Effects CC 2018 can make the impossible... Read more
Adobe Audition CC 2019 12.1.4 - Professi...
Audition CC 2019 is available as part of Adobe Creative Cloud for as little as $20.99/month (or $9.99/month if you're a previous Audition customer). Adobe Audition CC 2019 empowers you to create and... Read more
Adobe Premiere Pro CC 2019 13.1.5 - Digi...
Premiere Pro CC 2019 is available as part of Adobe Creative Cloud for as little as $52.99/month. The price on display is a price for annual by-monthly plan for Adobe Premiere Pro only Adobe Premiere... Read more
Navicat Premium Essentials 12.1.25 - Pro...
Navicat Premium Essentials is a compact version of Navicat which provides basic and necessary features you will need to perform simple administration on a database. It supports the latest features... Read more

Latest Forum Discussions

See All

Marvel Strike Force is adding Agent Coul...
Marvel Strike Force, the popular squad-based RPG, is set to receive a bunch of new content over the next few weeks. [Read more] | Read more »
Lots of premium games are going free (so...
You may have seen over the past couple weeks a that a bunch of premium games have suddenly become free. This isn’t a mistake, nor is it some last hurrah before Apple Arcade hits, and it’s important to know that these games aren’t actually becoming... | Read more »
Yoozoo Games launches Saint Seiya Awaken...
If you’re into your anime, you’ve probably seen or heard of Saint Seiya. Based on a shonen manga by Masami Kurumada, the series was massively popular in the 1980s – especially in its native Japan. Since then, it’s grown into a franchise of all... | Read more »
Five Nights at Freddy's AR: Special...
Five Nights at Freddy's AR: Special Delivery is a terrifying new nightmare from developer Illumix. Last week, FNAF fans were sent into a frenzy by a short teaser for what we now know to be Special Delivery. Those in the comments were quick to... | Read more »
Rush Rally 3's new live events are...
Last week, Rush Rally 3 got updated with live events, and it’s one of the best things to happen to racing games on mobile. Prior to this update, the game already had multiplayer, but live events are more convenient in the sense that it’s somewhat... | Read more »
Why your free-to-play racer sucks
It’s been this way for a while now, but playing Hot Wheels Infinite Loop really highlights a big issue with free-to-play mobile racing games: They suck. It doesn’t matter if you’re trying going for realism, cart racing, or arcade nonsense, they’re... | Read more »
Steam Link Spotlight - The Banner Saga 3
Steam Link Spotlight is a new feature where we take a look at PC games that play exceptionally well using the Steam Link app. Our last entry talked about Terry Cavanaugh’s incredible Dicey Dungeons. Read about how it’s a great mobile experience... | Read more »
Combo Quest (Games)
Combo Quest 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Combo Quest is an epic, time tap role-playing adventure. In this unique masterpiece, you are a knight on a heroic quest to retrieve... | Read more »
Hero Emblems (Games)
Hero Emblems 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ** 25% OFF for a limited time to celebrate the release ** ** Note for iPhone 6 user: If it doesn't run fullscreen on your device... | Read more »
Puzzle Blitz (Games)
Puzzle Blitz 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Puzzle Blitz is a frantic puzzle solving race against the clock! Solve as many puzzles as you can, before time runs out! You have... | Read more »

Price Scanner via MacPrices.net

4-core and 6-core 2018 Mac minis available at...
Apple has Certified Refurbished 2018 Mac minis available on their online store for $120-$170 off the cost of new models. Each mini comes with a new outer case plus a standard Apple one-year warranty... Read more
$250 prepaid Visa card with any Apple iPhone,...
Xfinity Mobile will include a free $250 prepaid Visa card with the purchase of any new iPhone, new line activation, and transfer of phone number to Xfinity Mobile. Offer is valid through October 27,... Read more
Sprint is offering the 64GB Apple iPhone 11 P...
Sprint has the new 64GB iPhone 11 Pro available for $12.50 per month for new customers with an eligible trade-in in of iPhone 7 or newer. That’s down from their standard monthly lease of $41.67. The... Read more
Final week: Apple’s 2019 Back to School Promo...
Purchase a new Mac using Apple’s Education discount, and take up to $400 off MSRP. All teachers, students, and staff of any educational institution with a .edu email address qualify for the discount... Read more
Save $30 on Apple’s AirPods at these reseller...
Amazon is offering discounts on new 2019 Apple AirPods ranging up to $30 off MSRP as part of their Labor Day sale. Shipping is free: – AirPods with Charging Case: $144.95 $15 off MSRP – AirPods with... Read more
Preorder your Apple Watch Series 5 today at A...
Amazon has Apple Watch Series 5 GPS models available for preorder and on sale today for $15 off Apple’s MSRP. Shipping is free and starts on September 20th: – 40mm Apple Watch Series 5 GPS: $384.99 $... Read more
21″ iMacs on sale for $100 off Apple’s MSRP,...
B&H Photo has new 21″ Apple iMacs on sale for $100 off MSRP with models available starting at $999. These are the same iMacs offered by Apple in their retail and online stores. Overnight shipping... Read more
2018 4 and 6-Core Mac minis on sale today for...
Apple resellers are offering new 2018 4-Core and 6-Core Mac minis for $100-$150 off MSRP for a limited time. B&H Photo has the new 2018 4-Core and 6-Core Mac minis on sale for up to $150 off... Read more
Save $150-$250 on 10.2″ WiFi + Cellular iPads...
Verizon is offering $150-$250 discounts on Apple’s new 10.2″ WiFi + Cellular iPad with service. Buy the iPad itself and save $150. Save $250 on the purchase of an iPad along with an iPhone. The fine... Read more
Apple continues to offer 13″ 2.3GHz Dual-Core...
Apple has Certified Refurbished 2017 13″ 2.3GHz Dual-Core non-Touch Bar MacBook Pros available starting at $1019. An standard Apple one-year warranty is included with each model, outer cases are new... Read more

Jobs Board

*Apple* Mobility Pro - Best Buy (United Stat...
**719499BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Location Number:** 001266-Charleston-Store **Job Description:** At Best Buy, our Read more
Best Buy *Apple* Computing Master - Best Bu...
**733266BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000144-Union City-Store **Job Description:** **What does a Read more
Best Buy *Apple* Computing Master - Best Bu...
**730765BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000565-St Petersburg-Store **Job Description:** **What does Read more
*Apple* Mobile Master - Best Buy (United Sta...
**725617BR** **Job Title:** Apple Mobile Master **Job Category:** Store Associates **Location Number:** 001095-Chesterfield-Store **Job Description:** **What does a Read more
Student Employment (Blue *Apple* Cafe) Spri...
Student Employment (Blue Apple Cafe) Spring 2019 Penn State University Campus/Location: Penn State Brandywine Campus City: Media, PA Date Announced: 12/20/2018 Date Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.