TweetFollow Us on Twitter

Pictures
Volume Number:2
Issue Number:4
Column Tag:Toolbox Notes

On the nature of Pictures

By Chris Derossi, Chief Wizard, MacTutor Contributing Editor

A Quick Note on Pictures

This article has two puposes. The first is to more fully explain the information contained in Macintosh Technical Note #21; that is, the QuickDraw internal encoded picture format. The second bit of information concerns two problems which I have found relating to QuickDraw pictures.

To begin, let's go over the process of creating a picture. When you call OpenPicture, QuickDraw allocates a new handle, stores some initial data there, sets the picSave field for the current port, calls HidePen, and returns the new handle. The initial data consists of the length, rectangle, version, and clipping region of the picture.

When you then proceed to draw, calling QuickDraw with various artistic requests, QuickDraw notes that there is an open picture because of the valid picSave handle. Because of this, QuickDraw translates your request into its own picture shorthand, and appends this information to the picture data. The length information at the beginning of the picture data is increased to reflect the new data. Since HidePen had been called, none of this shows up on the screen. (Unless, of course, you have called ShowPen without a balancing call to HidePen.)

Finally, you call ClosePicture which calls ShowPen, places an end-of-picture marker in the picture data, and sets the picSave field to NIL.

Now, let's go through some picture data byte by byte. The first two bytes of information are the length, which represent the length of ALL of the data, including the length bytes themselves. Next are eight bytes (4 words/Integers) of rectangle information (top, left, bottom, right). This is the rectangle which was passed as the parameter to OpenPicture. Following this are the picture opcodes and their data.

A picture opcode is a single byte which tells QuickDraw to do something, or how to interpret some amount of additional data. The length and composition of the data following the opcode depends on the opcode itself. The first opcode in a picture is always $11 which represents "Version". This opcode has one byte of data which represents the version number. Whenever QuickDraw encounters $11, it knows to treat the next byte as the version number, and to skip over it to get to the next opcode. Opcodes and their data are packed together. That is, immediately following an opcode and its data is the next opcode.

After the version, there may be any number of QuickDraw opcodes. The last opcode in a picture is always $FF which stands for "End-of-Picture". Data after this opcode is ignored. (Under normal circumstances, there won't be any further data.)

If the picture was created in the usual manner (i.e. with OpenPicture instead of generating the picture data some other way) then the next opcode is $01 which is "ClipRgn". The data following this opcode is a region, the first word of which is the length of the region. Normally, it will look something like the data in Figure 1. When you call OpenPicture, the region is copied from the current port's clipping region.

Most of the opcodes are pretty straightforward. Some, however, could use a little explanation. Most of the verb-object calls have a corresponding verbSameobject call. The latter simply uses the last explicit data (be it a Rect, RRect, etc) from a prior call for its own argument. For example, if you wanted to do a paintRect (opcode $31) on a rectangle with coordinates (0, 0, 45, 45) and then invertRect the same rectangle, the resultant picture data would look like that in Figure 2.

Instead of passing the fill pattern as an argument each time as in the QuickDraw call, pictures use the concept of a 'current' fill pattern which the TechNote calls "thePat". (This is analagous to the current pen pattern.) To fill several Rects with the same pattern, there would be one opcode to set thePat ($0A), and then several fillRect opcodes and their respective rectangles. (Figure 3).

Because simple lines and text are so common, there are several versions of each so that QuickDraw can use the version that takes the least amount of space. Lines come in two sizes: regular and short. Short lines have vertical and horizontal lengths which can be represented by a single byte (-128 to 127). The horizontal and vertical lengths are then used instead of the line endpoint. Both line and short line (opcodes $20 and $22) also include the starting endpoint. The remaining two line opcodes ($21 and $23) start the line from the current pen location, which could have been set by previous line or text drawing.

If text is to be drawn only a short distance from the current pen location, QuickDraw uses opcodes $29, $2A, or $2B to move the pen horizontally, vertically, or both before drawing the text. If the starting location for the text is too distant to represent with single byte offsets, opcode $28 is used, and the actual point at which to draw the text is specified.

The last 'gotcha', and the first problem I'd like to discuss both concern the SetOrigin call, which is opcode $0C. This opcode takes four bytes (two words/Integers) as arguments. BUT, the two words do not represent the actual origin that you specified with the SetOrigin call; Instead, they are the offset from the current origin to the new one.

For example, if you were at origin (0,0) and you made a SetOrigin(15,10) call, the picture data would be $0C $00 $0F $00 $0A. More importantly, if you were in a situation where the origin was unknown, you might be inclined to call SetOrigin(0, 0) before performing any drawing. This can have some unexpected side effects. Consider the following scenario:

Your code does not know where the origin is, so it calls SetOrigin(0, 0). Let us say that the origin was in fact at (15, 10). QuickDraw would record an origin change of -15, -10 ($0C $FF $F1 $FF $F6). Then you do your drawing and close the picture.

Now, since you didn't make any more SetOrigin calls, you know that the origin is at (0, 0), which is where you want it to be. So you call DrawPicture. QuickDraw would then come across the $0C opcode and changes the origin to (-15, -10), and your drawing would be in the wrong place! The way to avoid this problem is to call SetOrigin before you open the picture, and again before you draw the picture.

The technique of changing picture origins has a use, for example, in printing, when you want to draw a very large picture. You can simply originate different areas of the picture over the 'printer paper' port and draw the picture. In this way, you can print your large picture on several pieces of paper. Moving pictures around is also a nice way to show different parts of a picture in response to a scroll bar; You only have to generate the display once, and just draw the picture with offsets based on the scroll bar values.

But a common occurrance while doing this is to have the picture vanish when it is drawn at any location other than the one where it was created. The reason for this is simple but elusive.

Recall that when you call OpenPicture, QuickDraw copies the clipping region of the port into the picture data. Well, a newly created port has a very large clipping region, specifically, a rectangle with coordinates (-32767, -32767, 32767, 32767). In hexadecimal, those coordinates translate to ($8001, $8001, $7FFF, $7FFF).

If you offset the picture rectangle just one pixel to the right, QuickDraw re-calculates all of the coordinates in the picture data, including those of the clipping region. But, if you add 1 to $8001, you get $8002 (which is -32766) and 1 + $7FFF is $8000 (decimal -32768). This leaves you with coordinates of (-32767, -32766, 32767, -32768) for the clipping rectangle. This is an empty rectangle because the right side is less than the left side. The whole picture gets clipped!

The solution to this problem is as easy as the solution to the last one: Set your clipping region before you open your picture. You can keep the clipping region very large, but stay away from the values that come close to hex $8000. Such is life with finite mathematics.

I hope this has helped to shed some light on your use of pictures. Used intelligently, they can save you from redrawing the same things again and again. As a side note, if you are interested in pictures and the LaserWriter, you should see TechNote #27: The MacDraw Picture Format.

Ciao.

________________________________________________________________________________

Macintosh Technical Notes

#21: Quickdraw's Internal Picture Definition

See also: QuickDraw

Programming in Assembly Language

Written by: Ginger Jernigan April 24, 1985

__________________________________________________________________________________

This technote describes the internal format of the QuickDraw picture data structure.

__________________________________________________________________________________

This technote describes the long awaited internal definition of the QuickDraw picture. The information given here is meant for DEBUGGING PURPOSES ONLY. It is NOT useful in writing your own picture bottleneck procedures. The reason is that if we add new objects to the picture definition, your program will not be able to operate on pictures created using standard QuickDraw. Your program will not know the size of the new objects and will, therefore, not be able to proceed past the new objects. (What this ultimately means is that pictures will not be downward compatible; you can't process a new picture with a old bottleneck proc.)

Before listing the opcodes a little information is in order. An "opcode" is a number that DrawPicture, for example, uses to determine how to draw that particular object in the picture, and how much data is associated with it. The following list gives the opcode, the name of the object, the associated data, and the total size, in bytes, of the opcode and associated data. To better interpret the sizes, please refer to page 4 in Programming in Assembly Language. For types not described there, here is a quick list:

opcode 1 byte

point long

0..255 1 byte

-128..127 1 byte

rect 8 bytes

poly 11+ bytes

region 10+ bytes

fixed point number long

pattern 8 bytes

Each picture definition begins with a picsize (word), then a picframe (rect), and then the picture definition, which consists of a combination of the following opcodes:

Opcode Name Additional Data Total Size (bytes)

00 NOP none 1

01 clipRgn rgn 1+rgn

02 bkPat pattern 9

03 txFont font (word) 3

04 txFace face (byte) 2

05 txMode mode (word) 3

06 spExtra extra (fixed point) 5

07 pnSize pnSize (point) 5

08 pnMode mode (word) 3

09 pnPat pattern 9

0A thePat pattern 9

0B ovSize point 5

0C origin dh, dv (word) 5

0D txSize size (word) 3

0E fgColor color (long) 5

0F bkColor color (long) 5

10 txRatio numer (point), denom (point) 9

11 picVersion version (byte) 2

20 line pnLoc ( point ), newPt ( point ) 9

21 line from newPt ( point ) 5

22 short line pnLoc ( point ), dh, dv (-128..127) 7

23 short line from dh, dv (-128..127) 3

28 long text txLoc ( point ), count (0..255), text 6+text

29 DH text dh (0..255), count (0..255), text 3+text

2A DV text dv (0..255), count (0..255), text 3+text

2B DHDV text dh, dv (0..255), count (0..255), text 4+text

30 frameRect rect 9

31 paintRect rect 9

32 eraseRect rect 9

33 invertRect rect 9

34 fillRect rect 9

38 frameSameRect rect 1

39 paintSameRect rect 1

3A eraseSameRect rect 1

3B invertSameRect rect 1

3C fillSameRect rect 1

40 frameRRect rect 9

41 paintRRect rect 9

42 eraseRRect rect 9

43 invertRRect rect 9

44 fillRRect rect 9

48 frameSameRRect rect 1

49 paintSameRRect rect 1

4A eraseSameRRect rect 1

4B invertSameRRect rect 1

4C fillSameRRect rect 1

50 frameOval rect 9

51 paintOval rect 9

52 eraseOval rect 9

53 invertOval rect 9

54 fillOval rect 9

58 frameSameOval rect 1

59 paintSameOval rect 1

5A eraseSameOval rect 1

5B invertSameOval rect 1

5C fillSameOval rect 1

60 frameArc rect 9

61 paintArc rect 9

62 eraseArc rect 9

63 invertArc rect 9

64 fillArc rect 9

68 frameSameArc rect 1

69 paintSameArc rect 1

6A eraseSameArc rect 1

6B invertSameArc rect 1

6C fillSameArc rect 1

70 framePoly poly 1+poly

71 paintPoly poly 1+poly

72 erasePoly poly 1+poly

73 invertPoly poly 1+poly

74 fillPoly poly 1+poly

78 frameSamePoly (not yet implemented) 1

79 paintSamePoly (not yet implemented) 1

7A eraseSamePoly (not yet implemented) 1

7B invertSamePoly (not yet implemented) 1

7C fillSamePoly (not yet implemented) 1

80 frameRgn rgn 1+rgn

81 paintRgn rgn 1+rgn

82 eraseRgn rgn 1+rgn

83 invertRgn rgn 1+rgn

84 fillRgn rgn 1+rgn

88 frameSameRgn (not yet implemented) 1

89 paintSameRgn (not yet implemented) 1

8A eraseSameRgn (not yet implemented) 1

8B invertSameRgn (not yet implemented) 1

8C fillSameRgn (not yet implemented) 1

90 BitsRect rowBytes, bounds, srcRect, dstRect, mode, 30+unpacked

byteCount, unpacked bitData bitData

91 BitsRgn rowBytes, bounds, srcRect, dstRect, mode, 30+rgn+

maskRgn, byteCount, unpacked bitData bitData

98 PackBitsRect rowBytes, bounds, srcRect, dstRect, mode, 30+packed

byteCount, packed bitData bitData

99 PackBitsRgn rowBytes, bounds, srcRect, dstRect, mode, 30+rgn+

maskRgn, byteCount, packed bitData packed bitData

A0 shortComment kind(word) 3

A1 longComment kind(word), size(word), data 5+data

FF EndOfPicture none 1

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Summon your guild and prepare for war in...
Netmarble is making some pretty big moves with their latest update for Seven Knights Idle Adventure, with a bunch of interesting additions. Two new heroes enter the battle, there are events and bosses abound, and perhaps most interesting, a huge... | Read more »
Make the passage of time your plaything...
While some of us are still waiting for a chance to get our hands on Ash Prime - yes, don’t remind me I could currently buy him this month I’m barely hanging on - Digital Extremes has announced its next anticipated Prime Form for Warframe. Starting... | Read more »
If you can find it and fit through the d...
The holy trinity of amazing company names have come together, to release their equally amazing and adorable mobile game, Hamster Inn. Published by HyperBeard Games, and co-developed by Mum Not Proud and Little Sasquatch Studios, it's time to... | Read more »
Amikin Survival opens for pre-orders on...
Join me on the wonderful trip down the inspiration rabbit hole; much as Palworld seemingly “borrowed” many aspects from the hit Pokemon franchise, it is time for the heavily armed animal survival to also spawn some illegitimate children as Helio... | Read more »
PUBG Mobile teams up with global phenome...
Since launching in 2019, SpyxFamily has exploded to damn near catastrophic popularity, so it was only a matter of time before a mobile game snapped up a collaboration. Enter PUBG Mobile. Until May 12th, players will be able to collect a host of... | Read more »
Embark into the frozen tundra of certain...
Chucklefish, developers of hit action-adventure sandbox game Starbound and owner of one of the cutest logos in gaming, has released their roguelike deck-builder Wildfrost. Created alongside developers Gaziter and Deadpan Games, Wildfrost will... | Read more »
MoreFun Studios has announced Season 4,...
Tension has escalated in the ever-volatile world of Arena Breakout, as your old pal Randall Fisher and bosses Fred and Perrero continue to lob insults and explosives at each other, bringing us to a new phase of warfare. Season 4, Into The Fog of... | Read more »
Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Marvel Future Fight celebrates nine year...
Announced alongside an advertising image I can only assume was aimed squarely at myself with the prominent Deadpool and Odin featured on it, Netmarble has revealed their celebrations for the 9th anniversary of Marvel Future Fight. The Countdown... | Read more »
HoYoFair 2024 prepares to showcase over...
To say Genshin Impact took the world by storm when it was released would be an understatement. However, I think the most surprising part of the launch was just how much further it went than gaming. There have been concerts, art shows, massive... | Read more »

Price Scanner via MacPrices.net

Apple Watch Ultra 2 now available at Apple fo...
Apple has, for the first time, begun offering Certified Refurbished Apple Watch Ultra 2 models in their online store for $679, or $120 off MSRP. Each Watch includes Apple’s standard one-year warranty... Read more
AT&T has the iPhone 14 on sale for only $...
AT&T has the 128GB Apple iPhone 14 available for only $5.99 per month for new and existing customers when you activate unlimited service and use AT&T’s 36 month installment plan. The fine... Read more
Amazon is offering a $100 discount on every M...
Amazon is offering a $100 instant discount on each configuration of Apple’s new 13″ M3 MacBook Air, in Midnight, this weekend. These are the lowest prices currently available for new 13″ M3 MacBook... Read more
You can save $300-$480 on a 14-inch M3 Pro/Ma...
Apple has 14″ M3 Pro and M3 Max MacBook Pros in stock today and available, Certified Refurbished, starting at $1699 and ranging up to $480 off MSRP. Each model features a new outer case, shipping is... Read more
24-inch M1 iMacs available at Apple starting...
Apple has clearance M1 iMacs available in their Certified Refurbished store starting at $1049 and ranging up to $300 off original MSRP. Each iMac is in like-new condition and comes with Apple’s... Read more
Walmart continues to offer $699 13-inch M1 Ma...
Walmart continues to offer new Apple 13″ M1 MacBook Airs (8GB RAM, 256GB SSD) online for $699, $300 off original MSRP, in Space Gray, Silver, and Gold colors. These are new MacBook for sale by... Read more
B&H has 13-inch M2 MacBook Airs with 16GB...
B&H Photo has 13″ MacBook Airs with M2 CPUs, 16GB of memory, and 256GB of storage in stock and on sale for $1099, $100 off Apple’s MSRP for this configuration. Free 1-2 day delivery is available... Read more
14-inch M3 MacBook Pro with 16GB of RAM avail...
Apple has the 14″ M3 MacBook Pro with 16GB of RAM and 1TB of storage, Certified Refurbished, available for $300 off MSRP. Each MacBook Pro features a new outer case, shipping is free, and an Apple 1-... Read more
Apple M2 Mac minis on sale for up to $150 off...
Amazon has Apple’s M2-powered Mac minis in stock and on sale for $100-$150 off MSRP, each including free delivery: – Mac mini M2/256GB SSD: $499, save $100 – Mac mini M2/512GB SSD: $699, save $100 –... Read more
Amazon is offering a $200 discount on 14-inch...
Amazon has 14-inch M3 MacBook Pros in stock and on sale for $200 off MSRP. Shipping is free. Note that Amazon’s stock tends to come and go: – 14″ M3 MacBook Pro (8GB RAM/512GB SSD): $1399.99, $200... Read more

Jobs Board

*Apple* Systems Administrator - JAMF - Syste...
Title: Apple Systems Administrator - JAMF ALTA is supporting a direct hire opportunity. This position is 100% Onsite for initial 3-6 months and then remote 1-2 Read more
Relationship Banker - *Apple* Valley Financ...
Relationship Banker - Apple Valley Financial Center APPLE VALLEY, Minnesota **Job Description:** At Bank of America, we are guided by a common purpose to help Read more
IN6728 Optometrist- *Apple* Valley, CA- Tar...
Date: Apr 9, 2024 Brand: Target Optical Location: Apple Valley, CA, US, 92308 **Requisition ID:** 824398 At Target Optical, we help people see and look great - and Read more
Medical Assistant - Orthopedics *Apple* Hil...
Medical Assistant - Orthopedics Apple Hill York Location: WellSpan Medical Group, York, PA Schedule: Full Time Sign-On Bonus Eligible Remote/Hybrid Regular Apply Now Read more
*Apple* Systems Administrator - JAMF - Activ...
…**Public Trust/Other Required:** None **Job Family:** Systems Administration **Skills:** Apple Platforms,Computer Servers,Jamf Pro **Experience:** 3 + years of Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.