TweetFollow Us on Twitter

Lexical Analysis
Volume Number:6
Issue Number:5
Column Tag:Language Translation

Ambiguities and Lexical Analysis

By Clifford Story, Mount Prospect, IL

Part III. Ambiguities, Etc.

A. Introduction

This is the third part in my series on Language Translation. Language translation has three phases: lexical analysis, parsing, and code generation. The first two parts have dealt with building parsers using YACC; this is the final installment on that subject.

That will take up only about half the article. The remainder will begin the new topic of lexical analysis by presenting a skeleton filter tool.

B. Parsing

I now conclude parsing with a couple of miscellaneous topics. The first is a simple way to handle ambiguities in a grammar. Then comes the horrible question of error detection and reporting.

B(1). Ambiguities

Parser ambiguities, you may recall, are spots in the parse table where YACC’s generation algorithm would place a shift and a reduction, or two reductions. A naive grammar would generate an ambiguity when considering the input string

2 + 3 * 4

since it isn’t clear whether this means (2 + 3) * 4 or 2 + (3 * 4).

We faced this problem in the first part and solved it by re-writing the grammar to eliminate the ambiguity. YACC offers another way of handling ambiguities (also known as shift/reduce and reduce/reduce conflicts).

B(1)(a). YACC’s Default Rule

First, something you should know: YACC will work through any conflicts that it finds and produce a non-ambiguous grammar for you. It resolves conflicts automatically, and will only issues warnings, not errors.

Unfortunately, it does this by making assumptions about what you intended, and these assumptions need not be correct. You can get a grammar that simply does not do what you meant it to do, despite the lack of error messages. In my opinion, this is a design flaw in YACC; conflicts should be fatal errors.

Even worse, MACYACC (see the first part for a review) uses an inordinately complicated rule for resolving conflicts. Unix YACC uses a very simple rule, so you can guess what it’s going to do. MACYACC, no such luck.

Therefore, YOU SHOULD ALWAYS REACT TO CONFLICT WARNINGS AS IF THEY WERE FATAL ERRORS!

B(1)(b). Operator Precedence

Remember, conflicts arise when the parser doesn’t know which operation to perform first, as in the 2 + 3 * 4 example. We intelligent humans know that multiplication comes before addition: multiplication has a higher precedence than addition. The conflict is easily and correctly resolved if YACC knows the order of precedence among all operators in the grammar.

All that need be done is tell YACC:

/* 1 */

%left ‘+’ ‘-’
%left ‘*’ ‘/’

Multiplication and division have the same precedence (because they are on the same line), and higher precedence than addition and subtraction (because their line is after addition and subtraction’s line). That solves the problem (read on for an explanation of the “left” business).

But what about strings like

2 - 3 + 4

Is that 2 - (3 + 4) or (2 - 3) + 4? The above rules don’t seem to say, since subtraction and addition have the same precedence.

B(1)(c). What is Associativity?

Good question. In a string of the form

... • ID • ...

where ‘•’ is an operator and ‘ID’ an identifier, the • to the left of the ID will have a higher precedence than the • to the right if • is left-associative; and conversely. Thus,

2 - 3 - 4

is conventionally -5 because subtraction is left-associative. If it were right-associative, 2 - 3 - 4 would equal 2 - (3 - 4), or 3. Just about everything is left-associative.

So associativity defines order of evaluation among operators on the same level of operator precedence. And the line

%left ‘+’ ‘-’

says that addition and subtraction are left-associative among one another.

YACC also includes keywords %right, which means just what you might think, and %nonassoc, which means constructs of the form

... • ID • ...

are illegal (think of logical operators).

B(1)(d). The Lonely Minus...

There’s one more thing to worry about: unary operators. The classic example is the minus sign. Do you remember my asking why a hex calculator was easier to write than a decimal calculator? The answer is that a hex calculator doesn’t have to deal with unary minus...

The problem arises because the minus sign is used for both unary and binary operators (negation and subtraction). When we assign it a precedence in the %left statement, we’re thinking about subtraction, so we give it a lower precedence than multiplication and division. But negation should have the same precedence as multiplication and division.

The solution is to give a grammar rule a precedence. This can be done with the %prec keyword:

expr : ‘-’ expr %prec ‘*’

gives this rule the same precedence as multiplication. Thus, unary minus will have the right precedence, and everything is at last conflict-free.

B(1)(e).  An Example

%token  NUM
%left   ‘+’ ‘-’
%left   ‘*’ ‘/’
%left   MINUS

%%

prob  : expr ‘\n’
 {
 printf(“\t= %d\n”, $1);
 return(0);
 }
 
 ;

expr  : expr ‘+’ expr
 {
 $$ = $1 + $3;
 }
 
 | expr ‘-’ expr
 {
 $$ = $1 - $3;
 }
 
 | expr ‘*’ expr
 {
 $$ = $1 * $3;
 }
 
 | expr ‘/’ expr
 {
 $$ = $1 / $3;
 }
 
 | ‘-’ expr %prec MINUS
 {
 $$ = - $2;
 }
 
 | ‘(‘ expr ‘)’
 {
 $$ = $2;
 }
 
 | NUM
 {
 $$ = $1;
 }
 
 ;

%%

/***************************************/
#include “stdio.h”
#include “ctype.h”
#include “string.h”
/***************************************/
char    *input;
char    *token;
/***************************************/

#define yyerror(x)
 {
 printf(“\t%s [%s]\n”, x, token);
 return(0);
 }

yyparse();
int yylex();
 
/***************************************/
void main(int argc, char *argv[])
 {
 
 char   thestring[256];
 
 if (argc < 1)
 printf(“\tImpossible error!\n”);
 else if (argc > 2)
 printf(“\tHey!  One at a time!\n”);
 else if (argc == 2)
 {
 input = argv[1];
 yyparse();
 }
 else
 {
 printf(“? “);
 while (strlen(gets(thestring)) > 2)
 {
 input = &thestring[2];
 yyparse();
 printf(“? “);
 }
 }
 }
 
/***************************************/
int yylex()
 {
 
 token = strtok(input, “ “);
 input = 0;
 
 if (token == 0)
 return(‘\n’);
 else if (sscanf(token, “%d”, &yylval) == 1)
 return(NUM);
 else
 return(token[0]);
 
 }
/***************************************/

B(2). Catching Errors

You may have noticed that Pascal compilers write real error messages, while C compilers write error messages more cryptic than C itself. There’s a reason for this: Pascal compilers use recursive-descent parsers, while C compilers use table-driven parsers. Recursive-descent parsers are the sort of parsers a person might naturally write: get the next token; if it’s a ‘+’, do this, else get the next token and do that, and so on. A location in the code of the parser corresponds to a particular grammar structure in the input string, so it’s easy to insert appropriate error messages. Table-driven parsers make things more difficult. Ever seen an error message to the effect “Need an lval”? That’s a sign of the parser, not the language; from the YACC global yylval, you can probably guess what an lval is.

So writing meaningful error messages in a YACC-generated parser is a real problem.

B(2)(a). Semantic Errors

Semantic errors are easy. These are illegal operations, like division by zero, and other violations of data types (overflow, writing past the end of an array, and so forth).

The decimal calculator provides the opportunity to divide by zero. Let’s catch this error, and issue an error message instead. Division occurs in only one grammar rule:

/* 3 */

expr  | expr ‘/’ expr
 {
 $$ = $1 / $3;
 }

Just insert an operand check in the generated code:

/* 4 */

expr  | expr ‘/’ expr
 {
 if ($3 != 0)
 $$ = $1 / $3;
 else
 {
 printf(“Divide by zero!\n”);
 return(0);
 }
 }

I’m using a cheap trick here; the return(0) means abort. This is ok, because the calculator evaluates one expression at a time, and an error should cause an abort. But if this were a compiler, detecting a single error should not kill the compile; I want to know about ALL the errors.

B(2)(b). Illegal Characters

The language’s character set has nothing to do with the grammar, and hence nothing to do with the parser. It is entirely in the control of the lexical analyzer. And, of course, it’s easy for the lexical analyzer to catch illegal characters. But how can it report them?

Here’s my solution. First, I declare a new token at the top of the input file:

/* 5 */

%token  ILLEGAL

None of the grammar rules use this token, so should the lexical analyzer return it, the parser must sense an error.

Now, to get an error message out of this! I’m going to continue to declare the yyerror routine as a macro, so it can use the parser’s local variables and also abort the parser. Then I’m going to create a new error routine that yyerror will call, passing a couple of those interesting locals. The two I want are ‘tmpstate’, the current state of the parser, and ‘pcyytoken’, the type of the last token returned by yylex(). The declarations look like this:

/* 6 */

#define yyerror(x)
 {
 errordisplay(tmpstate, pcyytoken);
 return(0);
 }
void errordisplay(int state,
 int tokentype);

Then, in the errordisplay() routine, if ‘tokentype’ equals ILLEGAL, I print an appropriate message.

B(2)(c). Syntactic Errors

Errors of syntax are the hard ones (and my development of this topic has not been helped by my outliner’s just destroying my first approach to it. Especially since I wrote the outliner... A word of advice to aspiring Mac programmers: do not neglect the grow zone routine.) The problem is that these errors are detected by a table that we didn’t write, instead of nice readable code that we did.

But we can still zero in on the specific error. We begin with the .out file. If there’s an error in state 0, we know why: the parser was expecting a number, a -, or a (, but it got something else instead. So instead of saying just “syntax error”, we say “Expecting a number, - or (!”. We can do the same for each state, and write errordisplay() as follows:

/* 7 */

void errordisplay(int state,
 int tokentype)
 {
 
 if (tokentype == ILLEGAL)
 printf(“\tIllegal character!\n”);
 else switch (state)
 {
 
 case 0:
 case 3:
 case 4:
 case 7:
 case 8:
 case 9:
 case 10:
 printf(“\tExpecting a number,”
 “‘-’ or ‘(’!\n”);
 break;
 
 case 2:
 printf(“\tExpecting an “
 “operator or end “
 “of input!\n”);
 break;
 
 case 12:
 printf(“\tExpecting an “
 “operator or ‘)’!\n”);
 break;
 
 case 13:
 case 14:
 printf(“\tExpecting a ‘*’ “
 or ‘/’!\n”);
 break;
 
 default:
 printf(“\tImpossible error!  “
 “State = %d, token = %d\n”,
 state, tokentype);
 break;
 
 }
 
 }

All right, but we can do better than that. For example, since the parser is in state 0 only when it is reading the first token, an error in state zero means that the token is wrong for the beginning of input, so we might write something more to the point, like “An expression must begin with a number, - or (!”. Similarly, we can look closer at the other states and get a better idea of just what is going on in each. We can use the token type to further focus on the error. And so on.

And we can also keep track of just where in the input we are, so we can point to the location of the error:

? 2 - 3 4
        ^

Expecting an operator or end of input!

B(3). Last Words on YACC

And that’s it for YACC. Which is not to say that nothing in the remainder of the series will rely on YACC; on the contrary. But I will assume that my audience is now familiar with the tool and introduce grammar descriptions and such without apology.

The next topic is lexical analysis. And since I’ve got some space left this month, I’ll launch into it with a skeleton filter program.

C. Lexical Analysis

Next time, I will move on to lexical analysis, and replace my calculator example with a file filter. Filter programs are somewhat unusual in the Macintosh world, so perhaps a definition is appropriate: a filter program is one that reads one filter, massages it in some way, and writes the result. Such programs are common under Unix, where simple programs can be strung together in batch files with IO redirection and piping to create much more powerful utilities. For an example, see the discussion of Steve Johnson’s spell utility on page 139 of Jon Bentley’s Programming Pearls.

The calculator example I’ve used so far is not a filter, since it works from direct user input on the command line. It looks like the rest of this series will use filters, however; first with the lexical analysis examples, and then with the inline assembler. What I’m going to do now is develop a basic identity filter, to settle some issues once and for all, so I can then ignore them and concentrate on language translation.

C(1). Command Line

The first problem is reading the command line. I want the tool to read either one or more files named on the command line, or standard input if there aren’t any named input files. I want it to write to a named output file, or to standard output if none is named. And I want to be able to set a language type (for reasons that won’t become clear until next month) with command line options.

Recall that MPW passes the command line as an array of strings. The first string, argv[0], is the name of the tool, and the rest are the individual arguments.

C(1)(a). Input Files

Input files are specified on the command line by name alone, with no special flags. If a name appears unaccompanied by any flag, it is by default an input file. The tool can read arbitrarily many input files; if none are specified, then it reads standard input (which can come from IO redirection).

So I’m going to have an integer variable called “input” which I will initialize to the standard input unit. Then I’ll walk through the argument list, and if I find an input file, I will open it (using the “input” variable for its unit), append it to my input buffer, and close it. If, after reading the entire command line, “input” is still equal to standard input, then I know that no input files were named, and so I’ll read standard input into the buffer.

C(1)(b). Options

Options are command arguments that begin with a hyphen (this doesn’t have to be so; I have written a tool with an almost natural-language command line but -options are customary and easy to parse).

There are two kinds of options: the output file, and true options (the name of the output file isn’t a true option, of course, but it’s specified with option syntax).

C(1)(b)(i). Output File

The tool can write one output file, or write to standard output. A named output file is specified with a “-o” option followed by the name of the file.

Similarly to output, I have an integer variable called “output”, initially set to the standard output unit. If an output file is named on the command line, then I open it, and set “output” to its unit number. If “output” isn’t standard output, then I know an output file is already open, so I print a warning and ignore the new file.

C(1)(b)(ii). Language

I won’t be using the language option this month but I might as well get it in here anyway. The language can be either Pascal or C. Pascal is the default; it is reset by the first named input file with either a “.p” or “.c” extension, and this can be overridden with either a “-p” or “-c” command option.

First, I’ll declare a special type, “codetype”:

/* 8 */

typedef enum
 {
 nocode,
 pascalcode,
 ccode
 } codetype;

and a variable, “language” of type codetype, initially “nocode”. This indicates that the language has not been set.

As I walk though the command line, if I find an input file, “language” is still “nocode”, and the file name ends in either “.p” or “.c”, then I’ll set “language” accordingly. Thus, only the first such file can set the language.

If, on the other hand, I find a “-p” or “-c” option, I will set “language” accordingly, regardless of any previous setting. The options override filename conventions. (I don’t check for multiple options; the last one controls.)

Finally, if “language” is still “nocode” after reading the entire command line, then I set it to the default, Pascal.

C(2). IO Buffering

In the interests of speed, I’ll buffer both input and output. If you don’t think this makes a difference, just re-write the tool without buffering!

Input buffering is easy: I just read input, in 1K chunks, into a single buffer, which I can re-size as necessary to accommodate the amount to read. The MPW interface doesn’t provide any way to get the file size before reading it (not surprising, I guess; what’s the “size” of standard input?).

Output buffering is a bit more complex. This is an identity filter, so I just copy the input without modification to the output buffer. When the output buffer fills up, I write 1K of it to the output file, and shift what’s left to the front of the buffer.

C(3). The Program

Here’s the code. The file “managers” is a load file containing all the C include files; this makes compilation of the program faster.

/* 9 */

// Filter.c - Skeleton MPW filter tool
 
#pragma load “managers”
 
// Constants and Macros
 
#define nil 0
 
#define stdinfd  0
#define stdoutfd 1
#define stderrfd 2
 
#define stdunit(x) ((x >= stdinfd) && (x <= stderrfd))
#define notstdunit(x)(x > stderrfd)

#define nombuffsize1024
#define truebuffsize 1200
 
// Types
typedef enum {false, true} logical;

typedef enum
 {
 nocode,
 pascalcode, 
 ccode
 } codetype;
 
// Prototypes
 void initmac();
 int openoutput(char *thename, int output);
 int readinput(int input, Handle inbuffer, int buffersize);
 int filter(char *inbuffer, int buffersize, int output, 
 codetype language);
 int writeoutput(int output, char *outbuffer, int buffersize);
 
// main
// ----
// the “main” routine reads and
// interprets the command line,
// concatenates input files into an
// input buffer, opens the output
// file, and calls the “filter”
// routine to write the output.
 
int main(int argc, char *argv[])
 {
 int    index;
 int    input;
 int    output;
 codetype language;
 Handle inbuffer;
 int    buffersize;
 char   *thetail;
 
 initmac();
 
// “input” is the fd of the input file,
// initially stdin “output” is the fd
// of the output file, initially
// stdout “language” is the language
// to parse, initially unknown
 
 input = stdinfd;
 output = stdoutfd;
 language = nocode;
 
// “inbuffer” is the input buffer,
// initially empty but able to grow
// “buffersize” is the size of “inbuffer”
 
 inbuffer = NewHandle(0);
 buffersize = 0;
 
// command line interpreter: loop through command options
 
 for (index = 1; index < argc; index++)
 {
 if (argv[index][0] == ‘-’)
 {
 switch (argv[index][1])
 {
 
// “-p” and “-c” options set language
// type; these override any previous setting
 
 case ‘P’:
 case ‘p’:
 language = pascalcode;
 break;
 
 case ‘C’:
 case ‘c’:
 language = ccode;
 break;
 
 case ‘O’:
 case ‘o’:
 output = openoutput(
 argv[++index], output);
 if (output < 0)
 {
 fprintf(stderr, “Error - Unable”
 “ to open output  file %s!\n”,
 argv[index]);
 exit(2);
 }
 break;
 
 default:
 fprintf(stderr, “Error - Unknown option %s\n”,
  argv[index]);
 exit(2);
 break;
 
 }
 
 }
 else
 {
 
// if “language” has not changed since
// initialization, set “language”
// according to file name (the first
// input file thus determines language type)
 
 if (language == nocode)
 {
 thetail = argv[index] + strlen(argv[index]) - 2;
 if (strcmp(thetail, “.p”) == 0)
 language = pascalcode;
 else if (strcmp(thetail, “.c”) == 0)
 language = ccode;
 }
 
// open the input file (after this step,
// “input” will NOT contain a standard
// unit number) and read it into the input buffer
 
 input = open(argv[index], O_RDONLY);
 if (input < 0)
 {
 fprintf(stderr, “Error - Unable to open input”
 “file %s!\n”, argv[index]);
 exit(2);
 }
 
 buffersize = readinput(input, inbuffer, buffersize);
 if (buffersize < 0)
 {
 fprintf(stderr, “Error -  Reading from %s!\n”,
 argv[index]);
 exit(2);
 }
 
 close(input);
 
 }
 }
 
// if “input” is still a standard unit
// number, then no input file was
// opened, and input must be from standard input
 
 if (stdunit(input))
 {
 buffersize = readinput(input,
 inbuffer, buffersize);
 if (buffersize < 0)
 {
 fprintf(stderr, “Error - Reading from standard”
 “ input!\n”);
 exit(2);
 }
 }
 
// if “language” is still unknown, set it to Pascal
 
 if (language == nocode)
 language = pascalcode;
 
// the routine “filter” does the real work of the program
 
 HLock(inbuffer);
 filter(*inbuffer, buffersize, output, language);
 HUnlock(inbuffer);
 
// wrapup:  close “output” first if the program opened it
 
 DisposHandle(inbuffer);
 
 if (notstdunit(output))
 close(output);
 
 exit(0);
 }
 
// initmac
// ------
// initialize any necessary managers and whatnot.
 
void initmac()
 {
 
 InitGraf((Ptr)&qd.thePort);
 SetFScaleDisable(true);
 
 InitCursorCtl(nil);
 }
 
// openoutput
// ----------
// open the output file.  returns the
// fd or, if an error occurs, the
// error flag.
 
int openoutput(char *thename, int output)
 {
 FInfo  theinfo;
 
// if “output” is not a standard unit,
// then an output file must have already be open
 
 if (notstdunit(output))
 {
 fprintf(stderr, “Warning - additional output file %s”
 “ ignored!\n”, thename);
 return(output);
 }

// open the output file for writing
// (O_WRONLY), creating it if
// necessary (O_CREAT) and
// zeroing it otherwise (O_TRUNC)
 
 output = open(thename, O_WRONLY + O_CREAT + O_TRUNC);
 if (output < 0)
 return(output);

// if the file was created by “open”, it
// will be untyped, so set the type to TEXT and MPS
 
 if (getfinfo(thename, 0, &theinfo))
 {
 fprintf(stderr, “Warning - unable to get info for output file %s!\n”, 
thename);
 return(output);
 }
 
 theinfo.fdType = ‘TEXT’;
 theinfo.fdCreator = ‘MPS ‘;
 
 if (setfinfo(thename, 0, &theinfo))
 fprintf(stderr, “Warning - unable to set info for output file %s!\n”, 
thename);
 
 return(output);
 }
 
// readinput
// --------
// this routine appends an input file
// to the input buffer and returns
// the new size of the buffer or, if
// a read error occurs, the error flag.
 
int readinput(int input, Handle inbuffer, int buffersize)
 {
 int    readsize;
 
 SetHandleSize(inbuffer, buffersize + 1024);
 HLock(inbuffer);
 
 while ((readsize = read(input,
 *inbuffer + buffersize, 1024)) > 0)
 {
 buffersize += readsize;
 HUnlock(inbuffer);
 SetHandleSize(inbuffer, buffersize + 1024);
 HLock(inbuffer);
 }
 
 if (readsize < 0)
 return(readsize);
 
 HUnlock(inbuffer);
 SetHandleSize(inbuffer, buffersize + 1024);
 
 return(buffersize);
 }
 
// filter
// ------
// this routine does the main work of
// the program, which in this case
// consists of simply writing the
// input buffer to the output file.
 
int filter(char *inbuffer, int buffersize, int output,
 codetype language)
 {
#pragma unused(language)
 
 int    inposition;
 int    outposition;
 char   outbuffer[truebuffsize];
 unsigned char thechar;
 int    writesize;
 
// “inposition” keeps track of the
// current position in the input
// buffer, initially at the beginning
// “outposition” keeps track of the
// current position in the output
// buffer, initially at the beginning
 
 inposition = 0;
 outposition = 0;
 
 while (inposition < buffersize)
 {
// copy input to the output buffer, one character at a time
 thechar = *(inbuffer + inposition++);
 outbuffer[outposition++] = thechar;
 
// when the output buffer fills up, write it to output
 if (outposition >= nombuffsize)
 outposition = writeoutput(
 output, outbuffer, 
 outposition);
 if (outposition < 0)
 return(outposition);
 
 }
 
// write whatever is left in the buffer
// directly to output
 
 writesize = write(output, outbuffer, outposition);
 return(writesize);
 }
 
// writeoutput
// ----------
// this routine flushes the output 
// buffer by writing it to the output
// file.  It returns the new size of
// the buffer or, if a write error
// occurs, the error flag.
 
int writeoutput(int output, char *outbuffer, int buffersize)
 {
 int    writesize;
 
 writesize = write(output, outbuffer, nombuffsize);
 
 if (writesize < 0)
 return(writesize);
 
 buffersize -= writesize;
 BlockMove(outbuffer + writesize, outbuffer, buffersize);
 
 return(buffersize);
 }

D. Conclusion

Next time I’ll expand the Filter tool by adding a state machine to control the transfer of data from the input buffer to the output buffer. I’ll assume you’ve got the code just above, and won’t repeat it, except for the “filter” routine. So hang on to this issue of MacTutor!

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

OmniOutliner Pro 5.4.1 - Pro version of...
OmniOutliner Pro is a flexible program for creating, collecting, and organizing information. Give your creativity a kick start by using an application that's actually designed to help you think. It's... Read more
EarthDesk 7.3 - $24.99
EarthDesk replaces your static desktop picture with a rendered image of Earth showing correct sun, moon, and city illumination. With an Internet connection, EarthDesk displays near-real-time global... Read more
Monosnap 3.5.3 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Features Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel... Read more
Monosnap 3.5.3 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Features Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel... Read more
Spotify 1.0.93.244 - Stream music, creat...
Spotify is a streaming music service that gives you on-demand access to millions of songs. Whether you like driving rock, silky R&B, or grandiose classical music, Spotify's massive catalogue puts... Read more
Evernote 7.6 - Create searchable notes a...
Evernote allows you to easily capture information in any environment using whatever device or platform you find most convenient, and makes this information accessible and searchable at anytime, from... Read more
Final Cut Pro X 10.4.4 - Professional vi...
Final Cut Pro X is a professional video editing solution. Completely redesigned from the ground up, Final Cut Pro adds extraordinary speed, quality, and flexibility to every part of the post-... Read more
Compressor 4.4.2 - Adds power and flexib...
Compressor adds power and flexibility to Final Cut Pro X export. Customize output settings, work faster with distributed encoding, and tap into a comprehensive set of delivery features. Features... Read more
Motion 5.4.2 - Create and customize Fina...
Motion is designed for video editors, Motion 5 lets you customize Final Cut Pro titles, transitions, and effects. Or create your own dazzling animations in 2D or 3D space, with real-time feedback as... Read more
Thunderbird 60.3.1 - Email client from M...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more

Latest Forum Discussions

See All

Slots Panther Vegas offers a social gamb...
New era of Online gambling Want to try your luck in online social gambling? More and more people are into online casinos as a risk-free amazing way to experience the excitement of a big game. Online casinos and slots machines are gaining popularity... | Read more »
3 features we think you'll love in...
Well known classic RPG “Shin Megami Tensei” franchise originally created by Atlus, can now be played throughout iOS and Android. Created by Sega, “Shin Megami Tensei” has spawned a mobile-centric installment in the shape of “Shin Megami Tensei:... | Read more »
These are the top 3 games for iPhone and...
The end of the week has rolled around again, which means it's time for us to look forward to the games you're going to be playing over the next seven days. We've got the return of a mobile gaming legend next week, as well as a couple of other... | Read more »
Time for you to pick which of these top...
Oh look, Thursday is upon us once more. And we all know what that means! You guessed it, it's time for you to vote for which of these five games you think deserves to win our game of the week award. And have we got a selection for y'all this week... | Read more »
Dragalia Lost - High Midgardsormr Prep G...
It might not seem like there's a ton to do between events in Dragalia Lost, but there is one high level piece of content that can keep you occupied for a long time. Defeating High Midgardsormr is currently the game's most difficult non-event... | Read more »
Get your friends, these are the top 5 be...
You can't be a lone wolf all the time, especially if you want to show off your gaming prowess. And that's where this list comes in - we're running down what we think are the top 5 multiplayer games for iPhone. There might be some controversial... | Read more »
SpitKiss is the worthy winner of last we...
It's been a rough and tumble battle this week, with all of the games managing to get a few hits in where it counts, but after checking with the independent adjudicators at ringside, we can now reveal that gloriously gross smooching sim SpitKiss has... | Read more »
The best games for iPhone - The definiti...
Hi there, and welcome to our ever-increasing list of the very best games for iPhone. We're going to be updating this regularly with new content, so make sure you check back often, because you're not going to want to miss out on even one of the... | Read more »
Dragalia Lost Guide - What You Need To K...
Another raid has come and gone in Dragalia Lost, but that doesn’t mean there’s not still lots to do. In fact, the game’s next event, A Wish to the Winds, has already been announced and will be coming to the game this Wednesday. Although details are... | Read more »
The top 5 best games like Star Wars: Gal...
One of the things we like to do here at 148Apps is broaden your horizons. Maybe you're a fan of Star Wars: Galaxy of Heroes and you're looking for something that's going to scratch similar itches? Well that's where we come, and more specifically... | Read more »

Price Scanner via MacPrices.net

Save on a new MacBook with these early Black...
B&H Photo has posted early Black Friday sale prices on Apple MacBooks, including up to $300 off MSRP on 15″ MacBook Pros, $100 off new 13″ MacBook Airs, and more. Most of these deals expire... Read more
T-Mobile Black Friday deal: Free iPhone Xr wi...
T-Mobile is offering the 64GB iPhone Xr for free as part of their Black Friday 2018 sale. Two new lines are required, as well as an eligible trade-in (iPhone 6s models or newer). $20.84 is applied to... Read more
Save up to $157 on a 10.5″ iPad Pro with thes...
Apple’s newest authorized reseller, Jet, has 10.5″ iPad Pros on sale for up to $157 off MSRP as part of their Black Friday week sale. Shipping is free. Note that some sale prices may be restricted to... Read more
US Cellular offers free iPhone Xr for new lin...
US Cellular is offering the 64GB iPhone Xr for free as part of their Black Friday 2018 sale. A new line is required, but there is no trade in requirement. Any of the iPhone Xr colors qualify. The... Read more
Roundup of Black Friday Week 2018 Sales &...
At MacPrices.net, we give you the most accurate Mac and Apple prices on the web. Choose one of our price trackers at the top of the page to see all the current sale prices on Apple’s products from... Read more
Details of Amazon’s 2018 Black Friday week di...
Amazon’s recent agreement with Apple has allowed the online store to add most of Apple’s most popular products to its inventory, including new 2018 iPad Pros, Mac minis, Apple Watch Series 4, and... Read more
Get A Job With Apple, The No. 3 ‘World’s Best...
FEATURE: 11.16.18- If you are a fan of Apple, Inc. and an avid user of any one of its vast array of tech gadgets, why not take it a step further and work for the company behind those products you... Read more
Sprint offers $100 discounts on Apple Watch S...
Sprint is offering customers $100 discounts on the purchase of a cellular Apple Watch Series 4 or Apple Watch Series 3. Their discount reduces the cost of a Series 4 watch to $399 (40mm) or $429 (... Read more
New 2018 11″ 64GB & 256GB iPad Pros in st...
MacMall has the new 2018 11″ 64GB and 256GB iPad Pros in stock today for $50 off Apple’s prices. They’re currently the lowest prices available for these new iPad Pros. – 11″ 64GB Space Gray WiFi iPad... Read more
New Mac minis in stock and available today at...
Apple Authorized Reseller Adorama has the new 2018 Mac minis in stock today today sales tax free for residents outside of NY & NJ. Shipping is also free. – 3.6GHz Quad-Core mini: $799 – 3.0GHz 6... Read more

Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**658102BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000395-Pensacola-Store **Job Description:** **What does a Read more
*Apple* Mobile Master - Best Buy (United Sta...
**658022BR** **Job Title:** Apple Mobile Master **Job Category:** Store Associates **Location Number:** 000793-Dothan-Store **Job Description:** **What does a Best Read more
Geek Squad *Apple* Master Consultation Agen...
**657784BR** **Job Title:** Geek Squad Apple Master Consultation Agent **Job Category:** Services/Installation/Repair **Location Number:** 000597-Erie-Store **Job Read more
Best Buy *Apple* Computing Master - Best Bu...
**655276BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000387-Randall Road-Store **Job Description:** **What does a Read more
Omni-Channel Associate - *Apple* Blossom Ma...
Omni-Channel Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1074107 Date:November 12, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.