TweetFollow Us on Twitter

Avoiding traps
Volume Number:2
Issue Number:10
Column Tag:Advanced Macing

Reduce Your Time in the Traps!

By Mike Morton, Senior Software Engineer, Lotus Development Corp., Cambridge, MA

Life in the fast lane

The Macintosh ROM subroutines are called with “trap” instructions, intercepted by dispatching software which interprets the trap and calls the routine. This method is very general, providing compatibility with future ROMs and allowing buggy routines to be replaced.

It's also slow, taking about 45 microseconds for the dispatch process. This article tells you a way to avoid the dispatcher without losing its generality. Since the timing differences are measured in microseconds, there's also a discussion of techniques for measuring the time consumed by a piece of code. Also, a program is included to show the alternate way to call the ROM and how to measure the times used by different methods.

Avoiding traps

When a program executes a trap instruction, the 68000 detects the “error” and transfers control to the trap dispatcher pointed to by the longword at $0028. The dispatching software must, among other things:

• preserve some registers on the stack

• fetch the trap instruction from the code

• decide if the trap is a Toolbox or OS call

• look up the trap number to find whether the routine is in RAM or ROM, and what its address is

• handle the “auto-pop” and “pass A0” bits

• call the routine

• restore registers from the stack

Most of this work can be avoided if you know the routine's address and call it directly, but this is a bad idea for two reasons. First, the address may change in future ROMs. Second, Apple distributes “patches” to ROM routines by changing the dispatch table to call new versions in RAM -- if your program “knows” the address, it'll call the old, buggy ROM routines, ignoring the new RAM-based ones.

There is a balance between hardwiring the address and using the trap dispatcher for every call. The Toolbox “GetTrapAddress” function decodes a trap instruction for you and returns the address of the routine, just as the dispatcher does. You can do this decoding just once in your program, save the address, and repeatedly call it later.

The main reason not to bypass the dispatcher is that it saves a few registers across each call. If you're working in assembler, this is no problem -- just save registers yourself, as needed. In most high-level languages, it also won't be a problem, since the registers lost are typically scratch registers: D1, D2, and A2.

Fig. 1 Our TrapTime Utility shows the difference!

A high-level example

First, let's look at the normal way of calling a Toolbox routine: the simple “SetPt” procedure, which sets the coordinates of a Quickdraw “point”. The following example and the timing program are in TML Pascal; they should be easy to convert to other languages.

Most programs include the Quickdraw unit, which declares “setPt” with

procedure SetPt(VAR pt: point; h, v: integer); INLINE $A880;

When you call the routine with the statement

 setPt (myPt, x, y); { set the point }

it pushes the parameters on the stack and executes the instruction $A880 to trap to the dispatcher, which calls the routine. If you want to skip the cost of repeatedly decoding the trap, you can do it once like this:

 var setPtAddr:longint; { addr of setPt }
  
 setPtAddr := getTrapAddress ($A880);

To call this address, declare a new routine like SetPt, but which produces different in-line 68000 code:

procedure mySetPt
 (VAR pt: point; h, v: integer;
 addr: longint);
 INLINE $205F, $4E90;

Note the extra parameter to this routine: the address of the routine to be called. The instructions given in hex after the “INLINE” do a JSR to that address. The result is nearly the same as executing a trap, but faster.

Calling with this interface is almost like a normal call; pass the address as a parameter:

 mySetPt (myPt, x, y, setPtAddr);

This can be used for most Toolbox calls - just declare your own routine (choose any name) with the same parameters plus the address parameter, and include the exact same “INLINE” code after it. Don't forget to initialize the address with GetTrapAddress before calling, or awful things will happen.

Other high-level languages

You should be able to use this method with almost any language which allows you to insert assembler code in your high-level program. Some languages may have trouble calling the ROM directly -- for instance, many C compilers pass parameters differently than ROM routines do. Some C compilers allow you to choose the method of parameter passing; this will allow you to dispense with assembler altogether and just call the routine through a pointer (ask your nearest C guru how to do this).

More straightforward approaches

This approach assumes that “SetPt” is too slow. If you actually need Toolbox operations to be faster, consider writing the code yourself. You can write a procedure or function to assign two integers to the coordinates of a point -- or just do the assignment yourself. For a simple operation, this approach is preferable to spending lots of effort avoiding the trap dispatcher. (The “K.I.S.S.” rule applies here: “Keep It Simple, Stupid.”)

Speed improvements: hard data

Let's get quantitative. Consider four ways to assign to a point:

• the usual trap

• calling the ROM directly with INLINE

• calling your own procedure

• doing the assignment in-line

I wrote all four in Lisa Pascal and found these times on a Mac, and on a Lisa running MacWorks:

Table: Time to assign to a point

(all times in microseconds)

Mac Lisa/MacWorks

Normal “SetPt” trap 67.7 84.9

Pre-decoded call 22.8 25.6

Roll-your-own 34.5 35.2

Assign in-line 4.8 4.8

Writing your own procedure is slower than using the trap routine's address! The ROM is so fast, compared to compiled Pascal, that it's worth the slightly more complicated call. Part of the speed is because the ROM is tightly-coded; part is because the Mac's video refresh slows down code in RAM.

The fastest method is to forget about writing a procedure and do the assignment normally. This is fourteen times faster than using traps to call the ROM! (There's something to be said for the do-it-yourself approach.)

I tried running the program on a Mac Plus, since its ROM dispatch table has been expanded for faster trap calls. The time for a normal trap is 58.9 microseconds, instead of 67.7 microseconds. All the other times are nearly the same.

Speed improvements: summary

First, all this isn't worthwhile for most traps. If you want to speed up disk I/O, resource operations, etc., the microseconds saved at trap time are dwarfed by the amount of time for a disk transfer or to search a large resource. This trick is appropriate only in some situations.

Second, some routines are best done by hand in simple code in your program. ROM tools such as “SetPt” exist for your convenience, not because they're hard to code. If you find they're taking too much time, change them to a few lines of your own code.

But suppose you're trying to draw lines at top speed with repeated “LineTo” calls? Or use one of the simple bit manipulators in a loop? You may find that you can't easily write it yourself, but you can save 45 microseconds by calling into the ROM using a previously determined address. My estimate is that if a trap takes between 200 and 800 microseconds, you should consider skipping the dispatcher.

The timing program

The program “traptime” found the times given in the table. It has four procedures to time methods, and a “getbasetime” procedure to find the overhead of a loop with no calls. You can write a similar program using the same design in nearly any language.

Note that the program prints its results in ticks (60ths of a second) and doesn't compute the time for a loop iteration; I did the conversions to microseconds-per-iteration by hand, rather than trying to get Pascal to do fractional arithmetic.

Timing methods

Unfortunately, doing accurate timings is fraught with problems. This program tries to avoid these. Some points on timings:

• Repeat your measurements to help detect “random” factors. Small discrepancies should be averaged; large ones should be found and removed.

• Be careful when comparing routines: the four timing routines (and the “overhead” routine) are identical except for one section. Keeping this parallel structure makes your program a controlled experiment, helping you time only the differences between procedures.

• Vary the loop size; make sure that your time per iteration converges as your loop gets bigger.

• When waiting for the program, don't move the mouse or fiddle with the keyboard. This causes interrupts and affects the timings.

• I suspect you shouldn't have the disk spinning, nor have a debugger active while timing. (In practice, I can't detect any timing differences due to either of these factors.)

In short, timing is a scientific experiment and is easy to ruin by not controlling the environment carefully.

Conclusion

Bypassing the trap dispatcher can be a valuable technique in a limited number of situations, allowing you to cut about 45 microseconds off the time to call the ROM. It has some drawbacks such as losing register contents, and may be hard to implement in some higher-level languages. In addition, many ROM calls take so long that the savings isn't significant.

Whatever technique you're interesting in optimizing and timing, accurate measurement is a matter of a careful, controlled approach.

{ traptime -- A program to time various methods of doing a toolbox trap:
  The usual method, calling a user-written routine to do the work, doing 
the work in-line, and calling the ROM routine directly without going 
through the trap dispatcher. Times for all routines are written on the 
screen in ticks for a given number of calls, then the number of calls 
is varied for improved accuracy.

  Mike Morton, November 1985. Modified for TML Pascal, June 1986. }

program traptime (output);{ "(output)" lets us do writelns }

{$I MemTypes.ipas  }
{$I QuickDraw.ipas } { we use Quickdraw graphics }
{$I OSIntf.ipas }{ and OS definitions }
{$I ToolIntf.ipas }{ and Toolbox calls }

var         { program-wide variables }
  basetime: longint; { constant overhead for the loop }
  loops: longint;         { number of iterations to time }
  start: longint;         { starting tickcount for timing }
  Event:EventRecord; {simple event loop for cmd-3}
  DoIt: Boolean; {getnextevent boolean}
  Finished:Boolean;{event loop terminator}

{ getbasetime -- Find the time for the loop when nothing is done inside 
it.This tells us the overhead which should be subtracted from other timings. 
}

function getbasetime: longint;
var count: longint;        { loop counter }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { loop a bunch of times... }
    ;           { ...doing nothing each time }
  getbasetime := tickcount-start;       { calculate elapsed time }
end;            { function "getbasetime" }

{ usualtime -- Find the time used to call the ROM the usual way.  This, 
and all timing routines, should look as much as possible like "getbasetime". 
}

function usualtime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to the point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setpt (pt, x, y);        { ...we do the ROM call }
  usualtime := tickcount-start;          { calculate elapsed time }
end;            { function "usualtime" }


{ setmypt -- This isn't a timing function like the others; it's a replacement 
for the ROM's "setpt" routine, to see how fast we can do it ourselves. 
}
procedure setmypt (VAR pt: point; x, y: integer);
begin;
  pt.h := x; pt.v := y; { assign to the coordinates; easy! }
end;    { procedure "setmypt" }

{ myowntime -- Time assignment using our own procedure. }

function myowntime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    setmypt (pt, x, y);           { ...we call our own routine }
  myowntime := tickcount-start;          { calculate elapsed time }
end;            { function myowntime }

{ inlintime -- The most straightforward way: we do the assignment in 
the loop. }

function inlintime: longint;
var
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  start := tickcount;        { snapshot starting time }
  for count := 1 to loops do        { this time, inside the loop... }
    begin; pt.h := x; pt.v := y; end;   { ...we do assignment here }
  inlintime := tickcount-start;          { calculate elapsed time }
end;            { function inlintime }

{ setptx -- This is another replacement for "setpt".  It takes an extra 
parameter, the previously determined address of "setpt", and calls that 
address, leaving the other parameters for "setpt".  Unfortunately, TMLPascal 
doesn't mimic Lisa Pascal closely enough to allow us to generate more 
than one word of code in a single declaration.  So we have two procedures 
-- these MUST always be used together!  TML says their 2.0
 release of the compiler will be Lisa-compatible on this score, so this 
unsightly workaround won't be needed any more. }

procedure setptx1 (var pt: point; h, v: integer; addr: longint);
      INLINE   $205F; { MOVE.L   (A7)+,A0  
 ; pop routine's address into A0  }
procedure setptx2;
      INLINE   $4E90;{ JSR(A0);  and call that address }

{ gettrtime -- The last and most complicated way of calling the routine. 
 We use the trap address to call it directly. }

function gettrtime: longint;
var
  addr: longint;         { actual address of "setpt" }
  count: longint;        { loop counter }
  pt: point;        { point to assign to }
  x, y: integer;         { coordinates to assign to point }
begin;
  addr := gettrapaddress ($a880);    { find where routine lives }
  start := tickcount;         { snapshot starting time }
  for count := 1 to loops do begin { inside the loop... }
    setptx1 (pt, x, y, addr);          { ...we call on ROM  }
    setptx2;{ (kludge to sneak in 2nd instruction }
  end;
  gettrtime := tickcount-start;              { calculate elapsed time 
}
end;             { function gettrtime }

begin;          { *** main program *** }
  writeln ('If launching from a floppy, wait for it to stop and click 
to begin...');
  while not button do; while button do;      { wait for a click }

  loops := 10000;          { start with a small loop size... }
  while loops <= 1000000 do  { and go through several sizes}
  begin;
    basetime := getbasetime;        { find constant overhead }

    writeln ('number of loops:', loops, '; base time is:', basetime);
    writeln ('time for usual method is..........: ', usualtime - basetime);
    writeln ('time for calling my own routine is: ', myowntime - basetime);
    writeln ('time for doing it in-line is......: ', inlintime - basetime);
    writeln ('time for doing it with gettrapaddr: ', gettrtime - basetime);
    writeln;

    loops := loops * 10;   { loop sizes increase exponentially }
  end;

  flushevents(EveryEvent,0);
   writeln ('click to exit or take snapshot ');
  Repeat
  systemtask;
 DoIt:=GetNextEvent(EveryEvent,Event);
 if DoIt then
 Case Event.what of
  KeyDown: begin end;
  Mousedown: begin Finished:=true; end;
  End;
Until Finished;
end.            { of main program "traptime"  }



!PAS$Xfer

trapspeed
PAS$Library
OSTraps
ToolTraps
$ 
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Macs Fan Control 1.5.0.0 - Monitor and c...
Macs Fan Control allows you to monitor and control almost any aspect of your computer's fans, with support for controlling fan speed, temperature sensors pane, menu-bar icon, and autostart with... Read more
Daylite 6.7.7 - Dynamic business organiz...
Daylite helps businesses organize themselves with tools such as shared calendars, contacts, tasks, projects, notes, and more. Enable easy collaboration with features such as task and project... Read more
OpenOffice 4.1.7 - Free and open-source...
OpenOffice.org is both an Open Source product and a project. The product is a multi-platform office productivity suite. It includes the key desktop applications, such as a word processor, spreadsheet... Read more
Backup and Sync 3.46 - File backup and s...
Backup and Sync (was Google Drive) is a place where you can create, share, collaborate, and keep all of your stuff. Whether you're working with a friend on a joint research project, planning a... Read more
iClock 5.5 - Customizable menu bar clock...
iClock replaces the old Apple's default menu bar clock with more features, customization and increases your productivity. Features: Have your Apple or Google calendar instantly available from the... Read more
Garmin Express 6.18.0.0 - Manage your Ga...
Garmin Express is your essential tool for managing your Garmin devices. Update maps, golf courses and device software. You can even register your device. Update maps Update software Register your... Read more
MarsEdit 4.3.5 - Quick and convenient bl...
MarsEdit is a blog editor for OS X that makes editing your blog like writing email, with spell-checking, drafts, multiple windows, and even AppleScript support. It works with with most blog services... Read more
Xcode 11.0 - Integrated development envi...
Xcode includes everything developers need to create great applications for Mac, iPhone, iPad, and Apple Watch. Xcode provides developers a unified workflow for user interface design, coding, testing... Read more
DaisyDisk 4.8 - $9.99
DaisyDisk allows you to visualize your disk usage and free up disk space by quickly finding and deleting big unused files. The program scans your disk and displays its content as a sector diagram... Read more
VMware Fusion 11.5.0 - Run Windows apps...
VMware Fusion and Fusion Pro - virtualization software for running Windows, Linux, and other systems on a Mac without rebooting. The latest version includes full support for Windows 10, macOS Mojave... Read more

Latest Forum Discussions

See All

Marvel Strike Force is adding Agent Coul...
Marvel Strike Force, the popular squad-based RPG, is set to receive a bunch of new content over the next few weeks. [Read more] | Read more »
Lots of premium games are going free (so...
You may have seen over the past couple weeks a that a bunch of premium games have suddenly become free. This isn’t a mistake, nor is it some last hurrah before Apple Arcade hits, and it’s important to know that these games aren’t actually becoming... | Read more »
Yoozoo Games launches Saint Seiya Awaken...
If you’re into your anime, you’ve probably seen or heard of Saint Seiya. Based on a shonen manga by Masami Kurumada, the series was massively popular in the 1980s – especially in its native Japan. Since then, it’s grown into a franchise of all... | Read more »
Five Nights at Freddy's AR: Special...
Five Nights at Freddy's AR: Special Delivery is a terrifying new nightmare from developer Illumix. Last week, FNAF fans were sent into a frenzy by a short teaser for what we now know to be Special Delivery. Those in the comments were quick to... | Read more »
Rush Rally 3's new live events are...
Last week, Rush Rally 3 got updated with live events, and it’s one of the best things to happen to racing games on mobile. Prior to this update, the game already had multiplayer, but live events are more convenient in the sense that it’s somewhat... | Read more »
Why your free-to-play racer sucks
It’s been this way for a while now, but playing Hot Wheels Infinite Loop really highlights a big issue with free-to-play mobile racing games: They suck. It doesn’t matter if you’re trying going for realism, cart racing, or arcade nonsense, they’re... | Read more »
Steam Link Spotlight - The Banner Saga 3
Steam Link Spotlight is a new feature where we take a look at PC games that play exceptionally well using the Steam Link app. Our last entry talked about Terry Cavanaugh’s incredible Dicey Dungeons. Read about how it’s a great mobile experience... | Read more »
Combo Quest (Games)
Combo Quest 1.0 Device: iOS Universal Category: Games Price: $.99, Version: 1.0 (iTunes) Description: Combo Quest is an epic, time tap role-playing adventure. In this unique masterpiece, you are a knight on a heroic quest to retrieve... | Read more »
Hero Emblems (Games)
Hero Emblems 1.0 Device: iOS Universal Category: Games Price: $2.99, Version: 1.0 (iTunes) Description: ** 25% OFF for a limited time to celebrate the release ** ** Note for iPhone 6 user: If it doesn't run fullscreen on your device... | Read more »
Puzzle Blitz (Games)
Puzzle Blitz 1.0 Device: iOS Universal Category: Games Price: $1.99, Version: 1.0 (iTunes) Description: Puzzle Blitz is a frantic puzzle solving race against the clock! Solve as many puzzles as you can, before time runs out! You have... | Read more »

Price Scanner via MacPrices.net

Amazon is offering new 10.5″ iPad Airs for up...
Amazon has Apple’s new 10.5″ iPad Airs on sale today for up to $50 off MSRP, starting at $469. Shipping is free: – 10.5″ 64GB WiFi iPad Air: $469 $50 off MSRP – 10.5″ 256GB WiFi + Cellular iPad Air... Read more
Apple now offering a full line of 13″ 2.4GHz...
Apple has a full line of Certified Refurbished 2019 13″ 2.4GHz 4-Core Touch Bar MacBook Pros now available starting at $1529 and up to $300 off MSRP. Apple’s one-year warranty is included, shipping... Read more
2019 iMacs available for up to $350 off MSRP,...
Apple has Certified Refurbished 2019 21″ & 27″ iMacs now available starting at $929 and up to $350 off the cost of new models. Apple’s one-year warranty is standard, shipping is free, and each... Read more
Get a clearance 2018 13″ 2.3GHz Quad-Core Tou...
Apple has Certified Refurbished 2018 13″ 2.3GHz 4-Core Touch Bar MacBook Pros available starting at $1489. Apple’s one-year warranty is included, shipping is free, and each MacBook has a new outer... Read more
11″ WiFi iPad Pros on sale today for up to $2...
Amazon has new 2018 Apple 11″ WiFi iPad Pros in stock today and on sale for up to $200 off Apple’s MSRP. These are the same iPad Pros sold by Apple in its retail and online stores. Be sure to select... Read more
Select 12″ iPad Pros on sale for $200 off App...
Amazon has select 2018 Apple 12″ iPad Pros in stock today and on sale for $200 off Apple’s MSRP. These are the same iPad Pros sold by Apple in its retail and online stores. Be sure to select Amazon... Read more
Get one of Apple’s new 2019 iPhone 11 models...
Boost Mobile is offering the new 2019 Apple iPhone 11, iPhone 11 Pro, and 11 Pro Max for $100 off MSRP. Their discount reduces the cost of an iPhone 11 to $599 for the 64GB models, $899 for the 64GB... Read more
13″ 1.4GHz Silver MacBook Pros on sale for $1...
B&H Photo has new 2019 13″ 1.4GHz 4-Core Touch Bar Silver MacBook Pros on sale for $100 off Apple’s MSRP. Overnight shipping is free to many addresses in the US. These are the same MacBook Pros... Read more
4-core and 6-core 2018 Mac minis available at...
Apple has Certified Refurbished 2018 Mac minis available on their online store for $120-$170 off the cost of new models. Each mini comes with a new outer case plus a standard Apple one-year warranty... Read more
$250 prepaid Visa card with any Apple iPhone,...
Xfinity Mobile will include a free $250 prepaid Visa card with the purchase of any new iPhone, new line activation, and transfer of phone number to Xfinity Mobile. Offer is valid through October 27,... Read more

Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**734646BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Store Associates **Location Number:** 001220-Issaquah-Store **Job Description:** The Read more
Best Buy *Apple* Computing Master - Best Bu...
**734517BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000685-El Camino Real-Store **Job Description:** **What does Read more
*Apple* Mobility Pro - Best Buy (United Stat...
**734830BR** **Job Title:** Apple Mobility Pro **Job Category:** Store Associates **Location Number:** 000423-West Broad-Store **Job Description:** At Best Buy, our Read more
Systems Analyst ( *Apple* & Android) (Jo...
Systems Analyst ( Apple & Android) (Job ID: 572513) + 11751 Meadowville Ln, Chester, VA 23836, USA + Full-time Company Description Computer Consultants International, Read more
*Apple* Mobile App Developer - eiWorkflow So...
…eiWorkflow Solutions, LLC is currently looking for a consultant for the following role. Apple Mobile App Developer Tasks the role will be performing: ? Mobile App Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.