TweetFollow Us on Twitter

Float Point
Volume Number:2
Issue Number:7
Column Tag:Threaded Code

A Custom Floating Point Package

By Jörg Langowski, EMBL, c/o I.L.L., Grenoble, Cedex, France, Editorial Board

"12 Kflops - Forth goes inSANE"

You might have noticed my frequent complaints about the slowness of the Apple 80-bit SANE routines and the non-availability of a reasonably fast 32 bit floating point package in Forth systems (and most other programming languages, for that matter, Fortran being the only exception).

The scaling that is necessary if you want to do rapid calculations in Forth (using integer arithmetic) is a nuisance, and it is almost impossible to implement general purpose mathematical routines without floating point. Since I needed to run this machine as fast as possible, I set out to write a set of single precision real arithmetic routines.

IEEE 32-bit real numbers

The number format that we are dealing with is the IEEE standard and defined as follows:

bit 31 (highest bit): sign (0 = positive)
bits 30 23 : exponent (offset = 127)
bits 22 0 : fraction part (23 bits with the 24th bit always =1)

That is, a real number has the form

(+/-)1.xxx xxx * 2yyy,

where the exponent yyy is obtained by subtracting 127 from the stored exponent; only the fraction part of the mantissa is stored because the integer part is always 1 by definition (otherwise, the fraction part will have to be shifted left and the exponent decreased until the integer part is =1; this is called normalization).

The highest exponent, 255, is reserved for special cases: with zero mantissa it designates positive/negative infinity, and with non-zero mantissa it is a 'no-number' (Not a Number or NaN). This latter case is used to mark the results of undefined or illegal operations, such as 0/0, infinity - infinity, square root (-x), etc. The type of 'non- numberness' is indicated by the value of the mantissa.

Floating point arithmetic is thouroughly treated in D. Knuth's 'The Art of Computer Programming', Vol.2. Taking this excellent book as a guidance, the job to write the single precision routines becomes manageable. We'll first consider addition.

Floating point addition and subtraction

To add two floating point numbers which have the same exponent is trivial, we simply add the fraction parts. Unfortunately, in real life numbers often have different exponents. Adding such two numbers is done by shifting the fraction part of the smaller one right by the difference in exponents. Then the fractions may be added; the exponent of the result is that of the larger of the two input numbers.

This addition may generate a fraction overflow, when the new fraction part overflows into the 25th bit. In that case, the fraction has to be shifted right and the exponent increased by one. This might generate an exponent overflow; in which case we have to set the result to infinity.

When adding two numbers of opposite sign, the fractions will have to be subtracted and the resultant fraction may be significantly smaller than 24 bit precision. We have to normalize the result, shifting the fraction left until the 24th bit is equal to one again, decreasing the exponent as we go. We assume that the input to our routines always consists of normalized floating point numbers; the routines will always return normalized results as well.

Normalizing after subtraction may result in an exponent underflow. We could simply stop normalization and keep an unnormalized fraction part for very small numbers (in fact, the IEEE standard provides for this). I have chosen here to simply set the result equal to zero, since the algorithms become more complicated if one allows unnormalized small numbers.

After normalization, the fraction part is rounded. This is necessary because we actually calculate the result with a higher precision than 24 bits; in general, we will have a 'raw' 32-bit result. The rounding algorithm implemented here goes as follows (bit 0 is the least significant bit of the 24 bit mantissa, bits (-1) and (-2) the bits below it):

- if bit (-1) is equal to zero, don't change anything.

- if bits (-1) and (-2) are equal to one, increment fraction by one.

- if bit (-1) = 1, bit (-2) = 0, increment fraction if bit 0 = 1 (round to next even number).

Since rounding includes incrementing, we might generate a new fraction overflow, so we have to check for that again after rounding.

Getting the correct sign for the result is not too complicated, either; if both numbers have the same sign, the result will have that sign. If the numbers are of opposite sign, the fractions have to be subtracted instead of added. If because of the subtraction the result fraction becomes negative, the fraction and the sign of the result have to be inverted.

The result of the subtraction then is normalized and rounded as described before.

The algorithm is implemented in Listing 1 in standard 68000 assembly code of the Mach1 variety. My code assumes that registers D0 to D6 may be used freely, which is true for Mach1. If your Forth system (or any other system where you wish to implement this code) uses any of those registers, you will have to push them on the stack before you enter and pull them off again on exit. Or change register assignments.

The Mach1 data stack is maintained by A6, so the operands are pulled off the A6 stack on entry and the sum pushed there on exit. This might also be a place where changes would be necessary going to a different system. Otherwise, you can take the code as it is. In MacForth, you will have to transfer it into reverse polish notation. NEON provides a standard assembler.

Read through the listing and follow the algorithm in machine language; it is essentially the one described in Sec. 4.2.1 of Vol.2 of Donald Knuth's set of books, except that normalization is only done after subtraction.

There is some additional 'glue' which is specific to Mach1. F>S and S>F move floating point numbers from the floating stack (D7) to the data stack (A6) and back, changing between 80- and 32-bit precision. S- provides for subtraction; it simply changes the sign of the number on top of stack and then adds.

<<< BUG WARNING >>>

- Palo Alto Shipping, please take note -

As you see in the listing, I had to hand-assemble a BCHG #31,(A6) by doing a DC.L. This is because the Mach 1 assembler still doesn't like some instructions. I would recommend to all of you using this (otherwise excellent) system to disassemble routines after assembly and quickly look whether there are differences. Another instruction with which I had problems is the ANDI.W and ANDI.B type (not the ANDI.L). Further down, in the code for multiplication and division, I had to move around those problems by hand-coding with DC.L.

Multiplication

The multiplication algorithm is somewhat simpler than that for addition. Its heart is a double precision multiplication of the fraction parts. A 24 by 24-bit multiply yields a 48-bit result, only the upper 24 bits of which are needed (actually, some more for rounding - we'll have 32 bits as an intermediate result).

Lets call the two operands u and v, their 8 most significant bits um and vm, the 16 least significant bits ul and vl. The result is then composed as follows (Fig.1):

um * vm -> upper 16 bits of result;
ul * vl -> lower 32 bits of (48-bit) result;
um*vl + ul*vm -> 24 lower bits of the upper 32-bit part of result.

The final 24-bit result is obtained by taking the upper rounded 24 bits of the 48-bit result. This result might be unnormalized by one position (the high bit might be =0); if that's the case, it will have to be shifted left by one and the exponent adjusted accordingly. After that adjustment, the result is rounded as shown above.

The exponents are simply added in multiplication, after subtracting the excess (the offset of 127). At this point, over- and underflows are detected. The correct sign is automatically attached to the product by the following trick:

Fig. 1

Before the two exponents are added, the signs are rotated into bit 0 of the registers so that the exponents are in the upper 8 bits of the word. After addition, bit 0 will be one only when the operands had opposite signs. When the exponent is then rotated back, the sign bit will be set (=negative) only in that case. Of course, the low order bits have to be masked out before exponent and fraction are put back together again.

Again, this algorithm is best understood by looking at the listing.

Division

Division is tough, since we can only divide 32 by 16 bits at a time, but we want a result that is precise to 24 bits! Ideally, we'd need a 48-bit register whose upper half we fill with the fraction part of the dividend, then do a 48-by 24 division to get a 24 bit result. If we have less precision, things get much more complicated. Knuth is the answer again.

Imagine we have two numbers u and v with upper and lower 16-bit halves um, vm and ul, vl, which we want to divide. This can be written as

wm + 2-16wl = (um + 2-16ul)/(vm + 2-16vl)

  =  (um + 2-16ul)/vm * 1/(1 + 2-16(vl/ vm)) .

Now is is convenient to know that the second term of the product in the second line may be approximated:

1/(1 + 2-16(vl/ vm))   1 - 2-16(vl/ vm)  .

The way to go is now the following:

- divide u (32-bit) by vm, getting a 16-bit quotient w'm and 16 bits of remainder.

- shift w'm into the upper half of the result. Divide the 16 bit remainder (shifted into the upper half of a 32-bit register) by vm. This gives the 16-bit quotient w'l. Combine w'm and w'l to give w'.

- compute w'/vm (32bit/16 bit -> 16 bit). Multiply this result by vl to get a 32-bit product r', shift this product down by 16 bits to get r.

- The result of the division is w = w' - r.

The exponents have just to be subtracted in division, and correct sign is obtained by the same rotation 'trick' that was used in multiplication. Again, at this stage we have to watch for over- and underflows and do the correct rounding. Note that when adjusting the fraction parts to 32 bits at the beginning, the dividend is shifted one bit less than the divisor. This makes sure that the divisor is always larger than the dividend, otherwise another check for overflows would be necessary. No accuracy is sacrificed by this procedure.

Testing the package accuracy and speed benchmarks

The end of the listing contains some benchmarks that I wrote to check out the routines. The accuracy routines are used to check the precision of the package; with accuracy3 you will see that the result deviates only in the lowest fraction bit from the 'exact' result obtained with the SANE routines. (I have not tested all cases, there may me some exceptional ones where the deviation is 2 bits.)

The speed increase is considerable (Table 1): running the speed.test and fspeed.test for comparison, you'll find that you get a speed of 12,000 floating point additions per seconds (having subtracted loop overhead), and order-of-magnitude the same speed for the other operations. This is an increase by a factor of 5 to 10 over the SANE package. Just what we wanted.

Another bug report (mine!)

As I mentioned in my last article, there might have been a problem with the CRT saver the way it was written in that column. It turns out that the program actually can crash because of collision of the local stacks and therefore the two parts of the routine have to have separate local stacks. Listing 2 shows the change that has to be made in the program. The MacTutor source disk contains the corrected version, which is to my knowledge safe to use (I'm using it now...).

See you next time!

Table 1: single and extended precision benchmarks

10000 operations (pi•e)

single add: 0.83 sec -> 12.0 Kflops

single sub: 1.0 sec -> 10.0 Kflops

single mul: 0.95 sec -> 10.5 Kflops

single div: 1.3 sec -> 7.7 Kflops

extended add: 4.47 sec -> 2.2 Kflops

extended sub: 4.73 sec -> 2.1 Kflops

extended mul: 7.0 sec -> 1.4 Kflops

extended div: 13.35 sec -> 0.75 Kflops

speedup add: 5.36

speedup sub: 4.8

speedup mul: 7.37

speedup div: 10.3

Listing 1: single precision floating point math primitives, for installation 
into Forth systems
( 32 bit floating point routines )
(  © 27.4.1986 J. Langowski /MacTutor )
( This code may be used freely for non-commercial
purposes to speed up the inSANEly precise and slow 
Macintosh floating point package. Any inclusion in 
software that is distributed commercially requires the 
author's permission. )

only forth also assembler also sane

CODE     S>F
         PEA     (A6)
         SUBI.L  #$A,D7
         ADDQ.L  #$4,A6
         MOVE.L  D7,-(A7)
         MOVE.W  #$100E,-(A7)
         _Pack4
         RTS
END-CODE

CODE     F>S
         MOVE.L  D7,-(A7)
         ADDI.L  #$A,D7
         SUBQ.L  #$4,A6
         PEA     (A6)
         MOVE.W  #$1010,-(A7)
         _Pack4
         RTS
END-CODE

CODE     S+      ( 32 bit FP add )
         MOVE.L  (A6)+,D1
         BEQ     @1
         MOVE.L  (A6)+,D0
         BNE     @add.main
         MOVE.L  D1,-(A6)
@1       RTS     
     
@add.main
         MOVE.L  D0,D2
( number in D0 will be called u )
         MOVE.L  D1,D3
( and in D1 v )
         LSL.L   #8,D0
         LSL.L   #8,D1
         BSET    #31,D0
         BSET    #31,D1
( now D0 and D1 contain the fraction parts,
  shifted into the upper part of the long word )
         SWAP.W  D2
         SWAP.W  D3
         LSR.W   #7,D2
         LSR.W   #7,D3
( D2 and D3 contain exponent plus sign )
         MOVE.B  D2,D4
         SUB.B   D3,D4
( D4 contains the difference in exponent )
         BEQ     @expo.same
         BHI     @check.expo
( if v-exponent > u-exponent, exchange u and v )
         NEG.B   D4
         EXG     D0,D1
         EXG     D2,D3
@check.expo
         CMPI.B  #25,D4
( if difference in exponents > precision, just return u )
         BHI     @backtogether
         LSR.L   D4,D1  ( shift smaller fraction )
@expo.same
         EOR.W   D2,D3 ( test if signs are equal )
         BTST    #8,D3
         BNE     @subtract  ( if not, have to subtract )
         ADD.L   D1,D0
         BCC     @round
( fraction overflow )
         ROXR.L  #1,D0
         ADDQ.B  #1,D2
         BEQ     @ovfl
@round   BTST    #7,D0
         BEQ     @backtogether
         BTST    #6,D0
         BNE     @incr
         BTST    #8,D0
         BEQ     @backtogether
@incr    ADDI.L  #$80,D0
         BCC     @backtogether
( rounding overflow )
         ROXR.L  #1,D0
         ADDQ.B  #1,D2
         BEQ     @ovfl
@backtogether  
( reconstruct number from mantissa and exponent )
         LSR.L   #8,D0
         BCLR    #23,D0
         LSL.W   #7,D2
         SWAP.W  D2
         CLR.W   D2
         OR.L    D2,D0
@end     MOVE.L  D0,-(A6)
         RTS
     
@subtract
         SUB.L   D1,D0
         BEQ     @end
         BCC     @normal
( fraction v was larger than fraction u, change sign )
         BCHG    #8,D2
         NEG.L   D0 ( make mantissa positive )
@normal  BMI     @round
         SUBQ.B  #1,D2
         BEQ     @small  ( expo underflow )
         ADD.L   D0,D0  ( faster than LSL.L #1,D0 )
         BRA     @normal
@small   MOVEQ.L #0,D0
         BRA     @end
@ovfl    MOVE.L  #$7F800000,-(A6)
         RTS 
END-CODE

CODE     S-      ( 32 bit FP subtract )
(        BCHG    #$1F,[A6]   )
         DC.L    $0856001F
         S+
         RTS
END-CODE

CODE     S*      ( 32 bit single precision multiply)
         MOVE.L  (A6)+,D1
         BEQ     @makezero
         MOVE.L  (A6)+,D0
         BEQ     @end
( D0,D1 will be used for lower 16 bits of mantissa.
  D2,D3 for exponent )
         MOVE.L  D0,D2
         MOVE.L  D1,D3
         SWAP.W  D2
         SWAP.W  D3
( get rid of junk in D4,D5 )
         CLR.W   D4
         CLR.W   D5
( move most significant 7 mantissa bits to D4,D5
  and set implied highest bit = 1 )
         MOVE.B  D2,D4
         MOVE.B  D3,D5
         BSET    #7,D4
         BSET    #7,D5
( isolate exponent + sign in D2,D3 )
(        ANDI.W  #$FF80,D2 )
         DC.L    $0242FF80
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
( rotate sign into lowest bit D2,D3 )
         ROL.W   #1,D2
         ROL.W   #1,D3
( subtract exponent offset )
         SUBI.W  #$7F00,D2
         SUBI.W  #$7F00,D3
( sum exponents, check for over- or underflow )
         ADD.W   D2,D3
         BVS     @ovflchk
( now do 24*24 bit multiplication of mantissa )
         MOVE.W  D4,D2  ( u-hi -> D2 )
         MULU.W  D1,D2  ( u-hi * v-lo -> D2 )
         MULU.W  D0,D1  ( u-lo * v-lo -> D1 )
         MULU.W  D5,D0  ( u-lo * v-hi -> D0 )
         MULU.W  D4,D5  ( u-hi * v-hi -> D5 )
         ADD.L   D2,D0  ( u-hi*v-lo + u-lo*v-hi -> D0 )
         MOVE.W  D5,D1  
( u-hi*v-hi -> LSW[D1], 
  MSW unchanged , contains MSW of u-lo*v-lo )
         SWAP.W  D1  
( put LSW and MSW in correct order )
         ADD.L   D1,D0  ( put it all together )
( highest mantissa bit might have changed to one )
         BPL     @nohibit
         ADDI.W  #$100,D3
         BVC     @round
         BRA     @ovflchk
@nohibit ADD.L   D0,D0 ( if hi bit =0, make it =1)
@round   BTST    #7,D0
         BEQ     @blk.exp
         BTST    #6,D0
         BNE     @incr
         BTST    #8,D0
         BEQ     @blk.exp
@incr    ADDI.L  #$80,D0
         BCC     @blk.exp
         ADDI.W  #$100,D3
         BVC     @blk.exp
@ovflchk BPL     @makezero
         MOVE.L  #$7F800000,-(A6)  
         RTS
@makezero  MOVEQ.L #0,D0
         BRA     @end
( readjust exponent )
@blk.exp ADDI.W  #$7F00,D3
         BLE     @makezero
         ROR.W   #1,D3
(        ANDI.W  #$FF80,D3 )
         DC.L    $0243FF80
         LSR.L   #8,D0
         BCLR    #23,D0
         SWAP.W  D3
         CLR.W   D3
         OR.L    D3,D0
@end     MOVE.L  D0,-(A6)
         RTS     
END-CODE          

CODE     S/      ( 32 bit FP divide )          
         MOVE.L  (A6)+,D1
         BEQ     @byzero ( divisor = 0)
         MOVE.L  (A6)+,D0
         BEQ     @end    ( dividend = 0)
         MOVE.L  D0,D3
         SWAP.W  D0
         MOVE.W  D0,D5
         MOVE.L  D1,D6
         SWAP.W  D6
( exponents in D5,D6 )
         MOVE.W  #$100,D4 ( exponent adjust )
( isolate mantissa in D3,D1 and shift up )
         ANDI.L  #$007FFFFF,D3
         ANDI.L  #$007FFFFF,D1
         BSET    #$17,D3
         BSET    #$17,D1
         LSL.L   #7,D3
         LSL.L   #8,D1
( divide 32 by 32 bits )
         MOVE.L  D1,D2
         SWAP.W  D2  ( v-hi )
         DIVU.W  D2,D3  ( [u/v-hi]-hi)
         MOVE.L  D3,D0
         CLR.W   D0  ( remainder )
         DIVU.W  D2,D0  ( [u/v-hi]-lo)
         SWAP.W  D3
         MOVE.W  D0,D3 
         MOVE.L  D3,D0  ( u/v-hi = w)
         DIVU.W  D2,D3  ( w/v-hi )
         MULU.W  D3,D1 ( w*v-lo/v-hi)
         CLR.W   D1
         SWAP.W  D1  ( lo 16 bits )
         SUB.L   D1,D0 ( final 32 bit result )
         LSR.L   #6,D0 ( adjust )
( round result, as before)
         BTST    #1,D0
         BEQ     @rounded
         BTST    #0,D0
         BNE     @incr
         BTST    #2,D0
         BEQ     @rounded
@incr    ADDQ.L  #4,D0
@rounded BTST    #25,D0
( account for zero hi order bit )
         BNE     @hifrac
         CLR.W   D4
         LSR.L   #1,D0
         BRA     @expo
@hifrac  LSR.L   #2,D0
( subtract exponents )
@expo    ROL.W   #1,D5
         ROL.W   #1,D6
         BSET    #1,D5
(        ANDI.B  #1,D6 )
         DC.L    $02060001
         SUBI.W  #$7F00,D5
         SUBI.W  #$7F00,D6
         SUB.W   D6,D5
         BVS     @exp.ovfl
         ADDI.W  #$7E00,D5
         ADD.W   D4,D5 
         ROR.W   #1,D5
(        ANDI.W  #$FF80,D5 )
         DC.L    $0245FF80
         BCLR    #$17,D0
         SWAP.W  D5
         CLR.W   D5
         OR.L    D5,D0
@end     MOVE.L  D0,-(A6)
         RTS     
@byzero  MOVE.L  (A6)+,D0
         BNE     @ovfl
         MOVE.L  #$7F800400,-(A6)
         RTS
@ovfl    MOVE.L  #$7F800000,-(A6)
         RTS              
@exp.ovfl BPL     @makezero
         MOVE.L  #$7F800000,-(A6)
         RTS
@makezero MOVEQ.L #0,D0
         BRA     @end
END-CODE

( accuracy and benchmark tests)
decimal
fp 9 float
: s. s>f f. ;

1.0 f>s constant one
10. f>s constant ten
pi f>s constant pi.s
2.718281828  f>s constant eu
1.0 fconstant fone
10. fconstant ften

: accuracy
    one dup 
        20 0 do
            ten s/ 2dup s+ 
            s. cr
        loop
    drop drop
;

: accuracy2
    one dup 
        20 0 do 
            ten dup s. s* 2dup s. s.  2dup s+ 
            s. cr
        loop
    drop drop
;

: accuracy3 
    one fone
    1000 0 do
        dup fdup
        i . 
        i i>f ften f/ fdup f>s
        f/ s/ dup u. dup s. f>s dup u. dup s.
        s>f s>f f- f.
        cr
    loop
;

        
: bmark1 
  counter 10000 0 do pi.s eu drop drop loop timer ;
: bmark2 
  counter 10000 0 do pi.s eu s+ drop loop timer ;
: bmark3 
  counter 10000 0 do pi.s eu s- drop loop timer ;
: bmark4 
  counter 10000 0 do pi.s eu s* drop loop timer ;
: bmark5 
  counter 10000 0 do pi.s eu s/ drop loop timer ;

: speed.test cr
    bmark1 cr
    bmark2 cr
    bmark3 cr
    bmark4 cr
    bmark5 cr
;

: fmark1 pi 2.718281828
  counter 10000 0 do fover fover fdrop fdrop loop
  timer fdrop fdrop ;
: fmark2 pi 2.718281828 
  counter 10000 0 do fover fover f+ fdrop loop 
  timer fdrop fdrop ;
: fmark3 pi 2.718281828 
  counter 10000 0 do fover fover f- fdrop loop 
  timer fdrop fdrop ;
: fmark4 pi 2.718281828
   counter 10000 0 do fover fover f* fdrop loop
   timer fdrop fdrop ;
: fmark5 pi 2.718281828
  counter 10000 0 do fover fover f/ fdrop loop
  timer fdrop fdrop ;

: fspeed.test cr
    fmark1 cr
    fmark2 cr
    fmark3 cr
    fmark4 cr
    fmark5 cr
;
Listing 2: Correction of CRT saver routine, MT V2#6
( This code has to be inserted after the START header. References to 
setup.local.stack in the two routines have to be changed to setup.GNE.stack 
and setup.VBL.stack, respectively )

decimal

header START

( *** we need two local stacks after the relocation *** )    
 
header GNE.stack 100 allot

CODE setup.GNE.stack
    LEA -8(PC),A6   
( GNE stack grows downward from here )
    RTS
END-CODE

header VBL.stack 100 allot

CODE setup.VBL.stack
    LEA -8(PC),A6   
( VBL stack grows downward from here )
    RTS
END-CODE
 

Community Search:
MacTech Search:

Software Updates via MacUpdate

beaTunes 5.2.10 - Organize your music co...
beaTunes is a full-featured music player and organizational tool for music collections. How well organized is your music library? Are your artists always spelled the same way? Any R.E.M. vs REM?... Read more
Meteorologist 3.4.1 - Popular weather ap...
Meteorologist is a simple interface to weather provided by weather.com. It provides the ability to show the weather in the main menu bar, displaying more detail in a pop-up menu, whose contents are... Read more
NeoFinder 7.6 - Catalog your external me...
NeoFinder (formerly CDFinder) rapidly organizes your data, either on external or internal disks, or any other volumes. It catalogs and manages all your data, so you stay in control of your data... Read more
GarageSale 8.1.1 - Create outstanding eB...
GarageSale is a slick, full-featured client application for the eBay online auction system. Create and manage your auctions with ease. With GarageSale, you can create, edit, track, and manage... Read more
Firetask Pro 4.2.2 - Innovative task man...
Firetask Pro uniquely combines the advantages of classical priority-and-due-date-based task management with GTD. Stay focused and on top of your commitments - Firetask Pro's "Today" view shows all... Read more
Bookends 13.4.3 - Reference management a...
Bookends is a full-featured bibliography/reference and information-management system for students and professionals. Bookends uses the cloud to sync reference libraries on all the Macs you use.... Read more
LibreOffice 6.4.5.2 - Free, open-source...
LibreOffice is an office suite (word processor, spreadsheet, presentations, drawing tool) compatible with other major office suites. The Document Foundation is coordinating development and... Read more
Thunderbird 68.10.0 - Email client from...
As of July 2012, Thunderbird has transitioned to a new governance model, with new features being developed by the broader free software and open source community, and security fixes and improvements... Read more
Firefox 78.0.1 - Fast, safe Web browser.
Firefox offers a fast, safe Web browsing experience. Browse quickly, securely, and effortlessly. With its industry-leading features, Firefox is the choice of Web development professionals and casual... Read more
BetterTouchTool 3.389 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom)... Read more

Latest Forum Discussions

See All

Distract Yourself With These Great Mobil...
There’s a lot going on right now, and I don’t really feel like trying to write some kind of pithy intro for it. All I’ll say is lots of people have been coming together and helping each other in small ways, and I’m choosing to focus on that as I... | Read more »
Pokemon Go's July Community Day wil...
Pokemon Go developers have announced the details concerning the upcoming Gastly Community Day. This particular event was selected by the players of the game after the Gas Pokemon came in second place after a poll that decided which Pokemon would... | Read more »
Clash Royale: The Road to Legendary Aren...
Supercell recently celebrated its 10th anniversary and their best title, Clash Royale, is as good as it's ever been. Even for lapsed players, returning to the game is as easy as can be. If you want to join us in picking the game back up, we've put... | Read more »
Detective Di is a point-and-click murder...
Detective Di is a point-and-click murder mystery set in Tang Dynasty-era China. You'll take on the role of China's best-known investigator, Di Renjie, as he solves a series of grisly murders that will ultimately lead him on a collision course with... | Read more »
Dissidia Final Fantasy Opera Omnia is se...
Dissidia Final Fantasy Opera Omnia, one of Square Enix's many popular mobile RPGs, has announced a plethora of in-game events that are set to take place over the summer. This will include several rewards, Free Multi Draws and more. [Read more] | Read more »
Sphaze is a neat-looking puzzler where y...
Sphaze is a neat-looking puzzler where you'll work to guide robots through increasingly elaborate mazes. It's set in a visually distinct world that's equal parts fantasy and sci-fi, and it's finally launched today for iOS and Android devices. [... | Read more »
Apple Arcade is in trouble
Yesterday, Bloomberg reported that Apple is disappointed in the performance of Apple Arcade and will be shifting their approach to the service by focusing on games that can retain subscribers and canceling other upcoming releases that don't fit... | Read more »
Pixel Petz, an inventive platform for de...
Pixel Petz has built up a sizeable player base thanks to its layered, easy-to-understand creative tools and friendly social experience. It revolves around designing, trading, and playing with a unique collection of pixel art pets, and it's out now... | Read more »
The King of Fighters Allstar's late...
The King of Fighters ALLSTAR, Netmarble's popular action RPG, has once again been updated with a plethora of new content. This includes battle cards, events and 21 new fighters, which increases the already sizeable roster even more. [Read more] | Read more »
Romancing SaGa Re;univerSe, the mobile s...
Square Enix latest mobile spin-off Romancing SaGa Re;univerSe is available now globally for both iOS and Android. It initially launched in Japan back in 2018 where it's proven to be incredibly popular, so now folks in the West can finally see what... | Read more »

Price Scanner via MacPrices.net

$200 13″ MacBook Pro discounts are back at Am...
Amazon has 2020 13″ 2.0GHz MacBook Pros on sale again today for $150-$200 off Apple’s MSRP. Shipping is free. Be sure to purchase the MacBook Pro from Amazon, rather than a third-party seller, and... Read more
Deal Alert! Apple AirPods with Wireless Charg...
Sams Club has Apple AirPods with Wireless Charging Case on sale on their online store for only $149.98 from July 6, 2020 to July 9, 2020. Their price is $50 off Apple’s MSRP, and it’s the lowest... Read more
Xfinity Mobile promo: Apple iPhone XS models...
Take $300 off the purchase of any Apple iPhone XS model at Xfinity Mobile while supplies last. Service plan required: – 64GB iPhone XS: $599.99 save $300 – 256GB iPhone XS: $749.99 save $300 – 512GB... Read more
New July 2020 promo at US Cellular: Switch an...
US Cellular has introduced a new July 2020 deal offering free 64GB Apple iPhone 11 smartphones to customers opening a new line of service. No trade-in required, and discounts are applied via monthly... Read more
Apple offers up to $400 Education discount on...
Apple has launched their Back to School promotion for 2020. They will include one free pair Apple AirPods (with charging case) with the purchase of a MacBook Air, MacBook Pro, iMac, or iMac Pro (Mac... Read more
July 4th Sale: Woot offers wide range of Macs...
Amazon-owned Woot is blowing out a wide range of Apple Macs and iPads for July 4th staring at $279 and ranging up to just over $1000. Models vary from older iPads and 11″ MacBook Airs to some newer... Read more
Apple Pro Display XDR with Nano-Texture Glass...
Abt Electronics has Apple’s new 32″ Pro Display XDR model with the nano-texture glass in stock and on sale today for up to $144 off MSRP. Shipping is free: – Pro Display XDR (nano-texture glass): $... Read more
New 2020 Mac mini on sale for up to $100 off...
Amazon has Apple’s new 2020 Mac minis on sale today for $40-$100 off MSRP with prices starting at $759. Shipping is free: – 2020 4-Core Mac mini: $759 $40 off MSRP – 2020 6-Core Mac mini: $998.99 $... Read more
July 4th Sale: $100 off every 2020 13″ MacBoo...
Apple resellers have new 2020 13″ MacBook Airs on sale for $100 off Apple’s MSRP as part of their July 4th sales. Starting at $899, these are the cheapest new 2020 MacBooks for sale anywhere: (1) B... Read more
This hidden deal on Apple’s site can save you...
Are you a local, state, or federal government employee? If so, Apple offers special government pricing on their products, including AirPods, for you as well as immediate family members. Here’s how... Read more

Jobs Board

Operating Room Assistant, *Apple* Hill Surg...
Operating Room Assistant, Apple Hill Surgical Center - Full Time, Day Shift, Monday - Saturday availability required Tracking Code 62363 Job Description Operating Read more
Perioperative RN - ( *Apple* Hill Surgical C...
Perioperative RN - ( Apple Hill Surgical Center) Tracking Code 60593 Job Description Monday - Friday - Full Time Days Possible Saturdays General Summary: Under the Read more
Product Manager, *Apple* Commercial Sales -...
Product Manager, Apple Commercial Sales Austin, TX, US Requisition Number:77652 As an Apple Product Manager for the Commercial Sales team at Insight, you Read more
*Apple* Mac Product Engineer - Barclays (Uni...
Apple Mac EngineerWhippany, NJ Support the development and delivery of solutions, products, and capabilities into the Barclays environment working across technical Read more
Blue *Apple* Cafe Student Worker - Pennsylv...
…enhance your work experience. Student positions are available at the Blue Apple Cafe. Employee meal discount during working hours. Duties include food preparation, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.