TweetFollow Us on Twitter

Line Art Rotation
Volume Number:6
Issue Number:5
Column Tag:C Forum

Related Info: Quickdraw

Line Art Rotation

By Jeffrey J. Martin, College Station, TX

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

[ Jeff Martin is a student at Texas A&M University working on his bachelors in computer science. He has been a personal computer technician at the campus computer center, a system operator on the campus mainframes, and now freelances graphic work for various professors. He hopes that one day a motion picture computer animation company will take him away from all of this.]

This being my first stab at an article, I will try to keep it short while leaving in all of the essential vitamins and nutrients. In that spirit my user interface will bring back nostalgic thoughts to those past Apple II and TRS-80 users, and any PC people will feel right at home.

The essence of this program is to show how a seemingly complicated transformation and rotation can be applied to an array of points that form any arbitrary line art.

Of course to form a transformation on the array of points (e.g. offset the points to the left) we simply add some delta x(dx) and/or delta y(dy) to every point:

/* 1 */

for(i=0;i<numofpoints;i++)
  {points[i].h+=dx;points[i].v+=dy;}

Now rotation is a little harder, but to spare you the heartache, it can be shown that for rotation about the origin(fig 1):

So the trick of rotating about some arbitrary point is to first transform that pivot point to be the origin(transforming every other point by the save amount). Second, perform the rotation of all points by the angle theta. Third, transform the pivot back(once again transforming all other points as well).

Now all of this may seem to be a costly maneuver, but the fact is that we can roll all of these into a single matrix multiplication, using homogeneous coordinates:

where

form one matrix.

Fig. 2 shows the multiplication of a homogeneous coordinate and a translation matrix. Please verify that this results in (X+dx,Y+dy) (if unfamiliar with matrix multiplication see mult procedure in program).

Similarly figure 3 shows multiplication with a rotation matrix - an exact translation of our rotation equations in matix form.

So the translation, rotation, and inverse translation matrices are as shown in figure 4. Which forms one matrix to be multiplied times the vertices.

The following program allows the user to enter in points with the mouse until a key is pressed. At that time the user then uses the mouse to enter a pivot point. The program uses the pivot point to form the translation and inverse translation matrices(from the x and y coordinates). The program then forms a rotation matrix of a constant rotation angle(Π/20) and calculates the new vertices based on the values of the old ones. The program undraws the old lines and redraws the new and calculates again until the object has rotated through a shift of 4Π(2 rotations). press the mouse button again to exit program.

Once again, I point out that the code does not follow the user guidelines, but then it is not exactly meant to be an application in itself. Build your own program around it and see what you can do. One suggestion is to cancel the erasing of the object to achieve spirograph patterns. I think too many of the submissions to MacTutor contain an interface that we all know too well, and for those just interested in the algorithms it can mean a lot of extra work. Have Fun.

/* 2 */

#include<math.h>
int errno;

void mult();  /*out matrix mult proc*/
/*floating value of points to avoid roundoff*/
typedef struct rec {float h,v;} points;
main()
{
  int buttondown=0, /*flagg for mouse       */
      n=-1,         /*number of vertices    */
      keypressed=0, /*flagg for key         */
      flip=0,       /*to allow alternating  */
      flop=1,       /*vertices to be drawn  */
      i;            /*array counter         */
  float x,          /*angle counter         */
      T[3][3],      /*translation matrix    */
      Tinv[3][3],   /*translate back        */
      Rz[3][3],     /*rotate matrix         */
      c[3][3],      /*result of T&R         */
      d[3][3];      /*result of c&Tinv      */
  long curtick,     /*for delay loop        */
       lastick;     /*for delay loop        */
  EventRecord nextevent;/*to get mouse&key  */
  Point origin,dummy;   /*pivot and locator */
  points points[2][30];/*vertices(don’t draw Eiffel tower)  */
  WindowPtr scnwdw;    /*window pointer     */
  Rect      scnrect;   /*window rect        */
/*************************************
*  Set things up                     *
*************************************/
InitGraf(&thePort);
InitFonts();
InitWindows();
InitDialogs((Ptr)0L);
TEInit();
InitMenus();
scnrect=screenBits.bounds;
InsetRect(&scnrect,10,25);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc, -1,FALSE,0);
SetPort(scnwdw);
InitCursor();
  
/*************************************
*  Get points                        *
*************************************/
  while(!keypressed)
  {
    buttondown=0;
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
    if(buttondown) /*get a point and draw it*/ 
    {
      GetMouse(&dummy);
      points[0][++n].h=dummy.h;points[0][n].v=dummy.v; 
      if(n==0)
        MoveTo((int)points[0][0].h,(int)points[0][0].v);
      LineTo((int)points[0][n].h,(int)points[0][n].v);
    } /*end of get point*/
  }  /*end of get points*/
  
/*************************************
*  Get origin                        *
*************************************/
  buttondown=0;
  do
  {
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
  }while(!buttondown);
  GetMouse(&origin);
  
/*************************************
*  Make translation matrix           *
*************************************/
  T[0][0]=1;T[0][1]=0;T[0][2]=0;
  T[1][0]=0;T[1][1]=1;T[1][2]=0;
  T[2][0]=-origin.h;T[2][1]=-origin.v;T[2][2]=1;
  Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;
  Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;
  Tinv[2][0]=origin.h;Tinv[2][1]=origin.v;Tinv[2][2]=1;
  Rz[0][2]=0;Rz[1][2]=0;Rz[2][0]=0;Rz[2][1]=0;Rz[2][2]=1;
/*************************************
*  Rotate                            *
*************************************/
  x=0.157;  /*rotation angle - about 9 degrees*/
  Rz[0][0]=Rz[1][1]=cos(x);Rz[0][1]=sin(x);
  Rz[1][0]=-Rz[0][1];
  mult(T,Rz,c);
  mult(c,Tinv,d);
  for(x=.157;x<=12.56;x+=0.157)
  {
    flip++;flip=flip%2;flop++;flop=flop%2;
    for(i=0;i<=n;i++)
    {
      points[flip][i].h=points[flop][i].h*d[0][0]
                    +points[flop][i].v*d[1][0]+1*d[2][0];
      points[flip][i].v=points[flop][i].h*d[0][1]
                    +points[flop][i].v*d[1][1]+1*d[2][1];
    }  /*end update points*/
    ForeColor(whiteColor);  /*undraw flop*/
    lastick=TickCount(); /*time delay for retace to improve animation*/
    do{curtick=TickCount();} while(lastick+1>curtick);
    MoveTo((int)points[flop][0].h,(int)points[flop][0].v);
    for(i=1;i<=n;i++) LineTo((int)points[flop][i].h,(int)points[flop][i].v);
    ForeColor(blackColor);  /*draw flip*/
    lastick=TickCount();    
    do{curtick=TickCount();} while(lastick+1>curtick);
    MoveTo((int)points[flip][0].h,(int)points[flip][0].v);
    for(i=1;i<=n;i++) LineTo((int)points[flip][i].h,(int)points[flip][i].v);
  }  /*end rotate*/
    
/*************************************
*  End everything                    *
*************************************/
  buttondown=0;
  do
  {
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
  }while(!buttondown);
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
  float A[][3],B[][3],C[][3];
{
  int i,j,k;
  
  for(i=0;i<=2;i++)
    for(j=0;j<=2;j++)
    {
      C[i][j]=0.0;
      for(k=0;k<=2;k++)
        C[i][j]+=A[i][k]*B[k][j];
    }
}  /*end mult*/

3D Modeling & Rotation

The main thrust of this exercise is to extend the line art rotation into 3D object rotation using the same techniques as the 2D, while also implementing parallel projection as our means of 3D modeling.

The first part of the exercise requires that we define an object in a structure that we can easily manipulate. Using a cube for simplicity, we will start by defining the center of the cube and an array of vertices, vertex[2][# of pts] (see GetPoints in program). Referring to fig. 1, each vertex corresponds to a corner of the cube. The second dimension of the array is to provide a destination for transformed vertices. Having both sets will allow us to undraw and immediately redraw the shape - minimizing the hangtime between redrawing allows for smoother animation.

Figure 1.

Next let us construct an array of lines connecting these vertices. Each element of the line array refers to the index of the beginning and ending vertex of that particular line. This array will never change. Think of when you roll a die - the edges still go between the same corners, but the position of the corners has changed.

The next construct is the translation and inverse translation matrixes. As in 2D rotation, we must transform our local center of rotation to the origin, rotate, then translate back.

The idea of homogeneous coordinates was introduced in the last article and is now extended into 3D by adding a fourth term. Fig. 2 shows our homogeneous coordinate as a 1x4 matrix times our translation matrix(4x4). The purpose of this multiplication is to add a dx, dy and dz to every point, in order to center our vertices about the origin. Please verify that the matrix multiplication results in X+dx,Y+dy,Z+dz (if unfamiliar with matrix multiplication see matmult in program).

Figure 2.

Now we once again reach the challenging concept of rotation. Although similar to 2D, we now have the option of rotating around the X and Y as well as the Z-axis.

The simplest, rotation about the z-axis, is just as in our 2D rotations, because none of the z-values change. If this is hard to understand, think about this: if you look straight down a pencil with the point a foot away from you and spin it a half turn, the point is still a foot away, but the writing is now on the other side. The equations for the changes in the X and Y are as follows:

  Xnew=XoldCos(Ø) + YoldSin(Ø)
  Ynew=-XoldSin(Ø) + YoldCos(Ø)

The 3D representation in matrix form with a vertex multiplication is in fig. 3. And the proof of all this is in that dusty old trigonometry book up on your shelf. (once again direct multiplication of fig. 3 will yield the preceding equations).

Figure 3.

Similarly rotation about the X axis changes none of the x-values, and rotation about Y changes none of the y-values. The transformation equations are given as follows:

Rotation about the X:

 Ynew=YoldCos(Ø) + ZoldSin(Ø)
 Znew=-YoldSin(Ø)+ZoldCos(Ø)

Rotation about the Y:

   Xnew=XoldCos(Ø) - ZoldSin(Ø)
 Znew=XoldSin(Ø) + ZoldCos(Ø)

The corresponding matrices are shown in figures 4 and 5.

Figure 4.

Figure 5.

Once again we will construct a new array of vertices from a single transformation matrix formed from the translation to the origin, rotation about an axis, and translation back. Therefore creating the new vertices:

 Vnew=Vold*T*Rz*Tinv

or after combining T*Rz*Tinv into a single Master Transformation(MT):

 Vnew=Vold*MT

Finally the trick of parallel projection when viewing an object from down the Z axis is that all you have to do is draw lines between the x,y components of the points (ignore the z). For those mathematically inclined, you will realize that this is just the projection of those 3D lines on the X-Y plane (see fig. 6).

Figure 6.

The particular stretch of code I’ve included implements this transformation on the cube for rotation along the X and Y axes of the center of the cube using the arrow keys. The successive transformations of the vertices are loaded into the flip of the array (vertex[flip][pnt.#]). Then the flop is undrawn while the flip is drawn as mentioned previously and flip and flop are changed to their corresponding 0 or 1.

After launching, the application immediately draws the cube and then rotates it in response to the arrows. The program exits after a single mouse click.

Once again the code is not intended to match up to the guidelines - but is intended for use with other code or simple instructional purposes. It is concise as possible and should be easy to type in. A quick change to numofpts and numoflines as well as your own vertex and and line definitions would allow you to spin your favorite initial into its most flattering orientation.

The inspiration for this program came from the floating couch problem presented in Dirk Gently’s Holistic Detective Agency, by Douglas Adams. If enough interest is shown, perhaps a future article would include hidden line removal and color rendering techniques. After all, it was a red couch.

One last suggestion for those truly interested is to pull your shape definition in from a 3D cad program that will export in text format, such as Super 3D or AutoCad.

Anyway, on with the show

/* 3 */

#include<math.h>
/* Following is inline macro for drawing lines */
#define viewpts(s) {for(i=0;i<numoflns;i++)  \
                     { MoveTo((int)vertex[s][line[i].v1].x,  \
                       (int)vertex[s][line[i].v1].y); \
                       LineTo((int)vertex[s][line[i].v2].x, \
                       (int)vertex[s][line[i].v2].y); }}  
 
#define numofpts 8 /* A cube has eight vertices */
#define numoflns 12    /* lines for every face. */

/* the following are the data structs for vertices and lines*/ typedef 
struct rec1 {float x,y,z;} point3d;
typedef struct rec2 {int v1,v2;} edge;
void mult();/* Matrices multiplication */

main()
{
  point3d vertex[2][8], /* array of 3D pts   */
          center;/* centroid of cube */
  edge    line[12];/* array of lines */
  int     buttondown=0, /* mousedwn flag(for prog end)*/
          keypressed=0,       /* keydwn flg(for arrows)     */
          flip=0,             /* This is index for vertex so*/
          flop=1,             /* can undraw flip & draw flop*/
          i,                  /* counter           */
          rot=0; /* Flag for direction of rotat*/
  long    low;   /* low word of keydwn message */
  float   a,/* Particular angle of rotat     */
          R[4][4], /* Rotation matrix*/
          c[4][4], /* Product of trans & rot mats*/
          d[4][4], /* Product of c and inv trans */
          T[4][4],Tinv[4][4], /* Translation & inv trans    */
          x=0.087266;/* Algle of rot in rad  */
  EventRecord nextevent;
  KeyMap    thekeys;
  WindowPtr scnwdw;
  Rect      scnrect;
/*********************************************
*  Set things up *
*********************************************/
InitGraf(&thePort);
InitFonts();
FlushEvents(everyEvent,0);
InitWindows();
InitMenus();
TEInit();
InitDialogs(0);
InitCursor();
scnrect=screenBits.bounds;
InsetRect(&scnrect,50,50);
scnwdw=NewWindow(0,&scnrect,”\p”,TRUE,dBoxProc,-1,FALSE,0);
  
/*********************************************
*  Get points. Arbitrary cube.*
*********************************************/
center.x=300;center.y=200;center.z=120;
vertex[0][0].x=280;vertex[0][0].y=220;vertex[0][0].z=100;
vertex[0][1].x=320;vertex[0][1].y=220;vertex[0][1].z=100;
vertex[0][2].x=320;vertex[0][2].y=180;vertex[0][2].z=100;
vertex[0][3].x=280;vertex[0][3].y=180;vertex[0][3].z=100;
vertex[0][4].x=280;vertex[0][4].y=220;vertex[0][4].z=140;
vertex[0][5].x=320;vertex[0][5].y=220;vertex[0][5].z=140;
vertex[0][6].x=320;vertex[0][6].y=180;vertex[0][6].z=140;
vertex[0][7].x=280;vertex[0][7].y=180;vertex[0][7].z=140;
line[0].v1=0;line[0].v2=1;
line[1].v1=1;line[1].v2=2;
line[2].v1=2;line[2].v2=3;
line[3].v1=3;line[3].v2=0;
line[4].v1=0;line[4].v2=4;
line[5].v1=1;line[5].v2=5;
line[6].v1=2;line[6].v2=6;
line[7].v1=3;line[7].v2=7;
line[8].v1=4;line[8].v2=5;
line[9].v1=5;line[9].v2=6;
line[10].v1=6;line[10].v2=7;
line[11].v1=7;line[11].v2=4;
T[0][0]=1;T[0][1]=0;T[0][2]=0;T[0][3]=0;
T[1][0]=0;T[1][1]=1;T[1][2]=0;T[1][3]=0;
T[2][0]=0;T[2][1]=0;T[2][2]=1;T[2][3]=0;
T[3][0]=-center.x;T[3][1]=-center.y;T[3][2]=-center.z;T[3][3]=1;
Tinv[0][0]=1;Tinv[0][1]=0;Tinv[0][2]=0;Tinv[0][3]=0;
Tinv[1][0]=0;Tinv[1][1]=1;Tinv[1][2]=0;Tinv[1][3]=0;
Tinv[2][0]=0;Tinv[2][1]=0;Tinv[2][2]=1;Tinv[2][3]=0;
Tinv[3][0]=center.x;Tinv[3][1]=center.y;Tinv[3][2]=center.z;Tinv[3][3]=1;

/*********************************************
*  Rotate *
*********************************************/
viewpts(flip);   /* This draws first set of pts*/
  while(!buttondown) /* Mini event loop*/
  {
    keypressed=0;
    SystemTask();
    if(GetNextEvent(-1,&nextevent))
      if(nextevent.what==mouseDown) buttondown=1;
      else if(nextevent.what==keyDown) keypressed=1;
      else if(nextevent.what==autoKey) keypressed=1;
    if(keypressed) /* Find out which one     */
    {
      keypressed=0;
      low=LoWord(nextevent.message);
      low=BitShift(low,-8);
      if(low==126) {rot=1;a=-x;} /* Set dir flag and-*/
      if(low==124) {rot=2;a=-x;} /* angle(pos or neg */
      if(low==125) {rot=3;a=x;}
      if(low==123) {rot=4;a=x;}
      switch(rot)
      {
        case 1:/* Both of these are rot about the X axis */
        case 3: R[0][0]=1;R[0][1]=0;R[0][2]=0;R[0][3]=0;
 R[1][0]=0;R[1][1]=cos(a);R[1][2]=sin(a);R[1][3]=0;
 R[2][0]=0;R[2][1]=-sin(a);R[2][2]=cos(a);R[2][3]=0;
 R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
        case 2:/* Both of these are rot about the Y axis */
        case 4: 
 R[0][0]=cos(a);
 R[0][1]=0;R[0][2]=-sin(a);R[0][3]=0;
       R[1][0]=0;R[1][1]=1;R[1][2]=0;R[1][3]=0;
       R[2][0]=sin(a);R[2][1]=0;R[2][2]=cos(a);R[2][3]=0;
       R[3][0]=0;R[3][1]=0;R[3][2]=0;R[3][3]=1;break;
      }  /*end switch*/
      mult(T,R,c); /* Combine trans & rotation */
      mult(c,Tinv,d);/* Combine that and inv trans */
      flip++;flip=flip%2;flop++;flop=flop%2; /* flip flop   */
      /* The following actually calculates new vert of rotat*/
      for(i=0;i<numofpts;i++)
      {
        vertex[flip][i].x=vertex[flop][i].x*d[0][0]
                    +vertex[flop][i].y*d[1][0]
                    +vertex[flop][i].z*d[2][0]
                    +1*d[3][0];
        vertex[flip][i].y=vertex[flop][i].x*d[0][1]
                    +vertex[flop][i].y*d[1][1]
                    +vertex[flop][i].z*d[2][1]
                    +1*d[3][1];
        vertex[flip][i].z=vertex[flop][i].x*d[0][2]
                    +vertex[flop][i].y*d[1][2]
                    +vertex[flop][i].z*d[2][2]
                    +1*d[3][2];
       }
       ForeColor(whiteColor);
       viewpts(flop);/* Undraw*/
       ForeColor(blackColor);
       viewpts(flip);/* Draw*/
    }  /*end update points*/
  }

/*********************************************
*  End everything*
*********************************************/
DisposeWindow(scnwdw);
}  /*program end*/

void mult(A,B,C)
  float A[][4],B[][4],C[][4];
{
  int i,j,k;
  
  for(i=0;i<=3;i++)
    for(j=0;j<=3;j++)
    {
      C[i][j]=0.0;
      for(k=0;k<=3;k++)
        C[i][j]+=A[i][k]*B[k][j];
    }
}  /*end mult*/

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

beaTunes 5.2.10 - Organize your music co...
beaTunes is a full-featured music player and organizational tool for music collections. How well organized is your music library? Are your artists always spelled the same way? Any R.E.M. vs REM?... Read more
Meteorologist 3.4.1 - Popular weather ap...
Meteorologist is a simple interface to weather provided by weather.com. It provides the ability to show the weather in the main menu bar, displaying more detail in a pop-up menu, whose contents are... Read more
NeoFinder 7.6 - Catalog your external me...
NeoFinder (formerly CDFinder) rapidly organizes your data, either on external or internal disks, or any other volumes. It catalogs and manages all your data, so you stay in control of your data... Read more
GarageSale 8.1.1 - Create outstanding eB...
GarageSale is a slick, full-featured client application for the eBay online auction system. Create and manage your auctions with ease. With GarageSale, you can create, edit, track, and manage... Read more
Firetask Pro 4.2.2 - Innovative task man...
Firetask Pro uniquely combines the advantages of classical priority-and-due-date-based task management with GTD. Stay focused and on top of your commitments - Firetask Pro's "Today" view shows all... Read more
Bookends 13.4.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
LibreOffice 6.4.5.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Thunderbird 68.10.0 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Firefox 78.0.1 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
BetterTouchTool 3.389 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom)... Read more

Latest Forum Discussions

See All

Distract Yourself With These Great Mobil...
There’s a lot going on right now, and I don’t really feel like trying to write some kind of pithy intro for it. All I’ll say is lots of people have been coming together and helping each other in small ways, and I’m choosing to focus on that as I... | Read more »
Pokemon Go's July Community Day wil...
Pokemon Go developers have announced the details concerning the upcoming Gastly Community Day. This particular event was selected by the players of the game after the Gas Pokemon came in second place after a poll that decided which Pokemon would... | Read more »
Clash Royale: The Road to Legendary Aren...
Supercell recently celebrated its 10th anniversary and their best title, Clash Royale, is as good as it's ever been. Even for lapsed players, returning to the game is as easy as can be. If you want to join us in picking the game back up, we've put... | Read more »
Detective Di is a point-and-click murder...
Detective Di is a point-and-click murder mystery set in Tang Dynasty-era China. You'll take on the role of China's best-known investigator, Di Renjie, as he solves a series of grisly murders that will ultimately lead him on a collision course with... | Read more »
Dissidia Final Fantasy Opera Omnia is se...
Dissidia Final Fantasy Opera Omnia, one of Square Enix's many popular mobile RPGs, has announced a plethora of in-game events that are set to take place over the summer. This will include several rewards, Free Multi Draws and more. [Read more] | Read more »
Sphaze is a neat-looking puzzler where y...
Sphaze is a neat-looking puzzler where you'll work to guide robots through increasingly elaborate mazes. It's set in a visually distinct world that's equal parts fantasy and sci-fi, and it's finally launched today for iOS and Android devices. [... | Read more »
Apple Arcade is in trouble
Yesterday, Bloomberg reported that Apple is disappointed in the performance of Apple Arcade and will be shifting their approach to the service by focusing on games that can retain subscribers and canceling other upcoming releases that don't fit... | Read more »
Pixel Petz, an inventive platform for de...
Pixel Petz has built up a sizeable player base thanks to its layered, easy-to-understand creative tools and friendly social experience. It revolves around designing, trading, and playing with a unique collection of pixel art pets, and it's out now... | Read more »
The King of Fighters Allstar's late...
The King of Fighters ALLSTAR, Netmarble's popular action RPG, has once again been updated with a plethora of new content. This includes battle cards, events and 21 new fighters, which increases the already sizeable roster even more. [Read more] | Read more »
Romancing SaGa Re;univerSe, the mobile s...
Square Enix latest mobile spin-off Romancing SaGa Re;univerSe is available now globally for both iOS and Android. It initially launched in Japan back in 2018 where it's proven to be incredibly popular, so now folks in the West can finally see what... | Read more »

Price Scanner via MacPrices.net

$200 13″ MacBook Pro discounts are back at Am...
Amazon has 2020 13″ 2.0GHz MacBook Pros on sale again today for $150-$200 off Apple’s MSRP. Shipping is free. Be sure to purchase the MacBook Pro from Amazon, rather than a third-party seller, and... Read more
Deal Alert! Apple AirPods with Wireless Charg...
Sams Club has Apple AirPods with Wireless Charging Case on sale on their online store for only $149.98 from July 6, 2020 to July 9, 2020. Their price is $50 off Apple’s MSRP, and it’s the lowest... Read more
Xfinity Mobile promo: Apple iPhone XS models...
Take $300 off the purchase of any Apple iPhone XS model at Xfinity Mobile while supplies last. Service plan required: – 64GB iPhone XS: $599.99 save $300 – 256GB iPhone XS: $749.99 save $300 – 512GB... Read more
New July 2020 promo at US Cellular: Switch an...
US Cellular has introduced a new July 2020 deal offering free 64GB Apple iPhone 11 smartphones to customers opening a new line of service. No trade-in required, and discounts are applied via monthly... Read more
Apple offers up to $400 Education discount on...
Apple has launched their Back to School promotion for 2020. They will include one free pair Apple AirPods (with charging case) with the purchase of a MacBook Air, MacBook Pro, iMac, or iMac Pro (Mac... Read more
July 4th Sale: Woot offers wide range of Macs...
Amazon-owned Woot is blowing out a wide range of Apple Macs and iPads for July 4th staring at $279 and ranging up to just over $1000. Models vary from older iPads and 11″ MacBook Airs to some newer... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Abt Electronics has Apple’s new 32″ Pro Display XDR model with the nano-texture glass in stock and on sale today for up to $144 off MSRP. Shipping is free: – Pro Display XDR (nano-texture glass): $... Read more
New 2020 Mac mini on sale for up to $100 off...
Amazon has Apple’s new 2020 Mac minis on sale today for $40-$100 off MSRP with prices starting at $759. Shipping is free: – 2020 4-Core Mac mini: $759 $40 off MSRP – 2020 6-Core Mac mini: $998.99 $... Read more
July 4th Sale: $100 off every 2020 13″ MacBoo...
Apple resellers have new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP as part of their July 4th sales. Starting at $899, these are the cheapest new 2020 MacBooks for sale anywhere: (1) B... Read more
This hidden deal on Apple’s site can save you...
Are you a local, state, or federal government employee? If so, Apple offers special government pricing on their products, including AirPods, for you as well as immediate family members. Here’s how... Read more

Jobs Board

Operating Room Assistant, *Apple* Hill Surg...
Operating Room Assistant, Apple Hill Surgical Center - Full Time, Day Shift, Monday - Saturday availability required Tracking Code 62363 Job Description Operating Read more
Perioperative RN - ( *Apple* Hill Surgical C...
Perioperative RN - ( Apple Hill Surgical Center) Tracking Code 60593 Job Description Monday - Friday - Full Time Days Possible Saturdays General Summary: Under the Read more
Product Manager, *Apple* Commercial Sales -...
Product Manager, Apple Commercial Sales Austin, TX, US Requisition Number:77652 As an Apple Product Manager for the Commercial Sales team at Insight, you Read more
*Apple* Mac Product Engineer - Barclays (Uni...
Apple Mac EngineerWhippany, NJ Support the development and delivery of solutions, products, and capabilities into the Barclays environment working across technical Read more
Blue *Apple* Cafe Student Worker - Pennsylv...
…enhance your work experience. Student positions are available at the Blue Apple Cafe. Employee meal discount during working hours. Duties include food preparation, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.