TweetFollow Us on Twitter

Bezier Curve
Volume Number:5
Issue Number:1
Column Tag:C Workshop

Related Info: Quickdraw

Bezier Curve Ahead!

By David W. Smith, Los Gatos, CA

Note: Source code files accompanying article are located on MacTech CD-ROM or source code disks.

David W. Smith (no known relation to the Editor) is a Sr. Software Engineer at ACM Research, Inc., in Los Gatos.

There comes a time in the development of some applications when arcs and wedges just don’t cut the mustard. You want to draw a pretty curve from point A to point B, and QuickDraw isn’t giving you any help. It seems like a good time to reach for a computer graphics text, blow the dust off of your college math, and try to decipher their explanation of splines. Stop. All is not lost. The Bezier curve may be just what you need.

Bezier Curves

Bezier curves (pronounced “bez-yeah”, after their inventor, a French mathematician) are well suited to graphics applications on the Macintosh for a number of reasons. First, they’re simple to describe. A curve is a function of four points. Second, the curve is efficient to calculate. From a precomputed table, the segments of the curve can be produced using only fixed-point multiplication. No trig, no messy quadratics, and no inSANEity. Third, and, to some, the most important, the Bezier curve is directly supported by the PostScript curve and curveto operators, and is one of the components of PostScript’s outlined fonts. The Bezier curve is also one of the principle drawing elements of Adobe Illustrator™. (Recently, they’ve shown up in a number of other places.)

Bezier curves have some interesting properties. Unlike some other classes of curves, they can fold over on themselves. They can also be joined together to form smooth (continuous) shapes. Figure 1 shows a few Bezier curves, including two that are joined to form a smooth shape.

The Gruesome Details

The description of Bezier curves below is going to get a bit technical. If you’re not comfortable with the math, you can trust that the algorithm works, and skip ahead to the implementation. However, if you’re curious about how the curves work and how to optimize their implementation, or just don’t trust using code that you don’t understand, read on.

The Bezier curve is a parametric function of four points; two endpoints and two “control” points. The curve connects the endpoints, but doesn’t necessarily touch the control points. The general form Bezier equation, which describes each point on the curve as a function of time, is:

where P1 and P4 are the endpoints, P2 and P3 are the control points, and the wn’s are weighting functions, which blend the four points to produce the curve. (The weights are applied to the h and v components of each point independently.) The single parameter t represents time, and varies from 0 to 1. The full form of the Bezier curve is:

We know that the curve touches each endpoint, so it isn’t too surprising that at t=0 the first weighting function is 1 and all others are 0 (i.e., the initial point on the curve is the first endpoint). Likewise, at t=1, the fourth weighting function is 1 and the rest are 0. However, it’s what happens between 0 and 1 that’s really interesting. A quick side-trip into calculus to take some first derivatives tells us that the second weighting function is maximized (has its greatest impact on the curve) at t=1/3, and the third weight is maximized at t=2/3. But the clever part--the bit that the graphics books don’t bother to mention--run the curve backwards by solving the equation for 1-t, and you find that w1(t)=w4(1-t) and w2(t)=w3(1-t). As we’ll see below, this symmetry halves the effort needed to compute values for the weights.

Figure 1. Some Beizer Curves and Shapes

Implementing Bezier Curves

One strategy for implementing Bezier curves is to divide the curve into a fixed number of segments and then to pre-compute the values of the weighting functions for each of the segments. The greater the number of segments, the smoother the curve. (I’ve found that 16 works well for display purposes, but 32 is better for hardcopy.) Computing any given curve becomes a simple matter of using the four points and the precomputed weights to produce the end-points of the curve segments. Fixed-point math yields reasonable accuracy, and is a hands down winner over SANE on the older (pre-Mac II) Macs, so we’ll use it.

We can optimize the process a bit. The curve touches each endpoint, so we can assume weights of 0 or 1 and needn’t compute weights for these points. Another optimization saves both time and space. By taking advantage of the symmetric nature of the Bezier equation, we can compute arrays of values for the first two of the weighting functions, and obtain values for the other two weights by indexing backwards into the arrays.

Drawing the curve, given the endpoints of the segments, is the duty of QuickDraw (or of PostScript, if you’re really hacking).

The listing below shows a reasonably efficient implementation of Bezier curves in Lightspeed C™. A few reminders about fixed-point math: an integer times a fixed-point number yields a fixed-point number, and a fixed by fixed multiplication uses a trap. The storage requirement for the algorithm, assuming 16 segments, (32 fixed-point values), is around 32*4*4, or 512 bytes. The algorithm computes all of the segments before drawing them so that the drawing can be done at full speed. (Having all of the segments around at one time can be useful for other reasons.)

More Fun With Curves

Given an implementation for Bezier curves, there are some neat things that fall out for almost free. Drawing a set of joined curves within an OpenPoly/ClosePoly or an OpenRgn/CloseRgn envelope yields an object that can be filled with a pattern. (Shades of popular illustration packages?) For that matter, lines, arcs, wedges, and Bezier curves can be joined to produce complicated shapes, such as outlined fonts. Given the direct mapping to PostScript’s curve and curveto operators, Bezier curves are a natural for taking better advantage of the LaserWriter.

As mentioned above, Bezier curves can be joined smoothly to produce more complicated shapes (see figure 1). The catch is that the point at which two curves are joined, and the adjacent control points, must be colinear (i.e., the three points must lay on a line). If you take a close look at Adobe Illustrator’s drawing tool, you’ll see what this means.

One nonobvious use of Bezier curves is in animation. The endpoints of the segments can be used as anchor-points for redrawing an object, giving it the effect of moving smoothly along the curve. One backgammon program that I’ve seen moves the tiles along invisible Bezier curves, and the effect is very impressive. For animation, you would probably want to vary the number of segments. Fortunately, the algorithm below is easily rewritten to produce the nth segment of an m segment curve given the the end and control points.

Further Optimizations

If you’re really tight on space or pressed for speed, there are a few things that you can do to tighten up the algorithm. A bit of code space (and a negligible amount of time) can be preserved by eliminating the setup code in favor of statically initializing the weight arrays with precomputed constant values. Drawing can be optimized by using GetTrapAddress to find the address in ROM of lineto, and then by calling it directly from inline assembly language, bypassing the trap mechanism. I’ve found that neither optimization is necessary for reasonable performance.

/*
**  Bezier  --  Support for Bezier curves
** Herein reside support routines for drawing Bezier curves.
**  Copyright (C) 1987, 1988 David W. Smith
**  Submitted to MacTutor for their source-disk.
*/

#include <MacTypes.h>
/*
   The greater the number of curve segments, the smoother the curve, 
and the longer it takes to generate and draw.  The number below was pulled 
out of a hat, and seems to work o.k.
 */
#define SEGMENTS 16

static Fixedweight1[SEGMENTS + 1];
static Fixedweight2[SEGMENTS + 1];

#define w1(s)  weight1[s]
#define w2(s)  weight2[s]
#define w3(s)  weight2[SEGMENTS - s]
#define w4(s)  weight1[SEGMENTS - s]

/*
 *  SetupBezier  --  one-time setup code.
 * Compute the weights for the Bezier function.
 *  For the those concerned with space, the tables can be precomputed. 
Setup is done here for purposes of illustration.
 */
void
SetupBezier()
{
 Fixed  t, zero, one;
 int    s;

 zero  = FixRatio(0, 1);
 one   = FixRatio(1, 1);
 weight1[0] = one;
 weight2[0] = zero;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 t = FixRatio(s, SEGMENTS);
 weight1[s] = FixMul(one - t, FixMul(one - t, one - t));
 weight2[s] = 3 * FixMul(t, FixMul(t - one, t - one));
 }
 weight1[SEGMENTS] = zero;
 weight2[SEGMENTS] = zero;
}

/*
 *  computeSegments  --  compute segments for the Bezier curve
 * Compute the segments along the curve.
 *  The curve touches the endpoints, so don’t bother to compute them.
 */
static void
computeSegments(p1, p2, p3, p4, segment)
 Point  p1, p2, p3, p4;
 Point  segment[];
{
 int    s;
 
 segment[0] = p1;
 for ( s = 1 ; s < SEGMENTS ; ++s ) {
 segment[s].v = FixRound(w1(s) * p1.v + w2(s) * p2.v +
 w3(s) * p3.v + w4(s) * p4.v);
 segment[s].h = FixRound(w1(s) * p1.h + w2(s) * p2.h +
 w3(s) * p3.h + w4(s) * p4.h);
 }
 segment[SEGMENTS] = p4;
}

/*
 *  BezierCurve  --  Draw a Bezier Curve
 * Draw a curve with the given endpoints (p1, p4), and the given 
 * control points (p2, p3).
 *  Note that we make no assumptions about pen or pen mode.
 */
void
BezierCurve(p1, p2, p3, p4)
 Point  p1, p2, p3, p4;
{
 int    s;
 Point  segment[SEGMENTS + 1];

 computeSegments(p1, p2, p3, p4, segment);
 MoveTo(segment[0].h, segment[0].v);

 for ( s = 1 ; s <= SEGMENTS ; ++s ) {
 if ( segment[s].h != segment[s - 1].h ||
  segment[s].v != segment[s - 1].v ) {
 LineTo(segment[s].h, segment[s].v);
 }
 }
}

/*
**  CurveLayer.c  
** These routines provide a layer of support between my bare-  
 bones application skeleton and the Bezier curve code.   
  There’s little here of interest outside of the mouse 
  tracking and the curve drawing.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

/*
 *  Tracker objects.  Similar to MacAPP trackers, but much,
 much simpler.
 */
struct Tracker
{
 void (*track)();
 int    thePoint;
};

static struct Tracker aTracker;
static struct Tracker bTracker;

/*
 *  The Bezier curve control points.
 */
Point   control[4] = {{144,72}, {72,144}, {216,144}, {144,216}};


/*
 *  Draw
 *  Called from the skeleton to update the window.  Draw the   
 initial curve.
 */
Draw()
{
 PenMode(patXor);
 DrawTheCurve(control, true);
}

/*
 *  DrawTheCurve
 * Draw the given Bezier curve in the current pen mode.Draw 
   the control points if requested.
 */
DrawTheCurve(c, drawPoints)
 Point  c[];
{
 if ( drawPoints )
 DrawThePoints(c);
 BezierCurve(c[0], c[1], c[2], c[3]);
}

/*
 *  DrawThePoints
 *  Draw all of the control points.
 */
DrawThePoints(c)
 Point  c[];
{
 int    n;
 
 for ( n = 0 ; n < 4 ; ++n ) {
 DrawPoint(c, n);
 }
}

/*
 *  DrawPoint
 *  Draw a single control point
 */
DrawPoint(c, n)
 Point  c[];
 int    n;
{
 PenSize(3, 3);
 MoveTo(c[n].h - 1, c[n].v - 1);
 LineTo(c[n].h - 1, c[n].v - 1);
 PenSize(1, 1);
}

/*
 * GetTracker
 * Produce a tracker object
 * Called by the skeleton to handle mouse-down events.
 * If the mouse touches a control point, return a tracker for
 that point. Otherwise, return a tracker that drags a gray 
 rectangle.
 */
struct Tracker *
GetTracker(point)
 Point  point;
{
 void   TrackPoint(), TrackSelect();
 int    i;

 aTracker.track = TrackPoint;

 for ( i = 0 ; i < 4 ; ++i ) {
 if ( TouchPoint(control[i], point) ) {
 aTracker.thePoint = i;
 return (&aTracker);
 }
 }
 bTracker.track = TrackSelect;
 return (&bTracker);
}

/*
 *  TouchPoint
 *  Do the points touch?
 */
#define abs(a) (a < 0 ? -(a) : (a))

TouchPoint(target, point)
 Point  target;
 Point  point;
{
 SubPt(point, &target);
 if ( abs(target.h) < 3 && abs(target.v) < 3 )
 return (1);
 return (0);
}

/*
 *  TrackPoint
 *  Called while dragging a control point.
 */
void
TrackPoint(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 Point  savePoint;

 switch ( phase ) {
 case 1:
 /* initial click - XOR out the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 case 2:
 /* drag - undraw the original curve and draw the new one */
 DrawTheCurve(control, false);
 control[tracker->thePoint] = point;
 DrawTheCurve(control, false);
 break;
 case 3:
 /* release - redraw the control point */
 DrawPoint(control, tracker->thePoint);
 break;
 }
}

/*
 *  TrackSelect
 *  Track a gray selection rectangle
 */
static Pointfirst;
static Rect r;

void
TrackSelect(tracker, point, phase)
 struct Tracker  *tracker;
 Point  point;
 int    phase;
{
 switch ( phase ) {
 case 1:
 PenPat(gray);
 first = point;
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 2:
 FrameRect(&r);
 SetupRect(&r, first, point);
 FrameRect(&r);
 break;
 case 3:
 FrameRect(&r);
 PenPat(black);
 break;
 }
}

/*
 *  SetupRect
 *  Setup the rectangle for tracking.
 */
#define min(x, y) (((x) < (y)) ? (x) : (y))
#define max(x, y) (((x) > (y)) ? (x) : (y))

SetupRect(rect, point1, point2)
 Rect   *rect;
 Point  point1;
 Point  point2;
{
 SetRect(rect,
 min(point1.h, point2.h),
 min(point1.v, point2.v),
 max(point1.h, point2.h),
 max(point1.v, point2.v));
}

/*
**  Skeleton.c  --  A bare-bones skeleton.
** This has been hacked up to demonstrate Bezier curves.  
    Other than the tracking technique, there’s little here of 
    interest.
**  David W. Smith
*/

#include “QuickDraw.h”
#include “MacTypes.h”
#include “FontMgr.h”
#include “WindowMgr.h”
#include “MenuMgr.h”
#include “TextEdit.h”
#include “DialogMgr.h”
#include “EventMgr.h”
#include “DeskMgr.h”
#include “FileMgr.h”
#include “ToolboxUtil.h”
#include “ControlMgr.h”

WindowRecordwRecord;
WindowPtr myWindow;

/*
 *  main
 *  Initialize the world, then handle events until told to quit.
 */
main() 
{
 InitGraf(&thePort);
 InitFonts();
 FlushEvents(everyEvent, 0);
 InitWindows();
 InitMenus();
 InitDialogs(0L);
 InitCursor();
 MaxApplZone();

 SetupMenus();
 SetupWindow();
 SetupBezier();

 while ( DoEvent(everyEvent) )
 ;
}

/*
 *  SetupMenus
 *  For the purpose of this demo, we get somewhat non-standard and use 
no menus.  Closing the window quits.
 */
SetupMenus()
{
 DrawMenuBar();
}

/*
 *  SetupWindow
 *  Setup the window for the Bezier demo.
 */
SetupWindow()
{
 Rect   bounds;

 bounds = WMgrPort->portBits.bounds;
 bounds.top += 36;
 InsetRect(&bounds, 5, 5);

 myWindow = NewWindow(&wRecord, &bounds, “\pBezier Sampler - Click and 
Drag”, 1, noGrowDocProc, 0L, 1, 0L);
 
 SetPort(myWindow);
}

/*
 *  DoEvent
 *  Generic event handling.
 */
DoEvent(eventMask)
 int    eventMask;
{
 EventRecordmyEvent;
 WindowPtrwhichWindow;
 Rect   r;
 
 SystemTask();
 if ( GetNextEvent(eventMask, &myEvent) )
 {
 switch ( myEvent.what )
 {
 case mouseDown:
 switch ( FindWindow( myEvent.where, &whichWindow ) )
 {
 case inDesk: 
 break;
 case inGoAway:
 if ( TrackGoAway(myWindow, myEvent.where) )
 {
 HideWindow(myWindow);
 return (0);
 }
 break;
 case inMenuBar:
 return (DoCommand(MenuSelect(myEvent.where)));
 case inSysWindow:
 SystemClick(&myEvent, whichWindow);
 break;
 case inDrag:
 break;
 case inGrow:
 break;
 case inContent:
 DoContent(&myEvent);
 break;
 default:
 break;;
 }
 break;
 case keyDown:
 case autoKey: 
 break;
 case activateEvt:
 break;
 case updateEvt:
 DoUpdate();
 break;
 default:
 break;
 }
 }
 return(1);
}

/*
 *  DoCommand
 *  Command handling would normally go here.
 */
DoCommand(mResult)
 long   mResult;
{
 int    theItem, temp;
 Str255 name;
 WindowPeek wPtr;
 
 theItem = LoWord(mResult);

 switch ( HiWord(mResult) )
 {
 }

 HiliteMenu(0);
 return(1);
}

/*
 *  DoUpdate
 *  Generic update handler.
 */
DoUpdate()
{
 BeginUpdate(myWindow);
 Draw();
 EndUpdate(myWindow);
}

/*
 *  DoContent
 *  Handle mouse-downs in the content area by asking the application 
to produce a tracker object.  We then call the tracker repeatedly to 
track the mouse. This technique came originally (as nearly as I can tell) 
from Xerox, and is used in a modified form in MacApp.
 */
struct Tracker
{
 int    (*Track)();
};

int
DoContent(pEvent)
 EventRecord*pEvent;
{
 struct Tracker  *GetTracker();
 struct Tracker  *t;
 Point  point, newPoint;
 
 point = pEvent->where;
 GlobalToLocal(&point);
 t = GetTracker(point);
 if ( t ) {
 (*t->Track)(t, point, 1);
 while ( StillDown() ) {
 GetMouse(&newPoint);
 if ( newPoint.h != point.h || newPoint.v != point.v ) {
 point = newPoint;
 (*t->Track)(t, point, 2);
 }
 }
 (*t->Track)(t, point, 3);
 }
}

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.