TweetFollow Us on Twitter

June 96 - 64-Bit Integer Math on 680x0 Machines

64-Bit Integer Math on 680x0 Machines

DALE SEMCHISHEN

When an application has to perform integer arithmetic with numbers larger than 32 bits on both the PowerPC and 680x0 platforms, you could use the floating-point types of the SANE and PowerPC Numerics libraries. But if all you really need is a larger integer, a better choice is to use the existing 64-bit math routines available on the PowerPC platform and write an equivalent library for the 680x0 Macintosh. This article presents just such a library.

Developers of PowerPC applications that need 64-bit math can simply call the various "wide" Toolbox routines. These routines perform addition, subtraction, multiplication, division, square root, and a few other operations. On the 680x0-based Macintosh, some of these same routines are available in QuickDraw GX. But if you can't assume your customers have QuickDraw GX installed, you need a library that supports 64-bit math.

The Wide library presented in this article works on both platforms and has exactly the same interface and types as the wide routines in the Toolbox on PowerPC machines. The library also provides some new routines such as 32-bit to 64-bit add and subtract and a 64-bit-to-string conversion function. The library is included on this issue's CD, along with its source code.

All the routines use the 64-bit data type defined in the header file Types.h, which is the standard type used for signed 64-bit integers on both the PowerPC and 680x0 Macintosh:

struct wide {
   Sint32   hi;   /* upper 32 bits (signed) */
   Uint32   lo;   /* lower 32 bits (unsigned) */
};
typedef struct wide wide, *WidePtr;

THE WIDE ROUTINES

Before plunging into the Wide library, let's see what 64-bit math routines I'll be talking about. First, I'll introduce those that are available on PowerPC machines, then those you'll find on a 680x0 Macintosh with QuickDraw GX, and finally the routines in the Wide library.

POWERPC TOOLBOX

In the header file FixMath.h, the routines listed in Table 1 are defined for 64-bit math on the PowerPC platform.

680X0 QUICKDRAW GX

On 680x0 machines that have QuickDraw GX installed, all the wide routines for the PowerPC platform listed in Table 1 are available, with the exception of WideBitShift. The QuickDraw GX header file GXTypes.h defines the wide routine types and function prototypes in exactly the same way that the header file FixMath.h does for PowerPC machines.

In addition, QuickDraw GX on 680x0 machines has a routine that the PowerPC platform doesn't have: WideScale. This function returns the bit number of the highest-order nonzero bit in a 64-bit number. The Wide library implements this function on the PowerPC platform.

THE WIDE 64-BIT LIBRARY

The Wide 64-bit integer math library on this issue's CD provides all the wide routines that are available on PowerPC machines and on 680x0 machines with QuickDraw GX, plus a few extras. The extra routines, which are available on both the PowerPC and 680x0 platforms, are listed in Table 2.

WideAssign32, WideAdd32, WideSubtract32. These routines are self-explanatory.

WideToDecStr. This routine converts a signed 64-bit integer to the SANE string type decimal, which is also defined by the PowerPC Numerics library. This string structure is a good intermediate format for final conversion to a string format of your choosing.

Since WideToDecStr calls the SANE library to generate the string, SANE must be linked with your 680x0 application. The SANE library is included with all the major development systems.

To convert the string returned by WideToDecStr to a Pascal string, call the SANE routine dec2str.

    If you want to generate a localized number, take a look at the article "International Number Formatting" in develop Issue 16. You could call the LocalizeNumberString function from that article after converting the output of WideToDecStr to a Pascal string, or you could modify LocalizeNumberString to accept the output of WideToDecStr.*
p> WideInit. The library is self-initializing; the first time you call any wide routine, WideInit is also called. If the execution speed of your first runtime call to a wide routine is important, you have the option of calling WideInit during your application's startup to avoid that overhead.

The purpose of WideInit is to determine what processor is being used, or emulated; it calls Gestalt to make this determination. If your Macintosh has a 68020-68040 CPU (68020, 68030, or 68040), the library will use the 64-bit multiply and divide instructions available on that processor; otherwise, the library will have to call software subroutines for those operations. On 68000 machines, such as the Macintosh Plus and SE, the processor's multiply instruction is limited to 32 bits and the library has no choice but to use the slower algorithmic approach for multiplication and division.

SOURCE CODE ON A PLATTER

The library can be compiled on the 680x0 and PowerPC platforms using either the Metrowerks CodeWarrior or Symantec C development system. The library tests which development system is compiling it and, if it's not CodeWarrior or Symantec, the preprocessor displays an error message saying the library needs to be ported to your environment. This is necessary because there's some inline assembly language in the source file, as discussed later in this section, and different C compilers handle assembly language differently.

While the interface routines to our 64-bit library are the same on the PowerPC and 680x0 machines, when you compile the library a different subset of routines is linked in, depending on your environment:

  • If you build the library for a 680x0 machine without QuickDraw GX headers, all the Wide library routines are defined.

  • If you build the library for a 680x0 machine and include the QuickDraw GX header file GXTypes.h or GXMath.h before the Wide library's Wide.h header file, the extra routines and the WideBitShift routine are defined. The other wide routines are already available via the QuickDraw GX traps.

  • When you compile for the PowerPC platform, only the five extra routines (WideAssign32, WideAdd32, WideSubtract32, WideToDecStr, and WideInit) are defined in the library. All the other wide routines already exist in the PowerPC Toolbox. Additionally, if GXTypes.h or GXMath.h isn't included, WideScale is defined.
Table 3 summarizes where the wide routines can be found on the different platforms.

Note that the Wide library decides at compile time which routines to use. When QuickDraw GX header files are not included, the Wide library routines are called. If your application needs to make a runtime decision about whether to use QuickDraw GX, you'll need to make some changes to the library. One solution is to rename the Wide library routines and remove the conditional compilation tests for QuickDraw GX from the source. Then at run time you can decide which version to call -- the QuickDraw GX routines if they're available, or the internal Wide library routinesif not.

UNIVERSAL HEADERS

The Wide library was compiled with version 2.1 of Apple's universal headers. The latest headers are available on this issue's CD. You should make sure you have a recent version of these headers, because the library uses the constant GENERATING68K. If the header file ConditionalMacros.h doesn't contain this constant, your version of the universal headers is too old.

680X0 ASSEMBLY LANGUAGE

Some of the routines in the library are written in assembly language to take advantage of the 64-bit multiply and divide instructions on 68020-68040 machines, because on these machines the C language will use only 32-bit multiply and divide instructions. On PowerPC machines, the Wide library doesn't need assembly language because the 64-bit multiply and divide routines are provided by the Toolbox.

The library's source file Wide.c contains both C and assembly language. It has been successfully compiled by Symantec C 7.0.4 and CodeWarrior 7. If you want to compile the library on any other development system, you may have to do a little work porting it. Most of the changes will be confined to the conditional compilation statements at the beginning of Wide.c where the differences in SANE types and inline assembly language are handled.

A CLOSER LOOK AT SOME WIDE ROUTINES

Now let's look at a couple of the more interesting routines in the Wide library to see how they work. See the source code on the CD for full implementations of all the routines.

WIDEMULTIPLY

WideMultiply (Listing 1) performs a 32-by-32-bit multiply and produces a 64-bit result. The first and second parameters are the two signed 32-bit integers to be multiplied together. The return value is a pointer to the 64-bit result that's also returned via the third parameter.

Listing 1. The multiply routine

wide *WideMultiply (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,      /* in: second value to multiply */
   wide *target_ptr)      /* out: 64 bits to be assigned */
{
   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* If the 64-bit multiply instruction is available... */
   if (gWide_64instr) {
      /* Execute the assembly-language instruction MULS.L */
      Wide_MulS64(multiplicand, multiplier, target_ptr);
   }
   else {
      /* Call the Toolbox to perform the multiply. */
      LongMul(multiplicand, multiplier, (Int64Bit *) target_ptr);
   }

   return (target_ptr);
}
WideMultiply first tests whether the library has been initialized yet; if not, it calls WideInit. Next the routine tests whether the 64-bit multiply instruction is available on the current CPU by examining the global variable gWide_64instr (which was set by the initialization routine WideInit). If the instruction is available, WideMultiply calls the assembly-language function Wide_MulS64 to take advantage of it (as described later); otherwise, WideMultiply calls the Toolbox routine LongMul to perform the multiplication, as would be the case on 68000 machines.

WIDESQUAREROOT

The WideSquareRoot function (Listing 2) takes a 64-bit unsigned number as input and returns a 32-bit unsigned result. All possible results can be expressed in 32 bits, so overflow isn't possible.

Listing 2. The square root routine

unsigned long WideSquareRoot (
   const wide *source_ptr) /* in: value to take the square root of */
{
   wide            work_integer;
   Extended_80      extended_80_number;

   /* Initialize Wide library if not already done. */
   if (!gWide_Initialized) WideInit();

   /* Convert "wide" number to "extended" format. */
   Wide_ToExtended(&extended_80_number, source_ptr);

   /* If compiling with CodeWarrior, the parameter to sqrt is a
      pointer instead of a value, as defined in PowerPC Numerics. */
#ifdef __MWERKS__
   Sqrt(&extended_80_number);
#else
   extended_80_number = sqrt(extended_80_number);
#endif

   /* Convert "extended" format to "wide" number. */
   Wide_FromExtended(&work_integer, &extended_80_number);
   
   /* OK to ignore work_integer.hi as it's always 0. */
   return (work_integer.lo);
}
For this routine I decided to let the SANE library do the work of generating the square root. The routine converts the 64-bit input number to an 80-bit floating-point number and then calls the SANE library function sqrt to calculate the square root. Finally, WideSquareRoot converts the resulting 80-bit floating-point number back to a 64-bit integer and returns the low-order half of the result.

When a 64-bit integer is converted to an 80-bit floating-point number, no loss in precision occurs. An 80-bit floating-point number is made up of three parts -- the sign (1 bit), the exponent (15 bits), and the fractional part (64 bits). As you can see, a 64-bit integer exactly fits in the fractional part.

Two differences between the CodeWarrior and Symantec development systems that show up in the Wide library's WideSquareRoot function are the 80-bit floating-point types and the parameters of the SANE library's square root function. Under CodeWarrior, the Wide library internal type Extended_80 is defined as the type extended80, and Sqrt returns the result to the same location as the input number. Under Symantec C, Extended_80 is defined as the type extended, and sqrt returns the result as a function return value.

INTERNAL ASSEMBLY-LANGUAGE ROUTINES

The Wide library uses internal assembly-language routines to execute 64-bit multiply and divide instructions on machines that support those instructions. In case you're interested, here are the details.

Symantec and CodeWarrior handle the asm keyword differently, so I used some preprocessor commands (#defines) to handle the differences between the two development systems. Near the beginning of the Wide.c source file there are four #defines that differ depending on which development system you're using, as shown in Table 4.

WIDE_MULS64

Wide_MulS64 (Listing 3) is an internal assembly-language routine that WideMultiply calls to execute the 64-bit multiply instruction on the 68020-68040 CPUs. It starts with ASM_FUNC_HEAD, as mentioned in Table 4. The three definitions at the start of the function (MULTIPLICAND, MULTIPLIER, and OUT_PTR) are the byte offsets to the parameters. Although in Symantec C it's possible to refer to function parameters by name via A6, this isn't possible in CodeWarrior. I had to give up accessing the parameters by name and use #defines instead.

Listing 3. 64-bit multiply instruction

ASM_FUNC_HEAD static void Wide_MulS64 (
   long multiplicand,   /* in: first value to multiply */
   long multiplier,     /* in: second value to multiply */
   wide *out_ptr)       /* out: 64 bits to be assigned */
{
#define MULTIPLICAND     8
#define MULTIPLIER      12
#define OUT_PTR         16

ASM_BEGIN
      MOVE.L   MULTIPLICAND(A6),D0     //
      DC.W      0x4C2E,0x0C01,0x000C   // MULS.L multiplier(A6),D1-D0
      MOVE.L   OUT_PTR(A6),A0          //
      MOVE.L    D0,WIDE_LO(A0)         //
      MOVE.L   D1,WIDE_HI(A0)          //
ASM_END
ASM_FUNC_TAIL
}
To execute the 64-bit multiply instruction I had to define it with a DC.W directive that generates the desired object code. This was necessary because the Symantec C inline assembler supports only the 32-bit multiply instruction and won't recognize the 64-bit assembly opcode.

WIDE_DIVIDEU

If the 64-bit divide instruction isn't available, the library calls the internal assembly-language routine Wide_DivideU (Listing 4) to perform the division using an algorithm. The algorithm is basically a binary version of the paper and pencil method of doing long division that all of us learned in school. It's a loop that executes once for each bit in the size of the divisor, which is 32 in our case. The Wide_DivideU subroutine actually handles only unsigned division, but the library function that calls it will take care of converting the input parameters to positive values and, if required, converting the result to a negative value.

Listing 4. 64-bit unsigned division algorithm

ASM_FUNC_HEAD static void Wide_DivideU (
   wide *dividend_ptr,      /* in/out: 64 bits to be divided */
   long divisor,            /* in: value to divide by */
   long *remainder_ptr)     /* out: the remainder of the division */
{
#define DIVIDEND_PTR      8
#define DIVISOR         12
#define REMAINDER_PTR   16

ASM_BEGIN
      MOVEM.L  D2-D7,-(SP)           // save work registers
      CLR.L    D0                    //
      CLR.L    D1                // D0-D1 is the quotient accumulator
      MOVE.L   DIVIDEND_PTR(A6),A0   //
      MOVE.L   WIDE_HI(A0),D2        //
      MOVE.L   WIDE_LO(A0),D3        // D2-D3 = remainder accumulator
      CLR.L    D4                    //
      MOVE.L   D2,D5                 // D5 = copy of dividend.hi
      MOVE.L   DIVISOR(A6),D6        // D6 = copy of divisor

      MOVEQ.L  #31,D7                // FOR number of bits in divisor
@divloop:
      LSL.L    #1,D0             // shift quotient.hi accum left once
      LSL.L    #1,D1             // shift quotient.lo accum left once
      LSL.L    #1,D4                 //
      LSL.L    #1,D3                 //
      ROXL.L   #1,D2             // shift remainder accum left once
      SUB.L    D6,D2                 // remainder -= divisor
      BCS      @div50                // If CS, remainder is negative
      BSET     #0,D1                 // quotient.lo |= 1
      BRA.S    @div77                //
@div50:
      ADD.L    D6,D2                 // remainder += divisor
@div77:
      BTST     D7,D5                 //
      BEQ      @div90            // If EQ, bit not set in dividend.hi
      BSET     #0,D4                  //
@div90:
      CMP.L    D6,D4                  //
      BCS      @div99                 // If CS, divisor < D4
      SUB.L    D6,D4                  // D4 -= divisor
      BSET     #0,D0                  // quotient.hi |= 1
@div99:
      DBF      D7,@divloop            // loop until D7 == -1
      MOVE.L   DIVIDEND_PTR(A6),A0    // output the remainder
      MOVE.L   D0,WIDE_HI(A0)         //
      MOVE.L   D1,WIDE_LO(A0)         //
      MOVE.L   REMAINDER_PTR(A6),A0   // output the remainder
      MOVE.L   D2,(A0)                //
      MOVEM.L  (SP)+,D2-D7            // restore work registers
ASM_END
ASM_FUNC_TAIL
}
The top of the assembly-language loop starts at the @divloop label. For each loop, the algorithm shifts the quotient and the remainder left one bit position before trying to subtract the divisor from the remainder. If the subtraction can be done, the least-significant bit in quotient.lo is set; otherwise, the subtraction is undone by the add instruction near the @div50 label. Then, if the divisor is greater than the loop bits that are accumulating in register D4, the least-significant bit in quotient.hi is set.

Notice that the first assembly-language statement in Wide_DivideU is a MOVEM.L instruction that saves on the stack all the registers that the division loop uses; the last instruction is a MOVEM.L instruction that restores these registers. Fortunately, this subroutine can place all its working variables in registers and avoid the stack for its loop, thus improving performance.

WORLDS APART

There you have it. Now 64-bit integer math can be handled with the same API on both the 680x0 and PowerPC platforms. Having the same function-level interface on these two very different processors makes life a lot easier for application programmers. Don't you wish all libraries had the same interface regardless of the CPU or system software version?

DALE SEMCHISHEN (Dale_Semchishen@mindlink.net) lives in Vancouver, British Columbia, with his wife Josephine. He works for Glenayre Technologies as a paging software developer (they make the control systems that send messages to your belt beeper). Recently, he had to accept the fact that the world is changing when his retired father started talking about his Internet provider.*

Thanks to our technical reviewers Dave Evans, Quinn "The Eskimo!", and Dave Radcliffe. Special thanks to Dave Johnson for software testing.*

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Duet 2.0.5.1 - Use your iPad as an exter...
Duet is the first app that allows you to use your iDevice as an extra display for your Mac using the Lightning or 30-pin cable. Note: This app requires a $9.99 iOS companion app. Version 2.0.5.1:... Read more
Monosnap 3.5.6 - Versatile screenshot ut...
Monosnap lets you capture screenshots, share files, and record video and .gifs! Features Capture Capture full screen, just part of the screen, or a selected window Make your crop area pixel... Read more
Sketch 53.2 - Design app for UX/UI for i...
Sketch is an innovative and fresh look at vector drawing. Its intentionally minimalist design is based upon a drawing space of unlimited size and layers, free of palettes, panels, menus, windows, and... Read more
Adobe Acrobat Reader 19.010.20098 - View...
Adobe Acrobat Reader allows users to view PDF documents. You may not know what a PDF file is, but you've probably come across one at some point. PDF files are used by companies and even the IRS to... Read more
iClock 4.6.7 - Customizable menu bar clo...
iClock replaces the old Apple's default menu bar clock with more features, customization and increases your productivity. Features: Have your Apple or Google calendar instantly available from the... Read more
VueScan 9.6.32 - Scanner software with a...
VueScan is a scanning program that works with most high-quality flatbed and film scanners to produce scans that have excellent color fidelity and color balance. VueScan is easy to use, and has... Read more
Dropbox 67.4.83 - Cloud backup and synch...
Dropbox is an application that creates a special Finder folder that automatically syncs online and between your computers. It allows you to both backup files and keeps them up-to-date between systems... Read more
Opera 58.0.3135.68 - High-performance We...
Opera is a fast and secure browser trusted by millions of users. With the intuitive interface, Speed Dial and visual bookmarks for organizing favorite sites, news feature with fresh, relevant content... Read more
Microsoft Office 2016 16.22 - Popular pr...
Microsoft Office 2016 - Unmistakably Office, designed for Mac. The new versions of Word, Excel, PowerPoint, Outlook, and OneNote provide the best of both worlds for Mac users - the familiar Office... Read more
Slack 3.3.7 - Collaborative communicatio...
Slack is a collaborative communication app that simplifies real-time messaging, archiving, and search for modern working teams. Version 3.3.7: What’s New  From today, you'll notice a shiny new app... Read more

Latest Forum Discussions

See All

The best games for iPhone and iPad that...
Well, once again we've reached Thursday, which means it's time to have a look at the awesome games that have popped up on the App Store over the past seven days. We've got horror, we've got vampires, and we've got at least one game we still don't... | Read more »
The AAF app could be the only fantasy fo...
Fantasy football is massive, which is something the AAF understands. It's a new American Football league that's two weeks into its first season. It's designed to serve a number of different masters - for one thing it's positioned itself as a second... | Read more »
Everything you need to know to win in Ja...
Jaws.io is one of those games that just shouldn't be as much fun as it is. But it is as much fun as it is, so there you go. It's a game all about eating things, shooting a giant shark, and trying to score as many points as possible. And if there's... | Read more »
Everything you need to know to win in Kn...
Knights of the Card Table is a really clever, solitaire dungeon crawler that's not just crammed to the gills with monsters to fight and loot to find, it's also got one of the biggest hearts of any game we've seen on the App Store. We definitely... | Read more »
A quick beginner’s guide to Final Blade
Final Blade was developed by newcomer SkyPeople studio, with help from localisation guru Glohow. After two years exclusively in the hands of South Korean and Chinese players, the game is now celebrating its global launch. Hurrah! But if you’re a... | Read more »
The best games for iPhone and iPad that...
How is it already Thursday again? My oh my, doesn't time fly when you're playing the very best mobile games out there? We certainly hope it does, because we've gone ahead and written a list of what we think are the top 5 best games for iPhone and... | Read more »
Three games for iPad and iPhone to keep...
On Monday we told you that Apex Legends is, all being well, eventually going to end up on the App Store. That means you'll be able to play one of the best new battle royale shooters in months in the palm of your hand. However, it hasn't happened... | Read more »
Why you should be excited about Apex Leg...
You've no doubt heard of Apex Legends by now. It's a new take on the battle royale genre developed by Respawn, and published by EA. It went live on EA Origin, PS4, and Xbox One last week, and it's already been generating a lot of buzz around the... | Read more »
Epic fantasy RPG Final Blade celebrates...
Now is a great time for RPG fans the world over as Final Blade has, well, finally got its global release for iOS and Android. The grand-scale RPG developed by Skypeople Inc in association with Glowhow, the has been quite the hit over in Taiwan and... | Read more »
Airheart launches on Nintendo Switch, de...
You’d be forgiven for thinking a game about harpooning fish and fighting pirates would be set on the high seas. But the action in Airheart is entirely airborne. Following up on its PC and Playstation release last year, this award-winning game has... | Read more »

Price Scanner via MacPrices.net

Get the 21″ 3.4GHz 4K Apple iMac for $1399 to...
Abt Electronics has the 21″ 3.4GHz 4K iMac on sale today for $1399.99 including free shipping. Their price is $100 off MSRP, and it’s the lowest price available for this model: – 21″ 3.4GHz 4K iMac... Read more
iMac sale! Get a new 27″ Apple iMac for $200...
B&H Photo has new 27″ Apple iMacs on sale for $200 off MSRP, starting at $1599. These are the same models offered by Apple in their retail and online stores. Shipping is free: – 27″ 3.8GHz 5K... Read more
Apple restocks Certified Refurbished 4K Apple...
Apple has restocked Certified Refurbished 32GB and 64GB 4K Apple TVs for $30 off the cost of new models. Apple’s standard one-year warranty is included with each model, and shipping is free: – 32GB... Read more
Save $50-$62 on a new Apple Mac mini at Abt E...
Abt Electronics has the new 2018 4-Core and 6-Core Mac minis on sale for $50-$62 off standard MSRP, with prices starting at $749. Shipping is free: – 3.6GHz Quad-Core mini: $749 $50 off MSRP – 3.... Read more
13″ Dual-Core 2.3GHz non-Touch Bar MacBook Pr...
Apple resellers B&H Photo and Amazon are both offering sale prices on new 13″ Dual-Core 2.3GHz non-Touch Bar MacBook Pros, ranging up to $150 off MSRP, with prices starting at $1199. Shipping is... Read more
Could These Be The Products That Apple Will B...
NEWS: 02.20.19- Apple, Inc. is widely expected to be releasing a number of new products in the pipeline this year but just what exactly will those items be and who is the source of all of that... Read more
B&H has 42mm Apple Watch Series 3 GPS + C...
B&H Photo is discounting 42mm Apple Watch Series 3 GPS + Cellular models by $60. Shipping is free: – 42mm Apple Watch Series 3 GPS + Cellular: $349 $60 off MSRP Their price is the lowest... Read more
Get $50 off an iPhone 8 at Verizon with this...
Looking for a discount on a new Apple iPhone 8 at Verizon? Use coupon code VZWDEAL to save $50 on a new iPhone 8 through February 28, 2019. Excludes upgrades & online only. Read more
Jet offers the 12″ 1.2GHz Silver Apple MacBoo...
Jet.com has current-generation 2017 Apple 12″ 1.2GHz Silver MacBooks on sale today for $290 off Apple’s price. Shipping is free on all orders over $35 at Jet: – 12″ 1.2GHz Silver MacBook: $1009.65 $... Read more
New 11″ Apple iPad Pros on sale for $50-$100...
B&H Photo has the new 2018 Apple 11″ iPad Pros in stock today and on sale for up to $100 off MSRP. Shipping is free: – 11″ 64GB WiFi iPad Pro: $749 $50 off – 11″ 256GB WiFi iPad Pro: $900 $50 off... Read more

Jobs Board

Temporary Associate - *Apple* Blossom Mall...
Temporary Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1041589 Date:Tomorrow Job Read more
Operations Associate - *Apple* Blossom Mall...
Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1044618 Date:February 18, Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1042611 Date:Tomorrow Job Description Read more
Sephora Product Consultant - *Apple* Blosso...
Sephora Product Consultant - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1056553 Date:February Read more
Omni-Channel Associate - *Apple* Blossom Ma...
Omni-Channel Associate - Apple Blossom Mall Location:Winchester, VA, United States- Apple Blossom Mall 1850 Apple Blossom Dr Job ID:1074107 Date:February 18, Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.