TweetFollow Us on Twitter

Medicine
Volume Number:3
Issue Number:10
Column Tag:C Workshop

Using Regions in Medicine with C

By Stephen Dubin, V.M.D., Ph.D., Thomas W. Moore, Ph.D., and, Sheel Kishore, M.S., Drexel University

Fun with Regions: Part I, High Level Language Implementation

As one looks through a tattered and tear-stained copy of Inside Macintosh, there is little that would be considered colorful or dramatic language. The following statement, from the section on Quickdraw, stands out: “Quickdraw has the unique and amazing ability to gather an arbitrary set of spatially coherent points into a structure called a region, and perform complex yet rapid manipulations and calculations on such structures. This remarkable feature not only will make your standard programs simpler and faster, but will let you perform operations that would otherwise be nearly impossible; ...”

One of the authors read this at the very time that he wanted to do something nearly impossible. The job at hand was a medical instructional program, “Burnsheet”, in which the outline of a thermal injury is drawn on a standard silhouette of the body (fig 1.). Since many formulas for treating burn patients depend on knowing the area affected, it was desirable to calculate the area of the burn(s) as well. Thus the specific programming tasks were to be able to draw arbitrarily shaped regions on the screen and to find the area of these areas. This first article will show an approach to these tasks using high-level (C and Pascal) programming. The complete code for a C language program is at the end of the article; and the important routines, as implemented in Pascal, are interpolated into the text. In many cases programming elegance has been sacrificed for the sake of clarity; especially when an elegant approach could not be found. Part II will present an evolutionary approach to the assembly language optimization for speed in the computation of arbitrary areas on the Macintosh.

In addition to Inside Macintosh, some germinal information on region drawing is found in “Quickdraw Does Regions” (Derossi, C., MacTutor 1, February 1985 pp 9-17). He outlines the basic steps as follows: (a) Initialize a variable ( a regionhandle) with a call to NewRegn. (b) Call OpenRgn to start a new region. (c) Do whatever drawing you want. (d) Call CloseRgn to stop the region definition. In a more recent article (Gordon, B.: Polygons and Regions as Quickdraw Objects. MacTutor May 1987, pp 41-53 ), further insight is given into the way regions are encoded - especially the mysterious optional region drawing information which is present when a region is not rectangular.

The matter of finding the area of irregular regions is quite a common task in geography, chemistry (chromatograph spots, for example), and many aspects of biology. Methods for accomplishing the task range from analytic solutions where the boundaries are defined by well-behaved mathematical functions to such brutal kluges as weighing paper on which the region has been traced. An elegant general approach for finding the area of a large class of irregularly shaped regions divides the region into triangles and trapezoids (Stolk, R., and Ettershank, G.: Calculating the Area of an Irregular Shape. Byte, February 1987, pp 135-136.) This method requires, however, that the vertices of the perimeter be described explicitly as cartesian coordinates - not the Macintosh definition. It will not work for regions that are disjoint or have holes in them.

Region Drawing Routines: Although several published programs have shown how to create regions on the screen by passing explicit parameters to drawing commands; such as

FrameRect(myRect,10,20,30,40), etc., 

what I wanted was to draw an arbitrarily shaped region on the fly under mouse control - something like the lassoo in many Mac graphics programs. My answer to this need is the DoRegion procedure. It is well to initialize the global regionhandle TotalRgn early in the program. In the C program shown this is done just before the main event loop in order to avoid a bomb if the area computation is requested before the region is actually drawn.

A Pascal implementation of the procedure is as follows:

{1}
var
 TotalRegion   :   RgnHandle;

procedure DoRegion;
var
    p1  :   Point;
    p2  :   Point;
    OldTick :  Longint;    
begin
  TotalRegion := NewRgn;
  OldTick := TickCount;
  Repeat
    GetMouse(p1);
    MoveTo(p1.h,p1.v);
    p2 := p1;  
  Until Button = True; 
  OpenRgn;
  ShowPen;
  PenMode(patXor); 
  Repeat
    GetMouse(p2);
    Repeat Until (OldTick <> TickCount);
    LineTo(p2.h,p2.v);
  Until Button <> True; 
  Repeat Until (OldTick <> TickCount);
  LineTo(p1.h,p1.v);
  PenNormal;
  HidePen;
  CloseRgn(TotalRegion);
  InvertRgn(TotalRegion);
end;

The mouse position is tracked until the button is pressed. While the button is down, a sequence of lines is drawn following the movement of the mouse. In order to make the drawing less jumpy, it is synchronized with the vertical retrace period by waiting until the “tickcount” changes before updating the drawing process (Knaster, S.: “How to Write Macintosh Software”, Hayden, Hasbrouck Heights, NJ, 1986, pp 334-336). The calls to ShowPen and HidePen are necessary to balance opposing calls made by OpenRgn and CloseRgn.

An analogous procedure for drawing a rectangle under mouse control is shown below:


{2}
var
 TotalRegion   :   RgnHandle;

procedure DoBox; 
var
    p1  :   Point;
    p2  :   Point;
    p3  :   Point;
    OldTick :  Longint;
    MyRect  :  Rect;      
begin
    TotalRegion := NewRgn;
    OldTick := TickCount;
    PenPat(gray);
    PenMode(patXor);
    Repeat
      GetMouse(p1);
      p2 := p1;  
    Until Button = True;
    OpenRgn;
    ShowPen;
    PenMode(patXor);
    Repeat
      Pt2Rect(p1,p2,MyRect);
      Repeat Until (OldTick <> TickCount);
      FrameRect(MyRect);
        Repeat
            GetMouse(p3);
        Until  EqualPt(p2,p3) <> True;
   
   Repeat Until (OldTick <> TickCount);
   FrameRect(MyRect);
   p2 := p3;
   Until Button <> True;
   Pennormal;
   HidePen;
   PenPat(black);
   FrameRect(MyRect);
   CloseRgn(TotalRegion);
   InvertRgn(TotalRegion);
end;

After the mouse button is pushed, a “preview” rectangle is drawn in gray as the mouse position is changed. When the button is released, the rectangle is “enforced” as the final choice. Although these procedures invert the pixels in the region finally chosen, various types of painting or filling could also be done and the last FrameRect in DoBox could be changed to FrameOval, etc.

Area Computation: The region record contains the coordinates of the smallest rectangle which will enclose the region, the rgnBBox. As a first approach to determining the region area, one might “take a poll” of every pixel within this box to see whether it is actually in the region. The toolbox function PtInRgn, when passed a point and a handle to a region, returns the Boolean value true if the point actually resides within the region. The number of true points enumerated in this way should be proportional to the area of the region with a degree of precision at least as good as the ability to draw on the screen with the mouse.

{3}
function CountPix(theRegion : RgnHandle): LongInt
var
 pt     : Point;
 rgn    :   Region;
 temp   :   LongInt; 
  
begin
 temp :=  0;
 rgn  :=  theRegion^^;
 for pt.h := rgn.rgnBBox.left to rgn.rgnBBox.right do 
 begin
 for pt.v := rgn.rgnBBox.top to rgn.rgnBBox.bottom do
 if PtInRgn( pt, TheRegion) then temp := temp + 1;  
 end;
 CountPix := temp;
end;

The C and Pascal Countpix routines work nicely for relatively small regions. For those drawn in the Burnsheet program, processing time ranged from three to thirty ticks (6oths. of a second). It is possible, however, to draw really large and bizarre regions with many holes that can take ten minutes to compute. Although finding the area of such regions by conventional means “would otherwise be nearly impossible,” this is hardly a satisfactory performance; and clearly some form of optimization is indicated. An important step towards fashioning and debugging a faster routine for estimating the area of an arbitrary region is a method for visualizing the region information as it exists in RAM. Although this can be done using a debugger, it is more convenient to have this as part of our region program. The C version of the “data” function reflects that language’s general laissez faire attitude concerning mixing of pointer types in the blockmove step. Because of the ease with which the type of numerical representation (hex or decimal) can be specified within the printf routine, the C version first prints the hex version - as it would be seen with a debugger. After a mouse click, the decimal version is printed to the screen. Pascal seems to be more finicky about mixing different pointer types, so explicit type conversions are done. The Pascal version displays only the decimal representation of the data. In both versions only the first 400 words of data are shown since this fits conveniently on the screen. Displaying the hex numbers in Pascal and adding scrollers to display more data are - in the words of my old calculus book - left as an exercise for the reader.

{4}
{ This routine prints the first 400 words of a region record to the screen. 
It assumes that a regionhandle called totalRegion has been declared and 
allocated }

procedure Data;  
var
    rgn         :   Region;
    rgnpntr     :   Ptr;
    size        :   Integer;
    halfsize    :   Integer;
    thebuf      :   BUF;
    bfpntr      :   Ptr;
    myString    :   Str255;
    i           :   Integer;
    x           :   Integer;
    y           :   Integer;
 
 begin
    Wipe;
    TextSize(9);
    TextFont(Monaco);
    rgn  :=  totalRegion^^;
    rgnpntr := ptr(totalRegion^); 
    size := rgn.rgnSize;
    if size > 800 then size:= 800;
    bfpntr := ptr(@thebuf);
    BlockMove(rgnpntr,bfpntr,size);
    MoveTo(10,10);
    DrawString(‘Here are the first 400 words of the region data. (FLAG 
= 32767)’);
    x := 10;
    y := 20;
    for i  := 1  to  (size div 2) do 
        begin
        MoveTo(x,y);
        NumToString(theBuf[i],myString);
        if theBuf[i] < 32766 then 
            begin
            if theBuf[i] <10  then DrawString(‘ ‘);
            if theBuf[i] <100 then DrawString(‘ ‘);
            if theBuf[i] <1000 then DrawString(‘ ‘);
            if theBuf[i] <10000 then DrawString(‘ ‘);
            DrawString(MyString);
            end;
        if theBuf[i] > 32766 then DrawString(‘ FLAG’);
        x := x + 30;
        if (i mod 16) = 0 then
            begin
            x := 10;
            y := y+10;
            end; 
        end; 
end;

Figure 2 shows a “FatBits” view of a circle along with the function used to draw it and acquire a handle to the region it encloses. Figure 3 shows the data for this region as displayed by our data routine. Using this information you can trace the way the region is encoded as as outlined in Bob Gordon’s article (vide supra ). The first word (196) is the number of bytes of data in the record. The next four words are the coordinates of the region bounding box in “upper, left, bottom, right” form. The rest of the data consists of sequences as follows: Y,X1, X2, ...Xn, FLAG. The flag word is 32767 (7FFF hex). At the very end of the record, the flag word appears twice. In each sequence the first integer word is a Y coordinate and the others up to the flag are X coordinates. One may visualize the process of outlining the region by thinking of moving a “pen” to the Y coordinate and toggling it on and off with each succeeding X value. For the circle shown (starting with the fifth word of data), the first Y position is 175 and the first X coordinate is 179. Turn the pen on at this point and draw rightward to the second X coordinate (186). Turn off the pen. Similarly expanding the next sequence: move to ( Y = 176, X = 177); pendown; moveto (X = 179); penup; moveto(x = 186) - Y remains the same; pendown; moveto(x = 188); penup. Note that treating the data in this manner will draw all of the horizontal lines needed to frame the region.

This representation of data is particularly efficient for dealing with regions with “square corners” - the sort that occur when windows overlap, etc. Even for more complex objects, the amount of data to be stored is much less required by more intuitive methods such as simply listing all of the points in the region or the vertices of its boundaries.

Figure 4. shows a screendump of a really horrible region along with the times needed to estimate its area using the high level code presented here and with various levels of optimization. Using the high level routine, it required about seven and a half minutes to compute its area. By way of comparison, the small regions shown in the “Burnsheet” illustration (Figure 1.) took less than a second using the same code. For complex regions such as this, the assembly language optimization improves the speed of computation by a very welcome factor of more than 1000.

Stephen Dubin, V.M.D., Ph.D., Thomas W. Moore, Ph.D., and Sheel Kishore, M.S. may be reached at the Biomedical Engineering and Science Institute, Drexel University, 32nd. & Chestnut Sts, Philadelphia PA 19104. Phone: (215)-895-2219. CIS: 76074,55 ; Genie: S.DUBINp; Delphi: ESROG.

{5}
/* *****Region.c **************
written by Stephen Dubin and Sheel Kishore  copyrignt 1987 for MacTutor
Latest revision 8/9/87
Prepared with Megamax C System V3.0d. Users of other C systems should 
check for such things as size and manner of passing variables particularly 
point variables. Also check include files. */

#include  <qd.h>  
#include  <win.h>
#include  <dialog.h>
#include  <menu.h>
#include  <event.h>
#include  <qdvars.h>
#include<stdio.h>

#define lastmenu 1 /* number of menus*/
#define optionmenu 1
#define NULL 0L 
/* globals used by shell */

menuhandle mymenus[lastmenu+1];
rect screenrect, prect;
boolean doneflag, temp;
eventrecord myevent;
int code, refnum;
windowrecord wrecord;
windowptr mywindow, whichwindow;
int themenu, theitem;

/* globals used by region */
rgnhandle totalrgn;
extern long tickcount();
long  numpix,numtix; 

area()
{
long firstick,lastick;
char  firststring[255], secondstring[255], printstring[255];
 numpix = 0;
 firstick = tickcount();
 countpix(totalrgn);
 numtix = tickcount() - firstick;
 moveto(10,20); drawstring(“Using all C code”);
 strcpy(firststring,””);strcpy(printstring,””);
 numtostring(numpix,firststring);
 strcat(printstring,”Number of Pixels = “);
 strcat(printstring, firststring);strcpy(firststring,””);      
 moveto(10,30); drawstring(printstring); strcpy(printstring,””);
 numtostring(numtix,firststring);
 strcat(printstring,”Number of Ticks = “);
 strcat(printstring, firststring); strcpy(firststring,””);
 moveto(10,40); drawstring(printstring); strcpy(printstring,””);
 
}

countpix(theregion)
rgnhandle theregion;
{
point pt;
region rgn;
 rgn = **theregion;
 for(pt.a.h=rgn.rgnbbox.a.left; pt.a.h <= rgn.rgnbbox.a.right; pt.a.h++)
 for(pt.a.v=rgn.rgnbbox.a.top; pt.a.v <= rgn.rgnbbox.a.bottom; pt.a.v++)
 if (ptinrgn(&pt, theregion))
 numpix++;
}

data()
{
region  rgn;
intsize,i;
intmyarray[400];
                                                               wipe();
 rgn = **totalrgn;
 size = rgn.rgnsize;
 size = ( (size > 800) ? 800: size); 
 blockmove(*totalrgn, &myarray, (long)size);
 moveto(10,10);
 printf(“Here is the first 400 words of region data in hexadecimal notation:\n”);
 for(i=0; i<(size/2); ++i) {
 printf(“ %04x”,myarray[i]);
 if(!((i+1)%16)) printf(“\n”);
 }
 printf(“ Press the mouse button to continue.”);   
 fflush(stdout);
 while (!button());
 wipe();
 moveto(10,10);
 printf(“Here is the first 400 words of region data in decimal notation:\n”);
 for(i=0; i<(size/2); ++i) {
 if(myarray[i]>32766) printf(“ FLAG”);
 else printf(“ %04d”,myarray[i]);
 if(!((i+1)%16)) printf(“\n”);
 }
 fflush(stdout);
}

doregion()/* draws freehand region */
{
point   p1,p2;
long  oldtick;
 wipe();
 totalrgn = newrgn();
 while(!button()){
 getmouse(&p1);
 moveto(p1.a.h,p1.a.v);
 p2=p1;
 }
 openrgn();
 showpen();
 penmode(patxor);
 while(button()){
 getmouse(&p2);
 while(oldtick == tickcount());  
 lineto(p2.a.h,p2.a.v);
 }
 while(oldtick == tickcount());  /* to avoid flickering */
 lineto(p1.a.h,p1.a.v);
 pensize(1,1);
 pennormal();
 hidepen();
 closergn(totalrgn);
 invertrgn(totalrgn);
}

dobox() /* draws rectangular region  */
{
point p1,p2,p3;
boolean equalpt();
long  oldtick;
rect  myrect;
 wipe();
 oldtick = tickcount();
 totalrgn = newrgn();
 penpat(gray);
 penmode(patxor);
 while(!button()){
 getmouse(&p1);
 p2=p1;
 }
 openrgn();
 showpen();
 penmode(patxor);
 while(button()){
 pt2rect(&p1,&p2,&myrect);
 while(oldtick == tickcount());/* to avoid flickering */
 framerect(&myrect);
 while (equalpt(&p2,&p3)&& button()) getmouse(&p3);
 while(oldtick == tickcount());
 framerect(&myrect);
 p2=p3;
 } 
 pensize(1,1);
 pennormal();
 hidepen();
 penpat(black);
 penmode(patcopy);
 framerect(&myrect);
 closergn(totalrgn);
 invertrgn(totalrgn);
 pennormal();
}

wipe()
{
rect  r;
 setrect(&r,0,0,510,300);
 eraserect(&r);
 pennormal();
}

setupmenus()
{
int i;
    initmenus();
    mymenus[1] = newmenu(optionmenu,”Options”);
    appendmenu(mymenus[1], “Draw Freehand;Draw Box;Compute Area;Region 
Data;Quit”);
    for (i=1; i<=lastmenu; i++) insertmenu(mymenus[i], 0);
    drawmenubar();
}

docommand(themenu, theitem)
int themenu, theitem;
{
int i;
    switch (themenu) {
 case optionmenu:
 switch(theitem){
 case 1: doregion(); break;
 case 2: dobox(); break;
 case 3: area(); break;
 case 4: data(); break;
 case 5: doneflag = 1; break;
 }
 break;
     }
    hilitemenu(0);
}

main()
{
rect windowrect;
    initgraf(&theport);
    initfonts();
    flushevents(everyevent, 0);
    initwindows();
    setupmenus();
    initdialogs(NULL);
    initcursor();
    setrect(&screenrect, 2, 40, 510, 338);
    doneflag = 0;
    mywindow =newwindow(&wrecord,&screenrect,“Region Fun”,1,0,
  (long)-1, 0, (long)0);
    setport(mywindow);
    blockmove(&theport->portrect, &prect, (long)sizeof prect);
    insetrect(&prect, 4, 0);
    textfont(4);
    textsize(9);
    textmode(2);
    totalrgn = newrgn(); /* avoid bomb if compute is first */
    do {
      systemtask();
 temp = getnextevent(everyevent, &myevent);
 switch (myevent.what) {
      case mousedown:
     code = findwindow(&myevent.where, &whichwindow);
     switch (code) {
     case inmenubar:
    docommand(menuselect(&myevent.where)); break;
     case insyswindow:
    systemclick(&myevent, whichwindow); break;
     case incontent:
    if (whichwindow != frontwindow())
     selectwindow(whichwindow);
    else  globaltolocal(&myevent.where);
    break;
         }
 break;
      case updateevt:
     setport(mywindow);
     beginupdate(mywindow);
     wipe();
     endupdate(mywindow);
     break;
     }
    } while (doneflag == 0);
}
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.