TweetFollow Us on Twitter

December 95 - Sound Secrets

Sound Secrets

Kip Olson

The Sound Manager is one powerful multimedia tool for the Macintosh, but no one has ever accused it of being too obvious. This article explores some of the more subtle Sound Manager features, showing some simple ways to improve your application's use of sound. A sample application demonstrates features such as volume overdrive and easy continuous sound.

The Sound Manager has a long and distinguished career on the Macintosh. First released in 1987, it was completely revised in 1993 with the release of Sound Manager 3.0. The introduction of Sound Manager 3.1 in the summer of 1995 brought native PowerPC performance, making the Sound Manager one of the most powerful multimedia tools around. However, getting the most out of the Sound Manager often means wading through many pages of Inside Macintosh: Sound.

This article pulls together valuable information about the Sound Manager, focusing on some of its little-known features that will ease your development of multimedia applications. The tips and techniques come straight from the Sound Manager development team at Apple and cover diverse areas of developer interest, including

  • parsing sound resources
  • displaying compression names
  • maximizing performance
  • adjusting volume
  • controlling pitch
  • playing continuous sounds
  • compressing audio
Two of these topics, controlling pitch and compressing audio, require the use of Sound Manager 3.1, which is included on this issue's CD. You'll also find the SoundSecrets application and its source code on the CD. SoundSecrets demonstrates many of the techniques described in the article. To get the most out of this article, you should be familiar with the Sound Manager command interface and concepts such as sound channels, as described in Inside Macintosh: Sound.

So, let's get started unlocking some of those sound secrets!

FIND WHAT YOU'RE LOOKING FOR

On the Macintosh, sounds can be stored in a variety of formats, including 'snd ' resources, AIFF (Audio Interchange File Format) files, and QuickTime movies. Applications often need to read these files directly and extract their sound data, which can be a daunting task, especially when you begin to deal with some of the new compressed sound formats introduced in Sound Manager 3.1 -- for example, IMA 4:1.

Fortunately, Sound Manager 3.0 introduced a couple of routines to help you navigate these tricky waters -- GetSoundHeaderOffset and GetCompressionInfo. Let's take a look at these routines, and put them to work with an example of parsing an 'snd ' resource taken from the SoundSecrets application.

The 'snd ' resource format is described fully in Inside Macintosh: Sound, so we won't go into detail here, except to say that embedded in the resource is a sound header and the audio samples themselves. Finding this embedded sound header is the job of GetSoundHeaderOffset. It takes a handle to an arbitrary 'snd ' resource and returns the offset of the sound header data structure within that handle.

However, once you find the sound header, your work is not complete; you must determine which of the three possible sound header structures it is. In the SoundSecrets application, the sound header is represented as a union of the three structures SoundHeader, ExtSoundHeader, and CmpSoundHeader. The encode field in these structures determines which union member to use when examining the header.

After you've extracted the appropriate information from the sound header, you can use the GetCompressionInfo routine to determine the sound format and the compression settings. GetCompressionInfo fills out and returns a CompressionInfo record, which contains the OSType format of the sound, samples per packet, bytes per packet, and bytes per sample. You can use these fields to convert between samples, frames, and bytes.

    For a thorough discussion of GetCompressionInfo, see the Macintosh Technical Note "GetCompressionInfo()" (SD 1).*
As shown in Listing 1, the SoundSecrets application uses GetSoundHeaderOffset to find the sound header structure, and then uses a case statement based on the encode field to extract the useful information from each type of header. The SoundSecrets application calculates the number of samples in the sound using information returned by GetCompressionInfo.

Listing 1. Getting information from the sound header

typedef union {
   SoundHeader         s;         // Plain sound header
   CmpSoundHeader      c;         // Compressed sound header
   ExtSoundHeader      e;         // Extended sound header
} CommonSoundHeader, *CommonSoundHeaderPtr;

OSErr ParseSnd(Handle sndH, SoundComponentData *sndInfo,
      CompressionInfo *compInfo, unsigned long *headerOffsetResult,
      unsigned long *dataOffsetResult)
{
   CommonSoundHeaderPtr      sh;
   unsigned long            headerOffset, dataOffset;
   short                     compressionID;
   OSErr                     err;

   // Use GetSoundHeaderOffset to find the offset of the sound header
   // from the beginning of the sound resource handle.
   err = GetSoundHeaderOffset((SndListHandle) sndH, 
         (long *) &headerOffset);
   if (err != noErr)
      return (err);
   
   // Get pointer to the sound header using this offset.
   sh = (CommonSoundHeaderPtr) (*sndH + headerOffset);
   dataOffset = headerOffset;

   // Extract the sound information based on encode type.
   switch (sh->s.encode) {
      case stdSH:      // Standard sound header
         sndInfo->sampleCount = sh->s.length;
         sndInfo->sampleRate = sh->s.sampleRate;
         sndInfo->sampleSize = 8;
         sndInfo->numChannels = 1;
         dataOffset += offsetof(SoundHeader, sampleArea);
         compressionID = notCompressed;
         break;

      case extSH:    // Extended sound header
         sndInfo->sampleCount = sh->e.numFrames;
         sndInfo->sampleRate = sh->e.sampleRate;
         sndInfo->sampleSize = sh->e.sampleSize;
         sndInfo->numChannels = sh->e.numChannels;
         dataOffset += offsetof(ExtSoundHeader, sampleArea);
         compressionID = notCompressed;
         break;

      case cmpSH:      // Compressed sound header
         sndInfo->sampleCount = sh->c.numFrames;
         sndInfo->sampleRate = sh->c.sampleRate;
         sndInfo->sampleSize = sh->c.sampleSize;
         sndInfo->numChannels = sh->c.numChannels;
         dataOffset += offsetof(CmpSoundHeader, sampleArea);
         compressionID = sh->c.compressionID;


		sndInfo->format = sh->c.format;

         break;

      default:
         return (badFormat);
         break;
   }

   // Use GetCompressionInfo to get the data format of the sound and
   // the compression information.
   compInfo->recordSize = sizeof(CompressionInfo);
   err = GetCompressionInfo(compressionID, sndInfo->format, 
         sndInfo->numChannels, sndInfo->sampleSize, compInfo);
   if (err != noErr)
      return (err);

   // Store the sound data format and convert frames to samples.
   sndInfo->format = compInfo->format;
   sndInfo->sampleCount *= compInfo->samplesPerPacket;

   // Return offset of header and audio data.
   *headerOffsetResult = headerOffset;
   *dataOffsetResult = dataOffset;

   return (noErr);
}

CHOOSE THE RIGHT NAME

Now that you've extracted the sound settings from an 'snd ' resource, the next thing you'll want to do is display this information to the user of your application. Settings like sample rate and sample size are easy to display, but what if the sound is compressed? All you've got is an OSType to describe the compressed sound data format, and not too many users are going to get much out of seeing something like 'MAC3' displayed on their screen.

Fortunately, the Sound Manager makes it easy for you to find a string to display that does make sense. Using the Component Manager, you can look up the name of the audio codec used to expand the compressed sound, and use this name to describe the compression format to the user.

This is done with the Component Manager routine FindNextComponent, which is passed a ComponentDescription record. By setting the componentType field of this record to kSoundDecompressor, the componentSubType field to the OSType of the compressed sound data format, and the remaining fields to 0, you can search for the sound component that will decompress the sound. Once you have the component, you can use GetComponentInfo to obtain the component name, which is the descriptive string that makes sense to the user. The routine from SoundSecrets shown in Listing 2 finds the name of any compressed sound format.

Listing 2. Finding the name of a compressed sound format

OSErr GetCompressionName(OSType compressionType,
           Str255 compressionName)
{
   ComponentDescription      cd;
   Component               component;
   Handle                  componentName;
   OSErr                     err;

   // Look for decompressor component.
   cd.componentType = kSoundDecompressor;
   cd.componentSubType = compressionType;
   cd.componentManufacturer = 0;
   cd.componentFlags = 0;
   cd.componentFlagsMask = 0;

   component = FindNextComponent(nil, &cd);
   if (component == nil) {
      err = siInvalidCompression;
      goto FindComponentFailed;
   }

   // Create handle for name.
   componentName = NewHandle(0);      
   if (componentName == nil) {
      err = MemError();
      goto NewNameFailed;
   }

   // Get name from the Component Manager.
   err = GetComponentInfo(component, &cd, componentName, nil, nil);
   if (err != noErr)
      goto GetInfoFailed;

   // Return name.
   BlockMoveData(*componentName, compressionName,
         GetHandleSize(componentName));

GetInfoFailed:
   DisposeHandle(componentName);
NewNameFailed:
FindComponentFailed:
   return (err);
}

MAXIMIZE YOUR POTENTIAL

The Sound Manager is almost always used in conjunction with other operations on the Macintosh. For example, QuickTime uses the Sound Manager to play a sound track while it's drawing the frames of a movie, and games play sound effects and background music while animating the screen. That's why the performance of the Sound Manager is of such great concern to many programmers: if the Sound Manager takes too much time to do its work, QuickTime will begin to drop video frames and games or animations will run slower.

To get the best performance out of the Sound Manager, you first need to understand a little about how it plays a sound. The Sound Manager's major function is to convert the sounds played by an application into the audio format required by the sound hardware on a particular computer. For example, the sound hardware on the Power Macintosh 8100 requires a stream of 16-bit, stereo, 44.1 kHz audio samples, so the Sound Manager must convert all sounds to this format during playback.

It does this by examining the format of the sound to be played, and setting up the proper conversion steps needed to convert it to the hardware format. These steps might include decompression, sample size adjustment, sample rate conversion, volume adjustment, and mixing, all of which take time away from your application.

Therefore, the best way to maximize Sound Manager performance is to simply supply it with sounds that are already in the format required by the sound hardware. This way, the Sound Manager doesn't have to spend a lot of time processing, and your application will have more time to do other operations. Fortunately, Sound Manager 3.1 provides a new routine, SndGetInfo, that helps you determine the current sound hardware settings, so maximizing performance is a snap. (Of course, this technique applies only to sounds the application generates itself, since otherwise you have no control over their format.)

SndGetInfo is a selector-based routine that returns information about the sound channel. You pass in an OSType selector, and it returns a data structure of information. (This is similar to the operation of the SPBGetDeviceInfo routine in the Sound Input Manager, and in fact they use the same selectors.) Once you know the sound hardware sample rate, sample size, and number of channels, you know the kind of sounds that will be played back most efficiently.

The SoundSecrets application demonstrates how to determine the hardware settings and then find the sound with the correct format. It uses the GetHardwareSettings routine, which determines the hardware settings, and the FindMatchingSound routine, which chooses the right sound to play to maximize performance.

Listing 3 shows how to use SndGetInfo to return the current hardware settings.

Listing 3. Getting the current hardware settings

OSErr GetHardwareSettings(SndChannelPtr chan, 
      SoundComponentData *hardwareInfo)
{
   OSErr   err;

   err = SndGetInfo(chan, siNumberChannels,
                    &hardwareInfo->numChannels);
   if (err != noErr)
      return (err);

   err = SndGetInfo(chan, siSampleRate,
                    &hardwareInfo->sampleRate);
   if (err != noErr)
      return (err);

   err = SndGetInfo(chan, siSampleSize, &hardwareInfo->sampleSize);
   if (err != noErr)
      return (err);

   if (hardwareInfo->sampleSize == 8)
      hardwareInfo->format = kOffsetBinary;
   else
      hardwareInfo->format = kTwosComplement;

   return (noErr);
}

PUMP UP THE VOLUME

Most sound programmers have heard (literally) about the venerable ampCmd command, which lets you scale the volume of all sounds on a channel from a minimum of 0 (silence) to 255 (full volume). However, only the truly righteous know that Sound Manager 3.0 added an even more powerful command for manipulating sound volume -- volumeCmd.

The volumeCmd command does three things. First, like ampCmd, it allows you to scale the volume from silence to full volume. However, volumeCmd doesn't stop there; like that revolutionary amplifier in the movie Spinal Tap that could go all the way to 11, it lets you go beyond full volume to overdrive the sound volume. And finally, it allows you to control the volume of the left and right channels independently, providing complete stereo control over your sounds.

All this is possible because the volumeCmd command represents the sound volume in 16-bit fixed-point notation. By using the most significant 8 bits to represent the integer portion of the volume and the least significant 8 bits for the fractional portion, it provides very precise volume settings. And overdriving the sound is a cinch. By combining the left and right volume settings into one 32-bit quantity, volumeCmd gives you full control over how loud you can blast your speakers. Another command, getVolumeCmd, returns the current volume setting, in case you forgot what you set it to.

    A new interaction between the volumeCmd and ampCmd commands was added in Sound Manager 3.1. Previously, ampCmd would clobber the separate left and right settings made by volumeCmd, setting them to the same value. Starting with Sound Manager 3.1, volumeCmd now specifies a base volume for a channel, and ampCmd scales against that base, which lets ampCmd and volumeCmd coexist better when playing the system alert beep.*
Table 1 gives some examples of values you can pass to volumeCmd and their effect. Remember, once you've changed the volume setting with volumeCmd, the setting is applied immediately to the current sound that's playing (if any) and to every subsequent sound played on that channel.

The SoundSecrets sample program included on the CD demonstrates the usefulness of volumeCmd by providing a slider control to adjust left and right volume separately, with volume overdrive up to two times the normal full volume.

ACHIEVE PERFECT PITCH

One of the trickiest things to do with the Sound Manager is to play a sound at just the right pitch. While the frequencyCmd command lets you trigger a sound at a given MIDI note value, and the rateCmd command gives you limited control over the pitch of the sound currently playing, before Sound Manager 3.1 there was no good way to just play a sound at an arbitrary pitch, short of generating the samples yourself. So Sound Manager 3.1 introduced the rateMultiplierCmd command, which gives you perfect pitch every time.

The concept behind rateMultiplierCmd is very simple. Using a Fixed value, you can apply a multiplier to the playback rate of all sounds played on a channel. This allows you to vary the sample rate of the sound being played, and thus control its pitch. (Of course, changing the rate also changes the duration of the sound.) You can use getRateMultiplierCmd to return the current rate multiplier setting.

Like any great concept, it's most easily understood with an example, so Table 2 gives some values you can pass to rateMultiplierCmd and their effect. Remember, as with volumeCmd, once you change the rate multiplier with this command, the setting is applied immediately to the current sound that's playing (if any) and to every subsequent sound played on that channel. Our helpful SoundSecrets application demonstrates the rateMultiplierCmd command with a slider control to adjust the playback rate of the sound from 0.0 to 2.0.

PLAYING SOUND THE QUICKTIME WAY

Something that vexes nearly everyone using the Sound Manager is attempting to play continuous sound. Many applications break sounds up into chunks as they're read off the disk, and most games have background music that's continuously generated and mixed with sound effects. After spelunking through Inside Macintosh: Sound, you'll eventually come across the SndPlayDoubleBuffer routine, which looks like the answer to your prayers. However, SndPlayDoubleBuffer has some serious limitations that you need to consider.

First of all, SndPlayDoubleBuffer ping-pongs between just two buffers, and the location of those buffers can't be changed once the sound is started, which can be really inconvenient when you're trying to piece together a lot of sound buffers off the disk. In addition, the format of the sound being played can't be changed once the sound is started, and the headers describing the sound must be attached to the sound data itself.

There has got be a better way, right? Well, QuickTime uses a strategy involving sound callbacks that's much more flexible and doesn't make you scratch your head over when to use that lastBuffer flag in SndPlayDoubleBuffer. Once you read about the QuickTime way, you'll probably want to use it too.

With the QuickTime strategy you trigger all your sounds with a plain old bufferCmd command, and set up callBackCmd to call you when that buffer is done playing. This has two big advantages:

  • Because bufferCmd takes a pointer to a sound header as its only parameter, you can queue up a different buffer for every callback if you want, freeing you from that pesky two-buffer limit.
  • Because the sound header records contain a pointer to the audio data, you have a lot more flexibility in buffer management, and you can dynamically adjust the buffer sizes to any values that make sense to you.
This technique is demonstrated by Listing 4, taken from the SoundSecrets application on the CD. Basically, the interrupt routine just plays the next buffer and then queues up a callback, which keeps the sound playing continuously. The application has a slider that lets you adjust the size of the buffer dynamically.

Listing 4. Playing continuous sound

// Issue bufferCmd to play the sound, using SndDoImmediate.
sndCmd.cmd = bufferCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) &globals->sndHeader;

err = SndDoImmediate(globals->sndChannel, &sndCmd);
if (err != noErr)
   return (err);

// Issue callBackCmd using SndDoCommand so that we get called back 
// when the buffer is done playing.
sndCmd.cmd = callBackCmd;
sndCmd.param1 = 0;
sndCmd.param2 = (long) globals;
err = SndDoCommand(globals->sndChannel, &sndCmd, true);
if (err != noErr)
   return (err);
Remember, callBackCmd calls your application at interrupt time, so it's up to you to set up your A5 world if you want to use globals. You can't call Toolbox routines like those in the Memory Manager from within the callback; however, you can call most Sound Manager routines (see Inside Macintosh: Sound for information on individual routines). To make things easier, you can pass an application-defined value to the callback routine in param2 of callBackCmd. Also, to ensure correct queue processing, it's very important that you use SndDoImmediate to send bufferCmd, and SndDoCommand to send callBackCmd.

COMPRESS WITH THE BEST

While Sound Manager 3.0 included an architecture for decompressing arbitrary sounds (described in the article "Make Your Own Sound Components" in develop Issue 20), no method was provided to compress sounds. However, with the arrival of Sound Manager 3.1 and QuickTime 2.1, creating compressed sound files became as easy as opening a movie.

The compression technique demonstrated here uses the import/export facility built into QuickTime. Movie import components allow you to convert other files into QuickTime movies, while movie export components let you save QuickTime movies in other formats. QuickTime 2.1 provides an export component that works with Sound Manager 3.1 to let you save the audio in a QuickTime movie to an AIFF file in any format you please.

QuickTime does this by calling the Sound Manager to mix all the tracks together, converting them to the sample rate and size you specify, and even compressing the data with any of the compression algorithms provided by Sound Manager 3.1. The resulting AIFF file can then be played by any other Sound Manager routine, or converted back into a movie. The export component provides a dialog to let the user select the sample rate, sample size, and compression format of the AIFF file, as shown in Figure 1.

Figure 1. Sound Export Options dialog

Listing 5 demonstrates the process of converting a movie to an AIFF file, displaying the Sound Export Options dialog to let the user control the conversion process. The SetMovieProgressProc routine displays a progress dialog while the movie is being converted. The code is taken from ExportAIFF on this issue's CD.

Listing 5. Converting a movie to an AIFF file

OSErr ConvertMovieToAIFF(FSSpec *inputFile, FSSpec *outputFile)
{
   short      fRef;
   Movie      theMovie;
   OSErr      err;

   err = OpenMovieFile(inputFile, &fRef, fsRdPerm);
   if (err != noErr)
      goto OpenMovieFileFailed;

   err = NewMovieFromFile(&theMovie, fRef, nil, nil, 0, nil);
   if (err != noErr)
      goto NewMovieFromFileFailed;
   SetMovieProgressProc(theMovie, (MovieProgressUPP) -1L, 0);

   err = ConvertMovieToFile(theMovie, nil, outputFile, 'AIFF',
             'sSnd', 0, nil, showUserSettingsDialog, nil);

   DisposeMovie(theMovie);

NewMovieFromFileFailed:
   CloseMovieFile(fRef);
OpenMovieFileFailed:
   return (err);
}

SOUNDING OFF

Now that this article has revealed some of the best-kept secrets of the Sound Manager, you can go out and create great applications on your own. Consider all your new skills -- parsing and displaying sound resources, improving playback performance, adjusting volume and pitch, playing continuous sounds, and compressing audio. Now that the Sound Manager is your friend, you can focus on making your applications insanely great, instead of having the Sound Manager drive you insane!


    RELATED READING

    • Inside Macintosh: Sound (Addison-Wesley, 1994).
    • Macintosh Technical Note "GetCompressionInfo()" (SD 1).
    • "Make Your Own Sound Components" by Kip Olson, develop Issue 20.

KIP OLSON was recently dispatched to the Copland team at Apple with orders to rewrite the Sound Manager (again). To keep things interesting, he promises to add even more obscure features.

Thanks to our technical reviewers Bob Aron, Peter Hoddie, Kevin Mellander, and Jim Reekes.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Six fantastic ways to spend National Vid...
As if anyone needed an excuse to play games today, I am about to give you one: it is National Video Games Day. A day for us to play games, like we no doubt do every day. Let’s not look a gift horse in the mouth. Instead, feast your eyes on this... | Read more »
Old School RuneScape players turn out in...
The sheer leap in technological advancements in our lifetime has been mind-blowing. We went from Commodore 64s to VR glasses in what feels like a heartbeat, but more importantly, the internet. It can be a dark mess, but it also brought hundreds of... | Read more »
Today's Best Mobile Game Discounts...
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links below... | Read more »
Nintendo and The Pokémon Company's...
Unless you have been living under a rock, you know that Nintendo has been locked in an epic battle with Pocketpair, creator of the obvious Pokémon rip-off Palworld. Nintendo often resorts to legal retaliation at the drop of a hat, but it seems this... | Read more »
Apple exclusive mobile games don’t make...
If you are a gamer on phones, no doubt you have been as distressed as I am on one huge sticking point: exclusivity. For years, Xbox and PlayStation have done battle, and before this was the Sega Genesis and the Nintendo NES. On console, it makes... | Read more »
Regionally exclusive events make no sens...
Last week, over on our sister site AppSpy, I babbled excitedly about the Pokémon GO Safari Days event. You can get nine Eevees with an explorer hat per day. Or, can you? Specifically, you, reader. Do you have the time or funds to possibly fly for... | Read more »
As Jon Bellamy defends his choice to can...
Back in March, Jagex announced the appointment of a new CEO, Jon Bellamy. Mr Bellamy then decided to almost immediately paint a huge target on his back by cancelling the Runescapes Pride event. This led to widespread condemnation about his perceived... | Read more »
Marvel Contest of Champions adds two mor...
When I saw the latest two Marvel Contest of Champions characters, I scoffed. Mr Knight and Silver Samurai, thought I, they are running out of good choices. Then I realised no, I was being far too cynical. This is one of the things that games do best... | Read more »
Grass is green, and water is wet: Pokémo...
It must be a day that ends in Y, because Pokémon Trading Card Game Pocket has kicked off its Zoroark Drop Event. Here you can get a promo version of another card, and look forward to the next Wonder Pick Event and the next Mass Outbreak that will be... | Read more »
Enter the Gungeon review
It took me a minute to get around to reviewing this game for a couple of very good reasons. The first is that Enter the Gungeon's style of roguelike bullet-hell action is teetering on the edge of being straight-up malicious, which made getting... | Read more »

Price Scanner via MacPrices.net

Take $150 off every Apple 11-inch M3 iPad Air
Amazon is offering a $150 discount on 11-inch M3 WiFi iPad Airs right now. Shipping is free: – 11″ 128GB M3 WiFi iPad Air: $449, $150 off – 11″ 256GB M3 WiFi iPad Air: $549, $150 off – 11″ 512GB M3... Read more
Apple iPad minis back on sale for $100 off MS...
Amazon is offering $100 discounts (up to 20% off) on Apple’s newest 2024 WiFi iPad minis, each with free shipping. These are the lowest prices available for new minis among the Apple retailers we... Read more
Apple’s 16-inch M4 Max MacBook Pros are on sa...
Amazon has 16-inch M4 Max MacBook Pros (Silver and Black colors) on sale for up to $410 off Apple’s MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather than a third-party... Read more
Red Pocket Mobile is offering a $150 rebate o...
Red Pocket Mobile has new Apple iPhone 17’s on sale for $150 off MSRP when you switch and open up a new line of service. Red Pocket Mobile is a nationwide MVNO using all the major wireless carrier... Read more
Switch to Verizon, and get any iPhone 16 for...
With yesterday’s introduction of the new iPhone 17 models, Verizon responded by running “on us” promos across much of the iPhone 16 lineup: iPhone 16 and 16 Plus show as $0/mo for 36 months with bill... Read more
Here is a summary of the new features in Appl...
Apple’s September 2025 event introduced major updates across its most popular product lines, focusing on health, performance, and design breakthroughs. The AirPods Pro 3 now feature best-in-class... Read more
Apple’s Smartphone Lineup Could Use A Touch o...
COMMENTARY – Whatever happened to the old adage, “less is more”? Apple’s smartphone lineup. — which is due for its annual refresh either this month or next (possibly at an Apple Event on September 9... Read more
Take $50 off every 11th-generation A16 WiFi i...
Amazon has Apple’s 11th-generation A16 WiFi iPads in stock on sale for $50 off MSRP right now. Shipping is free: – 11″ 11th-generation 128GB WiFi iPads: $299 $50 off MSRP – 11″ 11th-generation 256GB... Read more
Sunday Sale: 14-inch M4 MacBook Pros for up t...
Don’t pay full price! Amazon has Apple’s 14-inch M4 MacBook Pros (Silver and Black colors) on sale for up to $220 off MSRP right now. Shipping is free. Be sure to select Amazon as the seller, rather... Read more
Mac mini with M4 Pro CPU back on sale for $12...
B&H Photo has Apple’s Mac mini with the M4 Pro CPU back on sale for $1259, $140 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – Mac mini M4 Pro CPU (24GB/512GB): $1259, $... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.