TweetFollow Us on Twitter

HyperAppleTalk 1
Volume Number:5
Issue Number:1
Column Tag:HyperChat™

Related Info: AppleTalk Mgr

XCMD Cookbook: HyperAppleTalk

By Donald Koscheka, Arthur Young & Company, MacTutor Contributing Editor

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

HyperCard Networking

One of the areas where XCMDs can dramatically alter the capabilities of HyperCard is networking. HyperCard 1.2 introduced the concept of shared stacks by implementing an interface to AppleShare. Unfortunately, too many people have come to believe that AppleShare is all the networking that you need in HyperCard or in any other application on the Macintosh.

Networking can offer a lot more than simple file access to the user. Imagine sending messages or data between stacks interactively. While I was still at Apple, we implemented two stacks that better explain this concept. Imagine that one Mac on the network acted as the stock exchange. Each successive stack that logged in becomes a stock broker and can immediately begin buying and selling stocks and competing against other brokers on the network. This was a fun little project that took on a wonderful new dimension when we added the network interface. There is no truth to the rumor that we began beta testing this stack on October 19, 1987!

A second stack that we wrote provided the capability of an interactive chalkboard. Everybody who logs in can see the chalkboard as well as pick a paint tool and actually draw something on the board. Every other user would see these changes. An interesting exercise in cooperative work area applications.

HyperAppleTalk

The code that I used to implement these sample stacks is a set of XCMDs called “HyperAppleTalk”. These XCMDs implemented the AppleTalk Transaction Protocol (ATP) and the Name Binding Protocol (NBP). ATP is a network protocol that implements the server/client model. One entity on the network acts as an information provider or server while subsequent systems act as information requestors or clients. Although this is a very flexible model, the particular implementation of ATP is a little too limiting. Client requests must be less the 578 bytes in length and server responses must be less than 4624 bytes. If a client made a request to the user for a file that is greater than 4600 bytes, the ATP protocol would need help from another protocol layered on top of ATP. I chose not to implement this protocol because ATP as it stands is more than adequate for sharing messages between stacks. You can obtain a copy of these XCMDs, written in MPW C, from the Apple Programmers and Developers Association (APDA).

The second protocol that I implemented in HyperAppleTalk is the Name Binding Protocol. This is the mechanism by which user names are associated with network addresses on AppleTalk. The name binding protocol allows you to register a name with the network. This is an important feature since network addresses tend to resemble phone numbers. Imagine how much trouble you would have using the phone if you knew only a party’s number and not their name!

Over the next several months I will be providing you with network access in HyperCard. This month I will introduce the concept of “connecting” to the network, that is, establishing the address and record structures required to maintain communication with the network. Next month, I will provide a complete set of routines for access to the Name Binding Protocol. The third installment will feature an important new protocol, the AppleTalk Data Stream Protocol. Finally, we’ll add some embellishments such as access to multiple networks across bridges and file transfer across the network. The result will be complete set of protocols that will allow you to interactively send messages, data and even entire files between stacks running on different systems.

“Connecting” to the Network

To help us get started, we need to examine network basics. Because network programming carries the aura of being difficult, I will keep this introduction simple. You can obtain more information from Inside Macintosh, Inside AppleTalk or from back issues of MacTutor (April ’87, Vol. 3 No. 4) which is where I first learned how to program for the network.

A network consists of a number of entities that are connected by some common transport mechanism. Foremost of us, this transport mechanism is LocalTalk. A node is any device that can be connected to the network and share information with other devices. For sake of illustration, think of each device on the network as a single node.

The set of software protocols that control the traffic and communications on the network is called “AppleTalk”. These protocols are quite independent of the cabling between entities which is why Apple went to such pains to divorce LocalTalk from AppleTalk. This separation pays dividends to the programmer. We can think of AppleTalk as a software mechanism and not worry a whit about what wires are connected.

AppleTalk functions at a variety of levels. At the lowest level, AppleTalk coordinates the transmission and reception of discrete packets of information between entities. To ensure that two entities don’t “hog up the wire” each communication is sent as packets of about 600 bytes of information. A 6K file will require about 10 packets to be sent in its entirety. We call the complete communication of all packets a transaction. The completion of a transaction is guaranteed for you by AppleTalk via the Dynamic DataLink Protocol (DDP), and we need not concern ourselves with it at this time (there are lower-level protocols than DDP, but we don’t need to know them to do serious programming on the network. Think of the lower layers as the network’s “assembly language”).

Nodes address each other on the network by their network addresses. As we said, Network Addresses are similar to phone numbers. If you know the network address of any entity, you can communicate with that entity. The network address consists of three objects: the network number, the node and the socket. For now, we’ll assume that all entities are on the same network so that the network number is always 0 (we’ll relax this constraint later when we introduce the concept of internet addressing with the Zone Information Protocol). The second part of the address is the node id which uniquely identifies an entity within a given network.

The most important concept in the network address is the concept of a socket. A network address is a 16-bit object (a pascal INTEGER) that remains constant for as long as that network remains active. The node id is an 8-byte entity that remains valid for as long as an given node in the network stays up. Sockets, unlike network and node id’s, come and go as needed. Sockets are associated with individual transactions on the network and provide a vital way for the network to properly route transactions between nodes on the network.

Socket Flavors

For our purposes, sockets come in two flavors, listening sockets and transaction sockets. Each node on the network needs at least one “semi-permanent” listening socket whose sole job is to react to incoming requests from other nodes. Listening sockets are like the “ringer” on your telephone. They don’t do much more than let you know that someone is trying to get a hold of you. Listening sockets are said to be semi-permanent because they are assigned to a single node for as long as that node remains connected to the appropriate protocol. In ATP, a listening socket is equivalent to a server. In ADSP, as we shall see, a listening socket is also called a connection listener.

The second class of sockets are “dynamic” sockets which I refer to as transaction sockets. Once a connection is established between any two nodes, a transaction socket is assigned to those two nodes for the duration of that transaction. Once the transaction is completed, the dynamic socket is returned to the “socket” pool. This is important because a socket is an 8-bit entity. With only 256 possible combinations, the need to conserve and reuse socket numbers becomes important.

The neat thing about dynamic sockets is that they uniquely identify a given transaction. One node can easily carry on multiple conversations simultaneously because each conversation is identified by its unique socket id. Dynamic sockets are assigned and de-assigned automatically. We won’t have to concern ourselves with the intricate underworkings of this mechanism in this discussion. All we need to remember is that when we establish a connection with another entity on the network, that connection will receive a unique socket id. When we “tear down” the connection, that socket will be made available for a future connection.

Name Calling

Keeping track of nodes on the network by their network address is not particularly user friendly; it would be roughly similar to calling people by their social security numbers. And we know that’s not user friendly because only government agencies and the DMV would think of doing that!

We need a way of identifying a given node on a given network with a particular user. In other words, we need a way of binding a user-selectable name with a given network address. This is accomplished using AppleTalk’s name binding protocol (NBP). To bind a name to a network address, we need both a name and an address. Choosing a name is a matter of taste. You can use the name that the user entered in the chooser, or you can ask the user for a name. We’ll present both techniques since not every user types a name in the chooser dialog. Next we’ll need to know what address to bind that name to. We can’t bind a name to a dynamically assigned address for an obviously subtle reason. That is, a node can have a name, a transaction takes on the name of whichever node the transaction is taking place on. As far as why this is true, it should become obvious as you read through the code (i.e. it is left as an exercise for the student).

The binding of a name to a network address can only be done once we establish an address for the listening socket. The listening socket is protocol-sensitive - we don’t want to open a listening socket for ATP if we’re going to be using ADSP as our communications protocol. Thus, we’ll need to open up access to ADSP first to establish the socket address. Once we have this address, we can pass it to the Name Binding Protocol (NBP) along with a name to establish a link. We refer to the association of a name with a network address as an “entity”. An entity is said to be network visible if any other entity on the network can see the address of that entity.

To gain access to the network, we first check to see if AppleTalk is installed with the call to MPPOpen in ADSPOpen (see listing 4). Next, we open up the ADSP protocol driver, intialize some global variables and then establish an ADSP listening socket. We use the setglobal callback to set the values of the globals “HyperADSPData and “mySocketListener”. These globals must be declared before they are used or you may find that earlier versions of HyperCard will bomb out (alas, a bug in HyperCard).

We don’t need to open the Name Binding Protocol (NBP) driver since it is automatically opened for us if AppleTalk is running. The XFCN NBPOpen ( see listing 5 ) initializes the fields in the NBPBlock record. Don’t worry about what those fields do, they’ll be the topic of next month’s article.

Listing 1a is a sample HyperTalk script for opening both ADSP and NBP. Note that if ADSP doesn’t open, there is no need to open NBP; we didn’t get access to the network (the most likely reason for this is that the ADSP driver was not installed at boot time).

If ADSP opens ok, it sets the globaladspdata and mysocketlistener global containers. NBP will need access to the latter container, while globaladspdata is used solely by our ADSP xcmds. Don’t worry about the individual fields in all the records yet, we’ll cover them in sufficient detail in upcoming issues.

The important actions to point out right now is the opening of the “.dsp” (aka ADSP) driver and the assigning of a listening socket. Also, three globals will be used for storage. GlobalNBPData stores a pointer to our NBPBlock. Note that the pointer is stored as a numeric string. This is just to keep compatible with HyperCard’s wanting to use containers to store strings. Similarly, GlobalADSPData stores a pointer to the ADSPBlock and mySocketListener stores the value of the connection listening socket (to be discussed in gory detail in an upcoming issue). Changing any of these values will result in the untimely death of your stack. Make sure your users don’t have access to these containers.

Listings 2-3 contain some global constant and type declarations for ADSP and NBP respectively. Again, there is a lot more there than I can cover in one issue of this magazine, let alone a single column. We will cover all of this information in more detail so stay tuned.

Because we should never leave something undone in HyperCard, a pair of complementary XFCNs are provided in listings 6 and 7. ADSPClose and NBPClose check to see that their global data is allocated. If not, they assume that the drivers are already closed and just return. Otherwise, shut down the communications and clear out the global data. We don’t actually close either AppleTalk or ADSP because some other application may have opened them after we did. This is an important exception to the “If you opened, you close it rule”. In general, if you open an AppleTalk driver, you can leave it open because another application may already be using it. Listing 1b shows one way to access these XFCNs.

Listing 1

on openstack
 global globalNBPData, myRegisteredType, myRegisteredName
 global globaladspData, mySocketListener
  
 put adspOpen() into it
 if it is empty then
 -- have access to adsp and a valid socket in
 -- mySocketListener, okay to continue
        put nbpOpen() into it
        if it is not empty then
        answer “Could Not gain access to NBP” with “OK”
 else
 answer “Welcome to AppleTalk” with “OK”
        end if
   else
        answer “ADSP Driver Not installed” with “OK”
 end if
end openstack

Listing 1a. A sample Script to Open access to the network
on closeStack
 global globalNBPData, myRegisteredType, myRegisteredName
 global globaladspData, mySocketListener

 put adspClose() into some_sort_of_error
 put nbpclose() into yet_another_result
end closeStack

Listing 1b. A sample Script for closing down the network 
Listing 2. Constant and Type declarations for ADSP connections

(******************************)
(* file: ADSPxcmd.p*)
(* *)
(* Interface stuff for adsp *)
(* *)
(* ------------------------ *)
(* By:  Donald Koscheka *)
(* Date:10-Oct-88*)
(* ------------------------ *)
(******************************)

UNIT adspxcmd;

INTERFACE

USES  Memtypes, QuickDraw, OSIntf,
 ToolIntf, AppleTalk, ADSP;

CONST

ASYNC   = TRUE;
SYNC    = FALSE;

{*** connection mode status ***}
NOP= 0;
REQ= 1;
ACK= 2;
EST= 3;

NBPLSIZE= 120;
ATPBSIZE= 578;{standard size of transaction}

INTERVAL= 20;{ default retry interval}
RETRY = 3;{ retry count =3 (3*60=30 secs)}

CLOSE_OK= 0;
RECEIVING = 1;
CLOSE_NOW = 2;

(************************************)
(* The following data blocks      *)
(* reference memory pointers      *)
(* rather than handles. This      *)
(* is to insure that all of the   *)
(* data in the connection  block    *)
(* is non-relocatable since       *)
(* ADSP runs asynchronously       *)
(************************************)

TYPE

LIntPtr = ^LongInt;
IntPtr  = ^INTEGER;

{******** A connection block    **************}
CBPtr = ^Connection;
Connection  = Packed Record
next  : CBPtr;   { pointer to next connection      }
last  : CBPtr;   { pointer to last connection      }
ccbRef: Integer; { connection reference #          }
mode  : Integer; { set if connection is open }
adr: AddrBlock;  { address of remote end           }
msg: Handle;{ callback  for incoming dat     }
sendQ: Ptr; { send buffer to remote end      }
recvQ: Ptr; { input buf from remote end}
attn  : Ptr;{ attention messages buffer}
outBuf: Handle;  { where outgoing data goes  }
inBuf: Handle;   { where the input data goes }
attnBuf: Handle; { where attention data goes }
remName: Handle; { entity name of  remote end      }
ccb: TRCCB; { pointer to ccb}
attnPB: DSPParamBlock;  { attntion message pb      }
dspPB: DSPParamBlock;{ connection pb }
user  : Handle;  { place for user data }
End;

{ This is the listening connection }
ADSPPtr = ^ADSPBlock;
ADSPBlock = Packed Record{ ADSP protocol data}
 dspRefNum: Integer; { driver refnum }
 ccbref : Integer; { listener ccbRefNum}
 addr   : AddrBlock; { listener socket }
 ends   : CBPtr; { connections list}
 ccb    : TRCCB; { listener ccb    }
 pb: DSPParamBlock;{ pb for listener }
 chkPoint : Integer; { set if in callback}
 oldSelf: Byte;  {old  self-send flag}
 pad    : Byte;  { keep em even    }
End;

Str31 = String[31];

End.
Listing 3. Constant and Type declarations for NBP access


(******************************)
(* file:  NBPXCMD.p*)
(* *)
(* Constant and type *)
(* decalarations for nbp  *)
(* xcmds*)
(* ------------------------ *)
(* © Donald Koscheka *)
(* 6-October, 1988 *)
(* All Rights Reserved    *)
(* *)
(* ------------------------ *)
(*  Date    |   Description*)
(* ------------------------ *)
(* 06-Oct-88| file created*)
(* ------------------------ *)
(******************************)

UNIT  NBPXCMD;

(******************************)
 INTERFACE
(******************************)

USES  Memtypes, QuickDraw, OSIntf, ToolIntf, AppleTalk;

CONST

ASYNC   = TRUE;
SYNC    = FALSE;
NODE_NAME = -16096;(* name in chooser (STR )*)
MAXNODES= 100; (* maximum nodes for zone*)
NBPLSIZE= 120; (* size local buf for NBP*)
NN = 30;(* #names in lookup table*)
ENTITYSIZE= 110; (* size of entity *)
CLOSE_OK= 0;(* not “CLOSE” critical*)
CLOSE_NOW = 2;   (* close down when done     *)

TYPE

Str31   = String[31];

NBPBlkPtr = ^NBPBlock;
NBPBlock  = RECORD
 Registered: BOOLEAN;(* true = registered    *)
 EntCount : INTEGER;(* # of entities visible *)
LookUpBuffer: Handle;(* lookup buffer*)
 NTEntry: NamesTableEntry;(* entry in names table*)
 NBPLocal : array[1..NBPLSIZE] of Char;(* used by NBP*)
END;

END.
Listing 4. ADSPOpen() XFCN

(******************************)
(* file:  ADSPOpen.p *)
(* *)
(* Open the “.DSP” driver *)
(* and establish memory for *)
(* the ADSPBlock.Creates the*)
(*connection listener*)
(* *)
(* Requires these Globals *)
(* GLOBALADSPDATA*)
(* mySocketListener*)
(* *)
(* DEFINE THE GLOBALS BEFORE*)
(* USING THEM    *)
(* ------------------------ *)
(* By:   Donald Koscheka  *)
(* Date:10-Oct-88*)
(******************************)
(****************************
 Build Sequence

pascal “{adsp}”ADSPOpen.p -o “{hato}”ADSPOpen.p.o 
link -m ENTRYPOINT  -rt XFCN=1300 -sn Main=ADSPOpen
 “{hato}”ADSPOpen.p.o
 “{libraries}”Interface.o 
 -o “{hat}”SwitchBoard
  
*****************************)

{$R-}
{$S ADSPOpen}
UNIT Koscheka;

(****************************)
 INTERFACE
(****************************)

Uses  MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf, 
 HyperXCmd, AppleTalk, ADSP, adspxcmd;

Procedure EntryPoint( paramPtr : XCmdPtr );

(****************************)
 IMPLEMENTATION
(****************************)

PROCEDURE ADSPOpen( paramPtr: XCmdPtr ); FORWARD;


Procedure EntryPoint( paramPtr : XCmdPtr );
Begin
 ADSPOpen( paramPtr );
End;
 
Procedure ADSPOpen( paramPtr : XCmdPtr );
VAR
 refnum : integer;
 tempH  : Handle;
 adsp   : ADSPPtr;
 error  : OSErr;
 mppPB  : MPPParamBlock;
 longStr: Str255;
 
{$I XCmdGlue.inc }

BEGIN
 error  := noErr;
 adsp   := NIL; {*** assume not in yet***}
 
 {*** Retrieve pointer to our globals  ***}
 tempH := GetGlobal( ‘GLOBALADSPDATA’ );
 
 {*** If it in, convert it to a pointer***}
 IF (tempH <> NIL) AND (tempH^ <> NIL) THEN
 BEGIN
 HLock( tempH );
 ZeroToPas( tempH^, longStr );
 adsp := ADSPPtr( StrToLong( longStr ));
 HUnlock( tempH );
 END;
 
 IF adsp = NIL THEN
 BEGIN
 error := MPPOpen;
 
 IF error = noErr THEN
 BEGIN
 {*** Open the ADSP Driver  ***}
 {*** ADSP driver must be in***}
 {*** your system folder  ***}
 mppPB.newSelfFlag := 1;
 error := PSetSelfSend( @mppPB, SYNC );
 
 error := OpenDriver( ‘.DSP’, refnum );
 END;

 {*** set up connection listener ***}
 IF error = noErr THEN 
 BEGIN

 adsp := ADSPPtr( NewPtr( sizeOf( ADSPBLOCK ) ));
 
 IF adsp <> NIL THEN
 WITH adsp^ DO
 BEGIN
 addr.aNode := 0;
 addr.aNet  := 0;
 addr.aSocket  := 0;
 ends   := NIL;
 dspRefNum  := refnum;
 oldSelf:= mppPB.oldSelfFlag;
 ccbRef := 0;
 chkPoint := CLOSE_OK;
 
 WITH pb DO
 BEGIN
 { OKAY to open a listening socket }
 ioCRefNum  := refnum;
 csCode := dspCLInit;
 ioCompletion  := NIL;
 ccbPtr := @adsp^.ccb;
 localSocket:= 0;
 error  := PBControl( @adsp^.pb, SYNC );

 IF error = noErr THEN
 BEGIN
 { Listener is now all ears}
 ccbRef := ccbRefNum;
 addr.aSocket    := localSocket;
 csCode := dspCLListen;
 filterAddress.aNet  := 0;
 filterAddress.aNode := 0;
 filterAddress.aSocket:= 0;
 error := PBControl( @adsp^.pb, ASYNC );
 END;
 END;
 END;   {*** with adsp  ***}
 
 {*** If adsp opened ok, we have a socket    ***}
 {*** so put away the data and the socket    ***}
 IF error = noErr THEN 
 BEGIN
 SetGlobal(‘GLOBALADSPDATA’,
 PasToZero( NumToStr(LongInt(adsp))));

 SetGlobal( ‘mySocketListener’, 
 PasToZero( NumToStr(LongInt(adsp^.addr))));
 END
 ELSE
 DisposPtr( Ptr(adsp) );
 
 END
 END;
 
 IF error = noErr THEN
 paramPtr^.returnValue := PasToZero( ‘’ )
 ELSE
 paramPtr^.returnValue := PasToZero(numToStr(longint(error)));
END;

end.
Listing 5. NBPOpen() XFCN

(***********************************)
(* file:  NBPOPen.p*)
(* *)
(* Create the control block and  *)
(* initialize the data for  *)
(* the name binding protocol  *)
(* (nbp) stuff.  *)
(* *)
(* ----------------------------  *)
(* © Donald Koscheka *)
(* 6-October, 1988 *)
(* All Rights Reserved    *)
(* *)
(* -------------------------- *)
(*  Date    |   Description *)
(* ----------------------------  *)
(* 06-Oct-88| file created*)
(* ----------------------------  *)
(***********************************)

(***********************************
 MPW Build Sequence
 
pascal “{nbp}”NBPOpen.p -o “{hato}”NBPOpen.p.o
link -m ENTRYPOINT  -rt XFCN=2001 -sn Main=NBPOpen
 “{hato}”NBPOpen.p.o
 “{libraries}”Interface.o 
 -o “{hat}”SwitchBoard
***********************************)

{$R-}
{$S NBPOpen}

UNIT Donald_Koscheka;

(*******************************)
 INTERFACE
(*******************************)

Uses  MemTypes, QuickDraw, OSIntf,
 ToolIntf, PackIntf, HyperXCmd, 
 AppleTalk, nbpxcmd;

Procedure EntryPoint( paramPtr : XCmdPtr );

(*******************************)
 IMPLEMENTATION
(*******************************)

PROCEDURE NBPOpen( paramPtr: XCmdPtr ); FORWARD;

Procedure EntryPoint( paramPtr : XCmdPtr );
Begin
 NBPOpen( paramPtr );
End;
 
Procedure NBPOpen( paramPtr : XCmdPtr );
(**********************************
* This routine initializes some common 
* memory for use by the Name Binding
* Protocol (NBP) Driver and the XCMDs that
* will use it.  
*
* YOU MUST CALL THIS ROUTINE BEFORE
* ANY OF THE OTHER XCMDs/XFCNs in the
* AppleTalk suite.  Failure to do so 
* will result in wildly unpredicatable
* and possibly fatal performance by
* hypercard.
*
* IMPORTANT: 
*THE HYPERCARD VARIABLE 
*  “GLOBALNBPDATA” MUST BE
*DECLARED IN YOUR SCRIPT
*BEFORE CALLING NBPOPEN
*
* Out: Error Result is returned to hypercard
*  or empty if no error
**********************************)
VAR
 i : INTEGER;  {*** just a loop counter***}
 tempH: Handle;  {*** Used to get global     ***}
 nbp  : NBPBlkPtr; {*** MUST NOT MOVE  ***}
 error: OSerr;   {*** allocate as pointer    ***}
 longStr: Str255;{*** for  ZeroToPas call    ***}

{$I XCMDGlue.Inc }
BEGIN
 error := noErr; 
 nbp := NIL; {*** assume no data yet ***}
 
 {*** Retrieve the pointer that’s stored           ***}
 tempH := GetGlobal( ‘GLOBALNBPDATA’ );
 
 {*** If it’s defined, convert it to a pointer***}
 IF (tempH <> NIL) AND (tempH^ <> NIL) THEN
 BEGIN
 HLock( tempH );
 ZeroToPas( tempH^, longStr );
 nbp := NBPBlkPtr( StrToLong( longStr ));
 HUnlock( tempH );
 END;
 
 IF  nbp = NIL THEN
 BEGIN  

 {*** Allocate nbp, initialize its fields***}
 nbp := NBPBlkPtr(NewPtr( sizeof( NBPBlock )));
 
 IF nbp <> NIL THEN
 WITH nbp^ DO
 BEGIN
 WITH NTEntry DO
 BEGIN
 nteAddress.aSocket:= 0;
 nteAddress.aNode := 0;
 nteAddress.aNet:= 0;
 
 For i := 1 TO 100 DO
 nteData[i]:= chr(0);
 END;
 {*** Clear at the lookup stuff  ***}
 {*** (signifies no lookup yet)  ***}
 LookUpBuffer  := nil;
 EntCount := 0;
 Registered := FALSE;
 
 SetGlobal(‘GLOBALNBPDATA’,PasToZero( NumToStr(LongInt(nbp))));
 
 END
 ELSE
 error := -1;  {*** some sort of error occured ***}
 END; 

 {*** Note that no error is reported ***}
 {*** as ‘empty’, rather than 0.  This ***}
 {*** is in keeping with HyperCard ***}
 IF error = noErr THEN
 paramPtr^.returnValue := PasToZero( ‘’ )
 ELSE
 paramPtr^.returnValue := PasToZero(numToStr(longint(error)));
 
END;

END.
Listing 6. ADSPClose() XFCN

(******************************)
(* file:  ADSPClose.p*)
(* *)
(* Close down the connection*)
(* listener and all open  *)
(* connections.  *)
(* Set the globals to empty *)
(* *)
(* Requires these Globals *)
(* GLOBALADSPDATA*)
(* mySocketListener*)
(* *)
(* DEFINE THE GLOBALS BEFORE*)
(* USING THEM    *)
(* ------------------------ *)
(* By:  Donald Koscheka *)
(* Date:10-Oct-88*)
(******************************)
(*******************************
 Build Sequence

pascal “{adsp}”ADSPClose.p -o “{hato}”ADSPClose.p.o 
link -m ENTRYPOINT  -rt XFCN=1301 -sn Main=ADSPClose
 “{hato}”ADSPClose.p.o
 “{libraries}”Interface.o 
 -o “{hat}”SwitchBoard     
********************************)

{$R-}
{$S ADSPClose}
UNIT Koscheka;

(*******************************)
 INTERFACE
(*******************************)

Uses  MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf, 
 HyperXCmd, AppleTalk, ADSP, adspxcmd;

Procedure EntryPoint( paramPtr : XCmdPtr );

(*******************************)
 IMPLEMENTATION
(*******************************)

PROCEDURE ADSPClose( paramPtr: XCmdPtr ); FORWARD;

Procedure EntryPoint( paramPtr : XCmdPtr );
 Begin
 ADSPClose( paramPtr );
 End;
 
Procedure ADSPClose( paramPtr : XCmdPtr );
VAR
 tempH  : Handle;
 adsp   : ADSPPtr;
 error,err: OSErr;
 tpb    : DSPParamBlock;
 cb, nb : CBPtr;
 mppPB  : mppParamBlock;
 longStr: Str255;
 
{$I XCmdGlue.inc }

BEGIN
 error  := noErr;
 adsp   := NIL; 
 
 {*** Retrieve the pointer***}
 tempH  := GetGlobal( ‘GLOBALADSPDATA’ );
 
 IF (tempH <> NIL) AND (tempH^ <> NIL) THEN
 BEGIN
 HLock( tempH );
 ZeroToPas( tempH^, longStr );
 adsp := ADSPPtr( StrToLong( longStr ));
 HUnlock( tempH );
 END;
 
 {*** Only kill if allocated ***}
 IF  adsp <> NIL THEN
 WITH adsp^ DO
 BEGIN  
 (* 1 - Tear down connection listener*)
 IF pb.ioResult > 0 THEN
 WITH tpb DO
 BEGIN
 ioCRefNum:= dspRefNum;
 csCode := dspCLRemove;
 ccbRefnum  := adsp^.ccbref;
 abort  := 1;
 
 err := PBControl( @tpb, SYNC );
 IF err <> noErr THEN error := err;
 END;
 
 (* 2 - Restore old self send *)
 mppPB.newSelfFlag := adsp^.oldSelf;
 err := PSetSelfSend( @mppPB, SYNC );
 
 {* PSetSelfSend  not implemented on*}
 {* Mac+ (???), so ignore result   *}
 {* “driver can’t respond to this  *}
 {* control call”. *}
 
 
 (* 3 - Deallocate all ADSP memory *)
 DisposPtr( Ptr( adsp ) );
 
 (* 4 * Clear out the containers *)
 SetGlobal(‘GLOBALADSPDATA’,PasToZero(‘’));
 
 (* 5 - leave socket address valid *)
 (*   for now    *)
 END; {*** WITH adsp^ ***}
 
 IF error = noErr THEN
 paramPtr^.returnValue:=PasToZero(‘’)
 ELSE
 paramPtr^.returnValue:=PasToZero(numToStr(longint(error)));
END;

END.
Listing 7. NBPClose() XFCN

(******************************)
(* file:  nbpClose.p *)
(* *)
(* Create control block and *)
(* initialize the data for  *)
(* the name binding protocol  *)
(* (nbp) stuff.  *)
(* *)
(* -------------------------- *)
(* © Donald Koscheka *)
(* 6-October, 1988 *)
(* All Rights Reserved    *)
(* *)
(******************************)
(*******************************
 MPW Build Sequence

pascal “{nbp}”nbpClose.p -o “{hato}”nbpClose.p.o
link -m ENTRYPOINT  -rt XFCN=2002 -sn Main=nbpClose
 “{hato}”nbpClose.p.o
 “{libraries}”Interface.o 
 -o “{hat}”SwitchBoard
*******************************)

{$R-}
{$S nbpClose}
UNIT Donald_Koscheka;

(*******************************)
 INTERFACE
(*******************************)

Uses  MemTypes, QuickDraw, OSIntf,
 ToolIntf, PackIntf, HyperXCmd, 
 AppleTalk, nbpxcmd;

Procedure EntryPoint( paramPtr : XCmdPtr );

(*******************************)
 IMPLEMENTATION
(*******************************)

PROCEDURE nbpClose( paramPtr: XCmdPtr ); FORWARD;

Procedure EntryPoint( paramPtr : XCmdPtr );
Begin
 nbpClose( paramPtr );
End;
 
Procedure nbpClose(paramPtr : XCmdPtr);
(**********************************
* This routine shuts down access to 
* the NBP driver.  It also unregisters
* the entity if that hasn’t already been
* done.
*
* IMPORTANT: 
*
* THE HYPERCARD VARIABLE 
* “GLOBALNBPDATA” MUST BE
* DECLARED IN YOUR SCRIPT
* BEFORE CALLING nbpClose
*
* Does not report an error
**********************************)
VAR
error : OSErr;
longStr : Str255;
tempH : Handle;
nbp: NBPBlkPtr;{*** MUST NOT MOVE  ***}
pb : MPPParamBlock;

{$I XCMDGlue.Inc }

BEGIN
 error := noErr;
 nbp := NIL; {*** assume no data yet ***}
 
 {*** Retrieve the pointer that’s stored     ***}
 tempH := GetGlobal( ‘GLOBALNBPDATA’ );
 
 {*** If it’s there, convert  to pointer     ***}
 IF (tempH <> NIL) AND (tempH^ <> NIL) THEN
 BEGIN
 HLock( tempH );
 ZeroToPas( tempH^, longStr );
 nbp := NBPBlkPtr( StrToLong( longStr ));
 HUnlock( tempH );
 END;
 
 {*** If the data is still allocated, we     ***}
 {*** shut down NBP, otherwise, just quit***}
 IF  nbp <> NIL THEN
 WITH nbp^ DO
 BEGIN  
 {*** Unregister if still registered***}
 IF NTEntry.nteData[1] <> chr(0) THEN
 BEGIN
 pb.entityPtr := @NTEntry.nteData[1];
 error := PRemoveName( @pb, SYNC );
 END;
 
 {*** Remove the lookup buffer***}
 IF LookUpBuffer <> NIL THEN
 BEGIN
 HUnlock( LookUpBuffer );
 DisposHandle( LookUpBuffer );
 END;
 
 {*** Dump the NBP Master Block  ***}
 DisposPtr( Ptr(nbp) );
 SetGlobal( ‘GLOBALNBPDATA’, PasToZero( ‘’ ));
 END; 

 IF error = noErr THEN
 paramPtr^.returnValue := PasToZero( ‘’ )
 ELSE
 paramPtr^.returnValue := PasToZero(numToStr(longint(error)));
 
END;
END.

Next month: Accessing the Name Binding Protocol in HyperCard.

end HyperChat

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

coconutBattery 3.9.14 - Displays info ab...
With coconutBattery you're always aware of your current battery health. It shows you live information about your battery such as how often it was charged and how is the current maximum capacity in... Read more
Keynote 13.2 - Apple's presentation...
Easily create gorgeous presentations with the all-new Keynote, featuring powerful yet easy-to-use tools and dazzling effects that will make you a very hard act to follow. The Theme Chooser lets you... Read more
Apple Pages 13.2 - Apple's word pro...
Apple Pages is a powerful word processor that gives you everything you need to create documents that look beautiful. And read beautifully. It lets you work seamlessly between Mac and iOS devices, and... Read more
Numbers 13.2 - Apple's spreadsheet...
With Apple Numbers, sophisticated spreadsheets are just the start. The whole sheet is your canvas. Just add dramatic interactive charts, tables, and images that paint a revealing picture of your data... Read more
Ableton Live 11.3.11 - Record music usin...
Ableton Live lets you create and record music on your Mac. Use digital instruments, pre-recorded sounds, and sampled loops to arrange, produce, and perform your music like never before. Ableton Live... Read more
Affinity Photo 2.2.0 - Digital editing f...
Affinity Photo - redefines the boundaries for professional photo editing software for the Mac. With a meticulous focus on workflow it offers sophisticated tools for enhancing, editing and retouching... Read more
SpamSieve 3.0 - Robust spam filter for m...
SpamSieve is a robust spam filter for major email clients that uses powerful Bayesian spam filtering. SpamSieve understands what your spam looks like in order to block it all, but also learns what... Read more
WhatsApp 2.2338.12 - Desktop client for...
WhatsApp is the desktop client for WhatsApp Messenger, a cross-platform mobile messaging app which allows you to exchange messages without having to pay for SMS. WhatsApp Messenger is available for... Read more
Fantastical 3.8.2 - Create calendar even...
Fantastical is the Mac calendar you'll actually enjoy using. Creating an event with Fantastical is quick, easy, and fun: Open Fantastical with a single click or keystroke Type in your event details... Read more
iShowU Instant 1.4.14 - Full-featured sc...
iShowU Instant gives you real-time screen recording like you've never seen before! It is the fastest, most feature-filled real-time screen capture tool from shinywhitebox yet. All of the features you... Read more

Latest Forum Discussions

See All

The iPhone 15 Episode – The TouchArcade...
After a 3 week hiatus The TouchArcade Show returns with another action-packed episode! Well, maybe not so much “action-packed" as it is “packed with talk about the iPhone 15 Pro". Eli, being in a time zone 3 hours ahead of me, as well as being smart... | Read more »
TouchArcade Game of the Week: ‘DERE Veng...
Developer Appsir Games have been putting out genre-defying titles on mobile (and other platforms) for a number of years now, and this week marks the release of their magnum opus DERE Vengeance which has been many years in the making. In fact, if the... | Read more »
SwitchArcade Round-Up: Reviews Featuring...
Hello gentle readers, and welcome to the SwitchArcade Round-Up for September 22nd, 2023. I’ve had a good night’s sleep, and though my body aches down to the last bit of sinew and meat, I’m at least thinking straight again. We’ve got a lot to look at... | Read more »
TGS 2023: Level-5 Celebrates 25 Years Wi...
Back when I first started covering the Tokyo Game Show for TouchArcade, prolific RPG producer Level-5 could always be counted on for a fairly big booth with a blend of mobile and console games on offer. At recent shows, the company’s presence has... | Read more »
TGS 2023: ‘Final Fantasy’ & ‘Dragon...
Square Enix usually has one of the bigger, more attention-grabbing booths at the Tokyo Game Show, and this year was no different in that sense. The line-ups to play pretty much anything there were among the lengthiest of the show, and there were... | Read more »
Valve Says To Not Expect a Faster Steam...
With the big 20% off discount for the Steam Deck available to celebrate Steam’s 20th anniversary, Valve had a good presence at TGS 2023 with interviews and more. | Read more »
‘Honkai Impact 3rd Part 2’ Revealed at T...
At TGS 2023, HoYoverse had a big presence with new trailers for the usual suspects, but I didn’t expect a big announcement for Honkai Impact 3rd (Free). | Read more »
‘Junkworld’ Is Out Now As This Week’s Ne...
Epic post-apocalyptic tower-defense experience Junkworld () from Ironhide Games is out now on Apple Arcade worldwide. We’ve been covering it for a while now, and even through its soft launches before, but it has returned as an Apple Arcade... | Read more »
Motorsport legends NASCAR announce an up...
NASCAR often gets a bad reputation outside of America, but there is a certain charm to it with its close side-by-side action and its focus on pure speed, but it never managed to really massively break out internationally. Now, there's a chance... | Read more »
Skullgirls Mobile Version 6.0 Update Rel...
I’ve been covering Marie’s upcoming release from Hidden Variable in Skullgirls Mobile (Free) for a while now across the announcement, gameplay | Read more »

Price Scanner via MacPrices.net

New low price: 13″ M2 MacBook Pro for $1049,...
Amazon has the Space Gray 13″ MacBook Pro with an Apple M2 CPU and 256GB of storage in stock and on sale today for $250 off MSRP. Their price is the lowest we’ve seen for this configuration from any... Read more
Apple AirPods 2 with USB-C now in stock and o...
Amazon has Apple’s 2023 AirPods Pro with USB-C now in stock and on sale for $199.99 including free shipping. Their price is $50 off MSRP, and it’s currently the lowest price available for new AirPods... Read more
New low prices: Apple’s 15″ M2 MacBook Airs w...
Amazon has 15″ MacBook Airs with M2 CPUs and 512GB of storage in stock and on sale for $1249 shipped. That’s $250 off Apple’s MSRP, and it’s the lowest price available for these M2-powered MacBook... Read more
New low price: Clearance 16″ Apple MacBook Pr...
B&H Photo has clearance 16″ M1 Max MacBook Pros, 10-core CPU/32-core GPU/1TB SSD/Space Gray or Silver, in stock today for $2399 including free 1-2 day delivery to most US addresses. Their price... Read more
Switch to Red Pocket Mobile and get a new iPh...
Red Pocket Mobile has new Apple iPhone 15 and 15 Pro models on sale for $300 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide service using all the major... Read more
Apple continues to offer a $350 discount on 2...
Apple has Studio Display models available in their Certified Refurbished store for up to $350 off MSRP. Each display comes with Apple’s one-year warranty, with new glass and a case, and ships free.... Read more
Apple’s 16-inch MacBook Pros with M2 Pro CPUs...
Amazon is offering a $250 discount on new Apple 16-inch M2 Pro MacBook Pros for a limited time. Their prices are currently the lowest available for these models from any Apple retailer: – 16″ MacBook... Read more
Closeout Sale: Apple Watch Ultra with Green A...
Adorama haș the Apple Watch Ultra with a Green Alpine Loop on clearance sale for $699 including free shipping. Their price is $100 off original MSRP, and it’s the lowest price we’ve seen for an Apple... Read more
Use this promo code at Verizon to take $150 o...
Verizon is offering a $150 discount on cellular-capable Apple Watch Series 9 and Ultra 2 models for a limited time. Use code WATCH150 at checkout to take advantage of this offer. The fine print: “Up... Read more
New low price: Apple’s 10th generation iPads...
B&H Photo has the 10th generation 64GB WiFi iPad (Blue and Silver colors) in stock and on sale for $379 for a limited time. B&H’s price is $70 off Apple’s MSRP, and it’s the lowest price... Read more

Jobs Board

Optometrist- *Apple* Valley, CA- Target Opt...
Optometrist- Apple Valley, CA- Target Optical Date: Sep 23, 2023 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 796045 At Target Read more
Senior *Apple* iOS CNO Developer (Onsite) -...
…Offense and Defense Experts (CODEX) is in need of smart, motivated and self-driven Apple iOS CNO Developers to join our team to solve real-time cyber challenges. Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
Child Care Teacher - Glenda Drive/ *Apple* V...
Child Care Teacher - Glenda Drive/ Apple ValleyTeacher Share by Email Share on LinkedIn Share on Twitter Share on Facebook Apply Read more
Machine Operator 4 - *Apple* 2nd Shift - Bon...
Machine Operator 4 - Apple 2nd ShiftApply now " Apply now + Start apply with LinkedIn + Apply Now Start + Please wait Date:Sep 22, 2023 Location: Swedesboro, NJ, US, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.