Curve Fitting 2
 Volume Number: 1 Issue Number: 12 Column Tag: Forth Forum

# Curve Fitting, Part II

By Jörg Langowski, Chemical Engineer, Grenoble, France, MacTutor Editorial Board

After last month's refresher on accessing floating point routines from Forth, this column is now going to show you the main part of the curve fitter program.

Let's state our objective again: We have a series of data points (measurements) yi at certain time points ti. The measured data is supposed to follow some quantitative law, so that we can state a theoretical relationship between time t and data y:

The ai are parameters that determine the exact form of the function f.

Lets assume we have estimated initial values for the parameters ai° somehow so that they are not too far away from the true values. Then we need a method that creates some correction terms ai, which when added to the initial values give new, better estimates of the parameters ai':

As you could read in last month's column, the ai are eventually obtained from the solution of a system of linear equations, and we had defined the word gauss to implement the Gauss algorithm that solves such a system.

This month I am going to show you how one sets up the equations (example given for three parameters),

starting from the data and the initial estimate of the function that one wants to fit to it. The full details of the method are given in an appendix to this column.

At this point it is only important to know that the coefficients cij, as defined in last month's column, look like the following:

where N is the total number of data points and fk/ai is the first derivative of the theoretical function at the time tk with respect to the parameter ai.

The terms on the right hand side of the equations, bi, are:

Ri are the residuals (as defined last month),

the differences between the theoretical and measured values at the time points ti.

Therefore, the curve fitting algorithm will consist of the following major parts:

- one routine that calculates the theoretical function value f(ti), given a set of parameters (this will be the 'model' that you use to fit your data),

- one routine that calculates the derivative of this function with respect to one of the parameters ai,

- calculation of all the derivatives fk/ai with k ranging from 0 to (# of data points - 1) and i from 0 to (# of parameters - 1) and saving those derivatives in a matrix,

- computation of the coefficients cij and bi (and setting them up in a matrix),

- solution of the linear equation system thus obtained, giving correction values for the parameters ai,

- changing the parameters by the correction terms and repetition of the whole algorithm if the change is still larger than some predefined (small) number.

The algorithm is implemented in this month's program example (listing 1). The first part contains some additions to the floating point and Gauss algorithm routines that you've already seen last month. One bug had to be corrected in gauss, which left a number on the stack that was supposed to be dropped (added drop in italics in the listing). The floating point output routine has been slightly modified so that real numbers are always printed with one digit in front of the decimal.

In order to be able to check whether the iteration has been completed or not, we will have to compare real numbers, so first we define the

## Floating point comparison operator

The SANE package provides a routine for the comparison of two floating point numbers. Four cases are distinguished and the processor status register flags set accordingly:

X N Z V C

x < y 1 1 0 0 1

x = y 0 0 1 0 0

x > y 0 0 0 0 0

unordered0 0 0 1 0

where the address of x is on top of the address of y on the stack.

The operation code for floating point comparison in SANE is 8, so we define

```hex : f> 8 fp68k @sr 10 and ;
```

for comparing two real numbers on the stack. Bit 5 of the result (the X flag) is and-ed out, the reason being that this is the only one that is left unchanged after the SANE trap has been called and the Forth interpreter has taken over again. All the other flags cannot be used, so we won't be able to compare two real numbers for being equal. With 80-bit precision, however, such a test does not make much sense, you will almost never check for equality but rather if a number is less than one other or whether their difference is smaller than some predefined value.

The comparison for 'unorderedness', which sets the V flag, is also trashed by the Forth interpreter. This would only be important if we wanted to test for a NaN (Not a Number), which for instance results from a 0/0 division.

This leaves us with the X flag as the only one usable after the fp68k call. It is set when the real number whose address is on top of the stack is less than the number whose address is below it.

## Random number generator - floating point version

For initializing the 'data points' as an input to the curve fitting program, we are going to use simulated data from the same function that we are fitting. We add some 'random noise' to it and need a random number generator for that. SANE contains a floating point random number generator, which computes from an 80-bit floating point input a new random 80-bit floating point number in the range 0 < x < 231-1. We want a number between 0 and 1 (for convenience) so the word ranf scales this number after calling the random number routine. ranf leaves the address of the result on the stack. For initializing the random number generator with an arbitrary seed, ranset is defined.

You will notice one important concept in the definition of ranf and ranset: both words operate on variables (rr, rs and sf) that are axed after the definition is completed. The variables are erased from the vocabulary that way and stay local to the random number routines. This is the way the 'nameless' tokens are created that you read about some issues ago.

The function to be fitted is defined as the word func. 50 bytes are reserved for the array par, so that at maximum 5 parameters (extended precision) can be used in the function. The data points are stored in the single precision arrays xdat and ydat. init_pars initializes the parameters to some arbitrary values, in this case par[1] = 1.0, par[2] = 2.0, and par[3] = -0.1. Calling func with these values, init then creates a set of simulated data (including random noise).

deriv calculates the first derivatives of the function with respect to the parameters from differences,

This definition, too, uses the local variables da1, da2, da3 and da4, which are axed afterwards.

make_derivmat computes all necessary derivative values and sets them up in a single precision matrix. This matrix is then used by the word make_resmat to compute the sums that make up the coefficient matrix. For the right-hand-side coefficients one also needs the residuals, which are calculated and stored into a matrix by residuals.

One iteration of the curve fitting process is done by the word one_iter, which sets up the derivative matrix and computes the residuals by calling the appropriate words, prints the sum of error squares (so you can check the quality of the fit) then sets up the coefficient matrix and calls gauss to solve the linear equation system. The solution is stored in the array delta; these are the correction terms that have to be added to the parameters to get improved estimates. new_pars does this correction and prints out the values of the new parameters, leaving false (zero) on the stack if any parameter has changed by more than one part in 10-5.

The actual curve fitter, nlsqfit, then loops through the iteration until the best fit is obtained.

You can check the fitting process by calling init first and then, for instance, setting par[1] = 2.0, par[2] = 1.0, par[3] = -0.05:

```two par x2x  one par 10+ x2x
two par 20 + f/
```

and start nlsqfit. This will bring you back close to the simulated values, par[1] = 1.0, par[2] = 2.0, and par[3] = -0.1 in about 4 to 5 iterations. The fitted values will not be exactly equal to the simulated ones because of the random noise added to the data.

So far, this is only a skeleton of a curve fitting program because we cannot input floating point numbers manually or from the clipboard (e.g. it would be nice to transfer data from a spreadsheet); also a graphical output will be needed to display the data points and the fitted curve. Next column will deal with those problems.

```Listing 1: Non-linear least squares curve fitting routine
( © 1985 J.Langowski by MacTutor )
( Note that this is not stand-alone but needs some definitions from last
month's example. Only the changed parts are printed here )

hex
: f> 8 fp68k @sr 10 and ;  : fabs f fp68k ;
: lnx 0 elems68k ; : log2x 2 elems68k ;
: ln1x 4 elems68k ; : log21x 6 elems68k ;
: expx 8 elems68k ; : exp2x a elems68k ;
: exp1x c elems68k ; : exp21x e elems68k ;
: x^i 8010 elems68k ; : x^y 8012 elems68k ;
: compoundx c014 elems68k ;
: annuityx c016 elems68k ;
: sinx 18 elems68k ; : cosx 1a elems68k ;
: tanx 1c elems68k ; : atanx 1e elems68k ;
: randomx 20 elems68k ;   decimal

: dec. ( float\format# -- )
zzformat ! zzformat swap zzs1 b2d
zzs1 dup w@ 255 > if ." -" else ."  " then
dup 4+ count over 1 type ." ."
swap 1+ swap 1- type ( mantissa )
2+ w@ ( get exponent )
1 w* zzformat @ + 1-
." E" . ;

( define constants )
float one  float -one  float zero  float two  float four
1 sp@ one in2x drop  -1 sp@ -one in2x drop
0 sp@ zero in2x drop
2 sp@ two in2x drop  4 sp@ four in2x drop
( define some floating accumulators)
float fa1   float fa2   float fa3   float fa4

( Gauss algorithm for linear equations)
float dg    float fk    float ee
variable nv   variable coeff variable solution
( addresses for storing actual parameters)
: gauss ( z\x\n | --)  nv !  8- coeff !  solution !
nv @ 1- 0 do  ( i-loop)
i dup coeff @ calc.offset dg s2x ( diag elem)
nv @ i 1+ do  ( j-loop)
i j coeff @ calc.offset fk s2x   dg fk f/
nv @ 1+ j do  ( k-loop)
k i coeff @ calc.offset fa1 s2x
fk fa1 f*  fa1 fneg  ( -fk*x[i,k])
j i coeff @ calc.offset dup fa1 s+
fa1 swap x2s
loop
loop
loop
nv @ dup 0 do i over coeff @ calc.offset  fa1 s2x
fa1 solution @ i 4* + x2s loop drop
1 nv @ 1- do
i dup coeff @ calc.offset dg s2x
solution @ i 4* + ee s2x  dg ee f/
0 i 1- do i j coeff @ calc.offset fa1 s2x
ee fa1 f* fa1 fneg
solution @ i 4* + dup fa1 s+ fa1 swap x2s
-1 +loop
-1 +loop
nv @ 0 do  solution @ i 4* +  fa1 s2x
i dup coeff @ calc.offset  fa1 s/
fa1 solution @ i 4* + x2s
loop ;

( declarations for curve fitter )
create ydat 400 allot   create xdat 400 allot
create residues 400 allot
100 10 matrix derivmat    10 11 matrix resmat
3 constant npars        10 constant npts
create par 50 allot   create delta 20 allot
float eps  float errsum
1 sp@ eps in2x drop  10000 sp@ eps in/ drop
float onehundred  100 sp@ onehundred in2x drop
float ten  10 sp@ ten in2x drop
( define function )
: func ( x -- f[x] = par[1] + par[2] * exp[par[3]*x] )
par 20 + over f* dup expx
par 10 + over f*  par over f+ ;
: test 10 0 do i sp@ fa1 in2x . 2 spaces
fa1 func 10 dec. cr loop ;
: >fa1  fa1 s2x ;
: init_pars
one par x2x  two par 10+ x2x
-one par 20 + x2x  ten par 20 + f/ ;
init_pars

( derivative, matrix of derivs )
float da1 float da2 float da3 float da4  ( local vars )
: deriv ( par \ x -- d-func/d-par at x )
dup da1 x2x da2 x2x  dup da4 x2x  eps da4 f*
da4 over f+          da2 func  da3 x2x
da4 over 2dup f- f-  da1 func  da3 f-
da4 da3 f/   two da3 f/  da4 swap f+  da3  ;
axe da1 axe da2 axe da3 axe da4

: make_derivmat
npts 0 do  npars 0 do
xdat j 4* +  >fa1
par i 10 * +   fa1 deriv  j i derivmat x2s
loop  loop ;

( calculate residuals )
: residuals
zero errsum x2x
npts 0 do
xdat i 4* + >fa1   fa1 func   ydat i 4* +  swap  s-
fa1 residues i 4* + x2s  fa1 dup f*  fa1 errsum f+
loop  ;
: .resid
npts 0 do  residues i 4* + >fa1  fa1 7 dec. cr loop ;

( make matrix of residuals )
make_resmat
npars 0 do   npars 0 do    zero fa1 x2x
npts 0 do
i k derivmat fa2 s2x    i j derivmat fa2 s*
fa2 fa1 f+  loop
fa1  i j resmat x2s    fa1  j i resmat x2s
loop  loop
npars 0 do  zero fa1 x2x
npts 0 do
i j derivmat fa2 s2x  residues i 4* + fa2 s*
fa2 fa1 f-  loop
fa1  i npars  resmat x2s loop ;

( calculate correction terms)
: one_iter
make_derivmat    residuals
." sum of error squares: " errsum 7 dec. cr
make_resmat      delta 0 0 resmat npars gauss ;

: new_pars 16 ( true if no significant changes )
npars 0 do par i 10 * +
delta i 4* +  over  s+
." par[" i . ." ] = " dup  7 dec. cr
delta i 4* + fa1 s2x  fa1 f/
fa1 fabs  eps fa1 f> and loop ;

( ranf, initialize data matrices )
float rr float rs float sf ( local to ranf )
1 31 scale 1 - sp@ sf in2x drop
: ranset rr x2x ;
: ranf rr randomx  rr rs x2x  sf rs f/  rs ;
axe rr axe rs axe sf
12345678 sp@ fa1 in2x drop fa1 ranset
80 ' npts !
: init npts 0 do i sp@ fa1 in2x 4*
xdat over + fa1 swap x2s
ydat over + fa1 func  ranf fa2 x2x
ten fa2 f/  fa2 over f+  swap x2s
i .  xdat over + >fa1 fa1 7 dec. 2 spaces
ydat  +   >fa1   fa1 7 dec. cr    loop ;

( print matrices for debugging )
: .dmat
npts 0 do
npars 0 do  j i derivmat >fa1 fa1 5 dec. loop
cr loop ;
: .rmat
npars 0 do
npars 1+ 0 do  j i resmat >fa1 fa1 5 dec. loop
cr loop ;

( nonlinear fit, core routine)
: nlsqfit cr   begin  one_iter cr  new_pars cr  until ;
```

## Appendix: Theoretical background of the curve fitting routine

We want to determine the values of the ai in such a way that the differences between the theoretical function and the measured yk values at times tk become a minimum. These differences are called the residuals rk:

rk = f (tk, a1, a2, a3, .... , an) - yk

and one usually tries to minimize the sum of the squared residuals of all data points.

Lets assume ri are the 'true' residuals that one obtains with the exact ai values. If we estimate the parameters by some initial values ai°, then 'computed' residuals

Rk = f (tk, a1°, a2°, a3°, .... , an°) - yk

can be calculated, which are usually larger than the true ones. To get a correction term that brings the ai° closer to the 'true' ai, one now linearly expands the function f around the estimated value:

f(tk,a1,a2,....,an)

f(tk,a1°,a2°,....,an°) + fk/a1(a1-a1°)

+ fk/a2 (a2-a2°)

. . . . .

+ fk/an(an-an°)

The differences, (ai-ai°), are denoted by ai, now we can write

```f(tk,a1,a2,....,an) - yk
f(tk,a1°,a2°,....,an°) - yk
+  fk/a1 a1 +  fk/a2 a2
. . . . .
+  fk/an an
```

which gives us a relationship between the true and the computed residuals

```rk   Rk +  fk/a1 a1 +  fk/a2 a2
. . . . .
+  fk/an an .
```

It is the sum of the squares of the true residuals (N being the number of data points)

that has to be minimized with respect to changes in ai, this means all the derivatives Q/(ai) have to be zero simultaneously. When you evaluate the expressions for the Q/(ai) and set them to zero, you arrive at the equation system that was desribed in the main article.

Community Search:
MacTech Search:

Live Home 3D Pro 3.6.2 - \$49.99
Live Home 3D Pro is powerful yet intuitive home design software that lets you build the house of your dreams right on your Mac, iPhone or iPad. It has every feature of Live Home 3D, plus some... Read more
RapidWeaver 8.2 - Create template-based...
RapidWeaver is a next-generation Web design application to help you easily create professional-looking Web sites in minutes. No knowledge of complex code is required, RapidWeaver will take care of... Read more
Opera 60.0.3255.109 - High-performance W...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
DEVONthink Pro 3.0beta2 - Knowledge base...
DEVONthink Pro is your essential assistant for today's world, where almost everything is digital. From shopping receipts to important research papers, your life often fills your hard drive in the... Read more
Tunnelblick 3.7.9 - GUI for OpenVPN.
Tunnelblick is a free, open source graphic user interface for OpenVPN on OS X. It provides easy control of OpenVPN client and/or server connections. It comes as a ready-to-use application with all... Read more
Carbon Copy Cloner 5.1.9 - Easy-to-use b...
Carbon Copy Cloner backups are better than ordinary backups. Suppose the unthinkable happens while you're under deadline to finish a project: your Mac is unresponsive and all you hear is an ominous,... Read more
Dropbox 73.4.118 - Cloud backup and sync...
Dropbox is an application that creates a special Finder folder that automatically syncs online and between your computers. It allows you to both backup files and keeps them up-to-date between systems... Read more
Postbox 6.1.18 - Powerful and flexible e...
Postbox is a new email application that helps you organize your work life and get stuff done. It has all the elegance and simplicity of Apple Mail, but with more power and flexibility to manage even... Read more
Wireshark 3.0.2 - Network protocol analy...
Wireshark is one of the world's foremost network protocol analyzers, and is the standard in many parts of the industry. It is the continuation of a project that started in 1998. Hundreds of... Read more
BetterTouchTool 2.856 - Customize multi-...
BetterTouchTool adds many new, fully customizable gestures to the Magic Mouse, Multi-Touch MacBook trackpad, and Magic Trackpad. These gestures are customizable: Magic Mouse: Pinch in / out (zoom... Read more

## Latest Forum Discussions

AFK Arena guide - Everything you need to...
Ok, so if you're like me, you've been playing (and sometimes waiting) your way through AFK Arena, only to learn there's a lot more to it than there appears on the surface. There's guilds, a PvP arena, and all sorts of other systems and game modes... | Read more »
Explore an epic fantasy world in MMORPG...
Webzen have just announced the official launch date for its stunning MMORPG ‘MU Origin 2’ which will arrive for iOS and Android on May 28th. It will be the second spinoff from the classic PC-based MU Online, and it looks to further refine the... | Read more »
Solar Explorer: New Dawn guide - Tips an...
Solar Explorer: New Dawn is a lunar lander game that really ratchets the intensity up to 11. With all of the asteroids flying around as you fly around at seemingly breakneck speeds, it can be easy to feel overwhelmed bythe whole thing. | Read more »
The Dalaran Heist - How Hearthstone...
I am someone who wrote Hearthstone off a while ago. It was hard not to try and stick with it. The game has incredible production values and a core of really great talent working on the game continuously to keep it feeling fresh and fun (full... | Read more »
Steam Link App - Everything You Need to...
Steam Link has finally released for iOS! That’s right, you can play your epic backlog of PC games on the go now. Well… sort of. While the Steam Link app was announced seemingly ages ago, it only got actual approval for release last night. Check out... | Read more »
Pre-register now for endless superhero r...
Talking Tom Hero Dash is set to take the ever-popular Talking Tom and Friends franchise in a brand new direction as it opens pre-registration to players worldwide. Not only does it promise to be a beautifully rendered, fast-paced, action-packed... | Read more »
AFK Arena - Guild Wars guide
Ok, so if you're like me, you've been playing (and sometimes waiting) your way through AFK Arena, only to learn there's a lot more to it than there appears on the surface. There's guilds, a PvP arena, and all sorts of other systems and game modes... | Read more »
Superhero-themed Talking Tom Hero Dash i...
One of the exciting releases that we’re looking forward to is Talking Tom Hero Dash, an upcoming superhero-themed runner created by Outfit7. This new game is an action-packed endless runner that takes you on an epic adventure to assemble the... | Read more »
Kingdom Rush Vengeance Update Guide 2 -...
Kingdom Rush: Vengeance just got updated once again to add more content to the game. This addition, called The Frozen Nightmare, adds three new levels, five new enemies, two new heroes, and some new achievements. | Read more »
Save the world with SCIENCE in the upcom...
Previous versions of space colonization game TerraGenesis encouraged you to explore the galaxy and settle its planets. The eagerly-awaited 5.0 update will try to smash them to bits. Yep, with a new "world killers" setting, you can unleash... | Read more »

## Price Scanner via MacPrices.net

12″ 1.2GHz MacBooks on sale for \$999, \$300 of...
Amazon has current-generation 12″ 1.2GHz Retina MacBooks on sale for \$300 off Apple’s MSRP. Shipping is free: 12″ 1.2GHz Space Gray MacBook: \$999.99 \$300 off MSRP 12″ 1.2GHz Silver MacBook: \$999.99 \$... Read more
Here’s how to save \$200 on Apple’s new 8-Core...
Apple has released details of their Education discount associated with the new 2019 15″ 6-Core and 8-Core MacBook Pros. Take \$200 off the price of the new 8-Core model (now \$2599) and \$150 off the 15... Read more
Price drops! 2018 15″ 2.2GHz 6-Core MacBook P...
Amazon has dropped prices on clearance 2018 15″ 2.2GHz 6-Core Touch Bar MacBook Pros by \$300 with models now available for \$2099. These are the same models sold by Apple in their retail and online... Read more
Apple drops prices on 2018 13″ 2.3GHz Quad-Co...
Apple has dropped prices on Certified Refurbished 2018 13″ 2.3GHz 4-Core Touch Bar MacBook Pros with prices now starting at \$1489. Apple’s one-year warranty is included, shipping is free, and each... Read more
Apple drops prices on 2018 Certified Refurbis...
Apple has dropped prices on clearance 2018 15″ 6-Core Touch Bar MacBook Pro, Certified Refurbished, with models available starting at only \$1999. Each model features a new outer case, shipping is... Read more
Price drops! Clearance 2018 13″ Quad Core Mac...
Amazon has dropped prices on 2018 13″ Apple Quad-Core MacBook Pros with models now available for \$250 off original MSRP. Shipping is free. Select Amazon as the seller, rather than a third-party, to... Read more
How Much Is ‘Solace’ Of Mind Worth When Buyin...
COMMENTARY: 05.22.19- Smartphone cases give us peace of mind by providing ample protection for such a fragile gadget and the sky’s the limit as far as choices go with a plethora of brands, styles,... Read more
Get a 13″ Touch Bar MacBook Pro for the lowes...
Apple has Certified Refurbished 2017 13″ 3.1GHz Dual-Core i5 Touch Bar MacBook Pros available starting at \$1439, ranging up to \$390 off original MSRP. Each MacBook features a new outer case, shipping... Read more
Apple adds new 15″ 8-Core MacBook Pro to line...
Apple has added a new 15″ MacBook Pro to its lineup featuring a 9th generation 2.3GHz 8-Core Intel i9 processor, 16GB of RAM, a 512GB SSD, and a Radeon Pro 560X with 4GB of GDDR5 memory for \$2799.... Read more
21″ 2.3GHz iMac available for \$999 at B&H...
B&H Photo has the 2018 21″ 2.3GHz Apple iMac on sale for \$100 off MSRP. This is the same model offering by Apple in their retail and online stores. Shipping is free: – 21″ 2.3GHz iMac (MMQA2LL/A... Read more

## Jobs Board

Best Buy *Apple* Computing Master - Best Bu...
**690427BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000860-Charlottesville-Store **Job Description:** **What Read more
*Apple* Mobile Master - Best Buy (United Sta...
**696430BR** **Job Title:** Apple Mobile Master **Job Category:** Store Associates **Location Number:** 001012-Bismarck-Store **Job Description:** **What does a Best Read more
Manager - *Apple* Team - SHI International...
…opportunity available in the Hardware & Advanced Solutions Department as the Manager of the Apple Team The Manager must be familiar with all aspects of Apple Read more
Best Buy *Apple* Computing Master - Best Bu...
**696375BR** **Job Title:** Best Buy Apple Computing Master **Job Category:** Sales **Location Number:** 000203-North Austin-Store **Job Description:** **What does a Read more
Geek Squad *Apple* Master Consultation Agen...
**696286BR** **Job Title:** Geek Squad Apple Master Consultation Agent **Job Category:** Services/Installation/Repair **Location Number:** 000172-Rivergate-Store Read more