TweetFollow Us on Twitter

Float Point 2
Volume Number:2
Issue Number:8
Column Tag:Threaded Code

Floating Point Package, Part II

By Jörg Langowski, EMBL, c/o I.L.L., Grenoble, Cedex, France, Editorial Board

"Fast exp(x) and ln(x) in single precision"

We will continue with numerics this time, in order to give some examples how to put the 32 bit floating point package to practical use, and also because we got feedback that some more information about number crunching would be appreciated.

First, however, it is time for some apologies: the bugs have been creeping into the multiply routine, and when I noticed the last few traces they left, the article was already in press. The problem was that when the number on top of stack was zero, the routine would all of a sudden leave two numbers on the stack, one of which was garbage. This problem has been fixed in the revision, which is printed in Listing 1. I hope there will be no more errors, but please let me know if you find any. A reliable 32 bit package is so important for numerical applications on the Mac!

For many applications, the four basic operations +-*/ by themselves already help a lot in speeding up. However, alone they do not make a functional floating point package. For operations that are not used so frequently, like conversion between integer, single and extended or input/output on can still rely on the built-in SANE routines. But for the standard mathemetical functions you would want to have your own definitions that make full use of the speed of the 32 bit routines.

Developing a complete package of mathematical functions would be a project that is outside the scope of this column. I'll only give you two examples that serve to show that a very reasonable speed can be attained in Forth (here, Mach1) without making too much use of assembly language. The two examples, ln(x) and exp(x) are based on approximations taken from the Handbook of Mathematical Functions by M. Abramowitz and I.A. Stegun, Dover Publications, New York 1970. Furthermore, the routines given here profited a lot from ideas published in the April '86 issue of BYTE on number crunching.

First, we have to realize that a transcendental function like ln(x), using a finite number of calculation steps, can only be approximated over a certain range of input numbers to a certain maximum accuracy. It is intuitively clear that the wider the range of the argument x, the lengthier the calculation gets to achieve the desired accuracy. Therefore, approximation formulas for standard functions are usually given over a very restricted range of x. We have to see that we play some tricks on the input value x so that we can get a reliable approximation over the whole range of allowed floating point numbers, which is approximately 10-38 to 10+38 for the IEEE 32 bit format.

The handbook mentioned gives various approximations for ln(x) with different degrees of accuracy. The accuracy that we need for a 24 bit mantissa is 2-23 10-7, and a suitable approximation for this accuracy would be

ln(1+x)   a1x + a2x2 + a3x3 + a4x4 + a5x5+ a6x6 + a7x7 + a8x8  +  (error),
 [1]

where for 0 ¯ x ¯ 1 the error is less than 3.10-8. The coefficients a1 to a8 are:

a1 =  0.9999964239, a2 =  -0.4998741238, 
a3 =  0.3317990258, a4 =  -0.2407338084,
a5 =  0.1676540711, a6 =  -0.0953293897, 
a7 =  0.0360884937, a8 =  -0.0064535442 . 

To calculate eqn. [1] more rapidly, it is of course convenient to write it as

ln(1+x)   x.(a1 + x.(a2 + x.(a3 + x.(a4 + x.(a5 + x.(a6+ x.(a7 + x.a8))))))
 [2]

where by consecutive addition of coefficients and multiplication by the argument the polynomial may be evaluated with a minimum of operations. ln.base in Listing 2 calculates eqn. [2] and gives a good approximation for ln(x) in the range of x=1 2.

For numbers outside this range, we have to realize that

 ln(a.x) = ln(a) + ln(x),

and in the special case when a = 2n,

 ln(2n .x) = n.ln(2) + ln(x).

Now, all our floating point numbers are already split up in such a way; they contain a binary exponent n and a mantissa x such that x is between 1 and 2. So it remains to separate the exponent and mantissa, calculate eqn.[2] for the mantissa and add n times ln(2), which is a constant that we can calculate and store beforehand.

The separation of exponent and mantissa is done in get.exp, which will leave the biased exponent on top of stack, followed by the mantissa in the format of a 32-bit floating point number between 1 and 2. We now have to multiply the exponent by ln(2), an (integer) times (real) multiplication. Instead of writing another routine do do this, we use a faster method that, however, is a little memory consuming: we build a lookup table for all values of n.ln(2) with n between -127 and +128, the allowed range of exponents. Since the exponent is biased by +127, we can use it directly to index the table. The table consumes 1K of memory, so I wouldn't use it on a 48K CP/M system, but with 0.5 to 1 megabyte on a Mac, this can be justified. The lookup table is created using the SANE routines; this takes a couple of seconds, but it is done only for the initialization.

For faster indexing, I also defined the word 4* in assembly, which does not exist in Mach1 (it does, of course, in MacForth).

The final definition ln first separates exponent and mantissa and then computes ln(x) from those separate parts. Note that ln as well as ln.base are written completely in Forth. Fine-tuning of those routines, using assembler, should speed them up by another factor of 1.5 to 2 (wild guess). Still, you already gain a factor of 12 over the SANE routine (use speed.test to verify). The accuracy is reasonably good; the value calculated here differs from the 'exact' extended precision value by approximately 1 part in 107 to 108, just about the intrinsic precision of 32-bit floating point.

Let's now proceed to the inverse of the logarithm, the exponential. The handbook gives us the approximation

e-x    a1x + a2x2 + a3x3 + a4x4 + a5x5+ a6x6 + a7x7 + (error),

with the coefficients

a1 =  -0.9999999995, a2 =  0.4999999206, 
a3 =  -0.1666653019, a4 =  0.0416573745,
a5 =  -0.0083013598, a6 =  0.0013298820, 
a7 =  -0.0001413161 .

This approximation is valid to within 2.10-10 for x between 0 and ln(2) 0.6, and we use it for x = 0 1 for our purposes here, which still is sufficiently precise for a 24 bit mantissa.

Again, we have to scale down the input value of x in order to get it into the range of validity of the approximation. This time, we use the relationship

 e(N+f) = eN  . ef  ,

where N is the integer and f the fractional part of x. eN will be looked up in a table and ef calculated from the approximation. To get N, we need a real-to-integer conversion routine; this routine, together with its integer-to-real counterpart, is coded in assembler with some Forth code to get the signs correct (words s>i and i>s). The fractional part is calculated by subtracting the integer part from the input number; this is done in Forth without giving up too much in speed. exp puts it all together and calculates ex for the whole possible range of x values.

As before, the lookup table for the eN values is initialized separately, using the SANE routines.

The benchmark, speed.test, shows a 24 fold speed increase of this exponential function as compared to the 80-bit SANE version.

Other mathematical standard functions can be defined in a way very similar to the examples that I gave here. A good source of some approximations is the handbook mentioned above, also, many interesting ideas regarding numerical approximations can be found in BYTE 4/86.

Feedback dept.

Let's turn to some comments that I received through electronic mail on Bitnet and BIX.

Here comes a comment (through BIX) on the IC! bug in NEON, which leads to a very interesting observation regarding the 68000 instruction set:

Memo #82583

From: microprose

Date: Fri, 23 May 86 21:44:08 EDT

To: jlangowski

Cc: mactutor

Message-Id: <memo.82583>

Subject: "IC!" bug -- why it happens

Just got my April '86 MacTutor, and I thought I'd answer your question about the bug in the "IC!" word. Register A7 in the 68000 is always used as the stack pointer, and as such must always be kept word-aligned. As a special case, the pre-decrement and post-increment addressing modes, when used with a byte-sized operand, automatically push or pop an extra padding byte to keep the stack word-aligned. In the case of MOVE.B (A7)+,<dest>, this causes the most-significant byte of the word at the top of the stack to be transferred; then the stack pointer is adjusted by 2 (not 1). I would guess that a similar thing is happening with ADDQ #3,A7; since you mention nothing about a stack underflow, it seems that this instruction is adding 2 to A7, not 4 as I would have suspected. (Otherwise, in combination with the following instruction, an extra word is being removed from the stack.) Since the desired byte is at the bottom of the longword, your solution is the best one (assuming that D0 is a scratch register).

I should point out that this is based only on the material printed in your column, as I do not own Neon. I do, however, have Mach 1 (V1.2), and I am looking forward to more coverage of it in future issues of MacTutor.

Russell Finn

MicroProse Software

[Thank you for that observation. In fact, I tried to single step - with Macsbug - through code that looked like the following:

 NOP
 NOP
 MOVE.L A7,D0
>>>>> ADDQ.L #3,A7     <<<<<
 MOVE.L D0,A7
 etc. etc.

I didn't even get a chance to look at the registers! As soon as the program hits the ADDQ.L instruction, the screen goes dark, bing! reset! Also, running right through that piece of code (setting a breakpoint after the point where A7 was restored) resulted in the same crash. Therefore, this behavior should have nothing to do with A7 being used intermediately by Macsbug. I see two explanations: Either an interrupt occuring while A7 is set to a wrong value or a peculiarity of the 68000, which makes the machine go reset when this instruction is encountered (???). At any rate, the designers of NEON never seem to have tested their IC! definition, otherwise they would have noticed it]

A last comment: we have received a nicely laid out newsletter of the MacForth User's group, which can be contacted at

MFUG,

3081 Westville Station, New Haven, CT 06515.

With the variety of threaded code systems for the Macintosh around and being actively used, I think it is a good idea to keep the topics dealt with in this column as general as possible; even though I am using Mach1 for my work at the moment, most of the things apply to other Forths as well.

What would help us a great deal, of course, is feedback from you readers 'out there'. If you have pieces of information, notes or even whole articles on Forth aspects that you think would be of interest to others (and if it interested you, it will interest others), please, send them in.

Listing 1: 32 bit FP multiply, first revision (and hopefully the last one)
CODE     S*     
         MOVE.L  (A6)+,D1
         BEQ     @zero
         MOVE.L  (A6)+,D0
         BEQ     @end
         MOVE.L  D0,D2
         MOVE.L  D1,D3
         SWAP.W  D2
         SWAP.W  D3
         CLR.W   D4
         CLR.W   D5
         MOVE.B  D2,D4
         MOVE.B  D3,D5
         BSET    #7,D4
         BSET    #7,D5
(        ANDI.W  #$FF80,D2 )
         DC.L    $0242FF80
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
         ROL.W   #1,D2
         ROL.W   #1,D3
         SUBI.W  #$7F00,D2
         SUBI.W  #$7F00,D3
         ADD.W   D2,D3
         BVS     @ovflchk
         MOVE.W  D4,D2  
         MULU.W  D1,D2  
         MULU.W  D0,D1  
         MULU.W  D5,D0  
         MULU.W  D4,D5 
         ADD.L   D2,D0  
         MOVE.W  D5,D1 
         SWAP.W  D1
         ADD.L   D1,D0  
         BPL     @nohibit
     ADDI.W  #$100,D3
         BVC     @round
         BRA     @ovflchk
@nohibit ADD.L   D0,D0
@round   BTST    #7,D0
         BEQ     @blk.exp
         BTST    #6,D0
         BNE     @incr
         BTST    #8,D0
         BEQ     @blk.exp
@incr    ADDI.L  #$80,D0
         BCC     @blk.exp
         ADDI.W  #$100,D3
         BVC     @blk.exp
@ovflchk BPL     @makezero
         MOVE.L  #$7F800000,-(A6)  
         RTS
@makezero  CLR.L D0
         MOVE.L  D0,-(A6)
         RTS
@zero    CLR.L D0
         MOVE.L  D0,(A6)
         RTS
@blk.exp ADDI.W  #$7F00,D3
         BLE     @makezero
         ROR.W   #1,D3
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
         LSR.L   #8,D0
         BCLR    #23,D0
         SWAP.W  D3
         CLR.W   D3
         OR.L    D3,D0
@end     MOVE.L  D0,-(A6)
         RTS     
END-CODE          
Listing 2: Example definitions for exponential and natural logarithm, Mach1 
only forth definitions also assembler also sane
include" add.sub"
include" mul.sp"
include" div.sp"
(  files  I keep my floating point routines )

CODE 4*
     MOVE.L (A6)+,D0
     ASL.L  #2,D0
     MOVE.L D0,-(A6)
     RTS
END-CODE MACH

( extract biased exponent & mantissa 
from 32 bit FP # )

CODE get.exp
     MOVE.L  (A6)+,D0
     MOVE.L  D0,D1
     SWAP.W  D0
     LSR.W   #7,D0
     ANDI.L  #$FF,D0
     MOVE.L  D0,-(A6)
     ANDI.L  #$7FFFFF,D1
     ORI.L   #$3F800000,D1
     MOVE.L  D1,-(A6)
     RTS
END-CODE
   
CODE stoi  
        MOVE.L  (A6)+,D0
        MOVE.L  D0,D1
        SWAP.W  D0
        LSR.W   #7,D0
        SUBI.B  #127,D0
        BMI     @zero
        BEQ     @one
        ANDI.L  #$7FFFFF,D1
        BSET    #23,D1
        CMP.B   #8,D0
        BCC     @long.shift
        LSL.L   D0,D1
        CLR.W   D1
        SWAP.W  D1
        LSR.L   #7,D1
        MOVE.L  D1,-(A6)
        RTS
@long.shift
        LSL.L   #7,D1
        SUBQ.B  #7,D0
        CLR.L   D2
@shifts LSL.L   #1,D1
        ROXL.L  #1,D2
        SUBQ.B  #1,D0
        BNE     @shifts
        CLR.W   D1
        SWAP.W  D1
        LSR.L   #7,D1
        LSL.L   #8,D2
        ADD.L   D2,D2
        OR.L    D2,D1
        MOVE.L  D1,-(A6)
        RTS
@zero   CLR.L   D0
        MOVE.L  D0,-(A6)
        RTS
@one    MOVEQ.L #1,D0
        MOVE.L  D0,-(A6)
        RTS
END-CODE

: s>i dup 0< if stoi negate else stoi then ;

CODE itos
        MOVE.L  (A6)+,D0
        BEQ     @zero
        CLR.L   D1
        MOVE.L  #$7F,D2
@shifts CMPI.L  #1,D0
        BEQ     @one
        LSR.L   #1,D0
        ROXR.L  #1,D1
        ADDQ.L  #1,D2
        BRA     @shifts
@one    LSR.L   #8,D1
        LSR.L   #1,D1
        SWAP.W  D2
        LSL.L   #7,D2
        BCLR    #31,D2
        OR.L    D2,D1
        MOVE.L  D1,-(A6)
        RTS
@zero   MOVE.L  D0,-(A6)
        RTS
END-CODE        
hex
: i>s dup 0< if negate itos 80000000 or
 else itos then ;
decimal
 
: s. s>f f. ;

vocabulary maths also maths definitions

decimal
fp 9 float

-inf f>s constant -infinity
 inf f>s constant  infinity

1.0  f>s constant one
10.  f>s constant ten
100. f>s constant hun
pi f>s constant pi.s
2.718281828  f>s constant eu

( exponential, natural log )

 .9999964239 f>s constant a1ln
-.4998741238 f>s constant a2ln
 .3317990258 f>s constant a3ln
-.2407338084 f>s constant a4ln
 .1676540711 f>s constant a5ln
-.0953293897 f>s constant a6ln
 .0360884937 f>s constant a7ln
-.0064535442 f>s constant a8ln

variable ln2table 1020 vallot
  2.0 fln    f>s constant ln2
: fill.ln2table
    256 0 do ln2 i 127 - i>s s*
             i 4* ln2table + !
          loop
;
: ln.base 
    one s- a8ln over s*
           a7ln s+ over s*
           a6ln s+ over s*
           a5ln s+ over s*
           a4ln s+ over s*
           a3ln s+ over s*
           a2ln s+ over s*
           a1ln s+ s*
;
: ln dup 0> if get.exp
               ln.base
               swap 4* ln2table + @
               s+
            else drop -infinity
            then
;
: lnacc
  1000 0 do 
    i . i i>s ln  dup s.
        i i>f fln fdup f.
          s>f f- f. cr
    loop
;
variable exptable 700 vallot
: fill.exptable
      176 0 do i 87 - i>f fe^x f>s
             i 4* exptable + !
          loop
;
  
-.9999999995 f>s constant a1exp
 .4999999206 f>s constant a2exp
-.1666653019 f>s constant a3exp
 .0416573745 f>s constant a4exp
-.0083013598 f>s constant a5exp
 .0013298820 f>s constant a6exp
-.0001413161 f>s constant a7exp

: exp.base a7exp over s*
           a6exp s+ over s*
           a5exp s+ over s*
           a4exp s+ over s*
           a3exp s+ over s*
           a2exp s+ over s*
           a1exp s+ s*
           one s+
           one swap s/
;
: exp dup s>i swap over i>s s- exp.base swap 
          dup -87 < if 2drop 0
     else dup  88 > if 2drop infinity
     else 87 + 4* exptable + @ 
           ( get exp of integer part ) s* then
     then
;
: expacc
  1000 0 do 
    i . i i>s hun  s/  exp  dup s.
        i i>f 100. f/ fe^x fdup f.
          s>f f- f. cr
    loop
;
:  emptyloop 0  1000 0 do  dup  drop loop  drop ;
: femptyloop 0. 1000 0 do fdup fdrop loop fdrop ;
: testexp  ten one s+ 1000 0 do  dup  exp  drop loop  drop ;
: testfexp        11. 1000 0 do fdup fe^x fdrop loop fdrop ;
: testln  ten one s+ 1000 0 do  dup  ln  drop loop  drop ;
: testfln        11. 1000 0 do fdup fln fdrop loop fdrop ;
: speed.test cr
  ." Testing 32 bit routines..." cr
 ."    empty..." counter emptyloop timer cr
."      exp..." counter testexp timer cr
 ."       ln..." counter testln timer cr cr
    ." Testing SANE routines..." cr
    ."    empty..." counter femptyloop timer cr
    ."      exp..." counter testfexp timer cr
    ."       ln..." counter testfln timer cr
;
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Marvel Future Fight celebrates nine year...
Announced alongside an advertising image I can only assume was aimed squarely at myself with the prominent Deadpool and Odin featured on it, Netmarble has revealed their celebrations for the 9th anniversary of Marvel Future Fight. The Countdown... | Read more »
HoYoFair 2024 prepares to showcase over...
To say Genshin Impact took the world by storm when it was released would be an understatement. However, I think the most surprising part of the launch was just how much further it went than gaming. There have been concerts, art shows, massive... | Read more »

Price Scanner via MacPrices.net

Amazon is offering a $100 discount on every M...
Amazon is offering a $100 instant discount on each configuration of Apple’s new 13″ M3 MacBook Air, in Midnight, this weekend. These are the lowest prices currently available for new 13″ M3 MacBook... Read more
You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more
24-inch M1 iMacs available at Apple starting...
Apple has clearance M1 iMacs available in their Certified Refurbished store starting at $1049 and ranging up to $300 off original MSRP. Each iMac is in like-new condition and comes with Apple’s... Read more
Walmart continues to offer $699 13-inch M1 Ma...
Walmart continues to offer new Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for $699, $300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBook for sale by... Read more
B&H has 13-inch M2 MacBook Airs with 16GB...
B&H Photo has 13″ MacBook Airs with M2 CPUs, 16GB of memory, and 256GB of storage in stock and on sale for $1099, $100 off Apple’s MSRP for this configuration. Free 1-2 day delivery is available... Read more
14-inch M3 MacBook Pro with 16GB of RAM avail...
Apple has the 14″ M3 MacBook Pro with 16GB of RAM and 1TB of storage, Certified Refurbished, available for $300 off MSRP. Each MacBook Pro features a new outer case, shipping is free, and an Apple 1-... Read more
Apple M2 Mac minis on sale for up to $150 off...
Amazon has Apple’s M2-powered Mac minis in stock and on sale for $100-$150 off MSRP, each including free delivery: – Mac mini M2/256GB SSD: $499, save $100 – Mac mini M2/512GB SSD: $699, save $100 –... Read more
Amazon is offering a $200 discount on 14-inch...
Amazon has 14-inch M3 MacBook Pros in stock and on sale for $200 off MSRP. Shipping is free. Note that Amazon’s stock tends to come and go: – 14″ M3 MacBook Pro (8GB RAM/512GB SSD): $1399.99, $200... Read more
Sunday Sale: 13-inch M3 MacBook Air for $999,...
Several Apple retailers have the new 13″ MacBook Air with an M3 CPU in stock and on sale today for only $999 in Midnight. These are the lowest prices currently available for new 13″ M3 MacBook Airs... Read more
Multiple Apple retailers are offering 13-inch...
Several Apple retailers have 13″ MacBook Airs with M2 CPUs in stock and on sale this weekend starting at only $849 in Space Gray, Silver, Starlight, and Midnight colors. These are the lowest prices... Read more

Jobs Board

Relationship Banker - *Apple* Valley Financ...
Relationship Banker - Apple Valley Financial Center APPLE VALLEY, Minnesota **Job Description:** At Bank of America, we are guided by a common purpose to help Read more
IN6728 Optometrist- *Apple* Valley, CA- Tar...
Date: Apr 9, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 824398 At Target Optical, we help people see and look great - and Read more
Medical Assistant - Orthopedics *Apple* Hil...
Medical Assistant - Orthopedics Apple Hill York Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Now Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
Liquor Stock Clerk - S. *Apple* St. - Idaho...
Liquor Stock Clerk - S. Apple St. Boise Posting Begin Date: 2023/10/10 Posting End Date: 2024/10/14 Category: Retail Sub Category: Customer Service Work Type: Part Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.