TweetFollow Us on Twitter

December 95 - The New Device Drivers: Memory Matters

The New Device Drivers: Memory Matters

Martin Minow

If you're writing a device driver for the new PCI-based Macintosh computers, you need to understand the relationship of the memory an application sees to the memory the hardware device sees. The support for these drivers (which will also run under Copland, the next generation of the Mac OS) includes the PrepareMemoryForIO function, as discussed in my article in Issue 22. This single coherent facility connects the application's logical view of memory to the hardware device's physical view. PrepareMemoryForIO has proven difficult to understand; this article should help clarify its use.

If you managed to struggle through my article "Creating PCI Device Drivers" in develop Issue 22, you probably noticed that it got rather vague toward the end when I tried to describe how the PrepareMemoryForIO function works. There are a few reasons for this: the article was getting pretty long and significantly overdue (the excuse), and I really didn't understand the function that well myself (the reason). Things are a bit better now, thanks to the enforced boredom of a very long trip, the need to teach this algorithm to a group of developers, and some related work I'm doing on the SCSI interface for Copland.

My previous article showed the simple process of preparing a permanent data area that might be used by a device driver to share microcode or other permanent information with a device. This article attacks a number of more complex problems that appear when a device performs direct memory access (DMA) transfers to or from a user data area. It also explores issues that arise if data transfers are needed in situations where the device's hardware cannot use DMA.

A later version of the sample device driver that accompanied the Issue 22 article is included in its entirety on this issue's CD. Of course, you'll need a hardware device to use the driver and updated headers and libraries to recompile it. Included is the source code for the DMA support library (files DMATransfer.c and DMATransfer.h), which consists of several functions I've written that interact with PrepareMemoryForIO; the revised sample device driver shows how this library can be incorporated into a complete device driver for PCI-based Power Macintosh computers.

I'll assume that you've read my earlier article (which you can find on the CD if you don't have it in print). That article gives an overview of the new device driver architecture and touches on the PrepareMemoryForIO function, but for a comprehensive description of the architecture and details about the function, see Designing PCI Cards and Drivers for Power Macintosh Computers (available from Apple Developer Catalog). I'll also assume that you're reasonably familiar with the basic concepts of a virtual memory operating system, including memory pages and logical and physical addresses; for a brief review, see "Virtual Memory on the Macintosh."


    VIRTUAL MEMORY ON THE MACINTOSH

    BY DAVE SMITH

    Virtual memory on the Macintosh has two major functions: it increases the apparent size of RAM transparently by moving data back and forth from a disk file, and it remaps addresses. Of the two, remapping addresses is more relevant to device driver developers (and, incidentally, much more of a headache).

    When Macintosh virtual memory is turned on, the processor and the code running on the processor always access logical addresses. A logical address is used the same way as a physical address; however, the Memory Management Unit (MMU) integrated into the processor remaps the logical address on the fly to a physical address if the data is resident in memory. If the data isn't resident in memory, a page fault occurs; this requires reading the desired data into memory from the disk and possibly writing other, unneeded data from memory to the disk to free up space in memory. (This explanation is slightly simplified, of course.)

    Since it would be impractical to have a mapping for each byte address, memory is subdivided into blocks called pages. A page is the smallest unit that can be remapped. Memory is broken into pages on page boundaries, which are page-size intervals starting at 0. The remapping allows physical pages that are not actually contiguous in physical memory to appear contiguous in the logical address space.

    The Macintosh currently uses a page size of 4096 bytes; however, future hardware may use a different page size. You should call the GetLogicalPageSize function in the Driver Services Library to determine the page size if you need it.

    DMA is performed on physical addresses since the MMU of the processor is not on the address bus that devices use. One of the functions of PrepareMemoryForIO is to translate logical addresses into physical addresses so that devices can copy data directly to and from the appropriate buffers.

    Many virtual memory systems provide multiple logical address spaces to prevent applications from interfering with each other. It appears to each application that it has its own memory system, not shared with any other application. The Macintosh currently has only one logical address space, but future releases of the Mac OS will support multiple logical address spaces.

PREPARING MEMORY FOR A USER DATA TRANSFER

At the beginning of a user data transfer (a data transfer on behalf of a program that's calling into your driver), the device driver calls PrepareMemoryForIO to determine the physical addresses of the data and to ensure the coherency of memory caches. At the end of the transfer, the driver calls the CheckpointIO function to release system resources and adjust caches, if necessary. PrepareMemoryForIO performs three functions that are necessary for DMA transfers: it locates data in physical memory; it ensures that the data locations contain the actual data needed or provided by the device; and, with the help of CheckpointIO, it maintains cache coherence.

Your device driver can call PrepareMemoryForIO from task level, from a software interrupt, or from the mainline driver function (that is, DoDriverIO). CheckpointIO can be called from task level, from a software interrupt, or from a secondary interrupt handler. (For more on the available levels of execution, see "Execution Levels for Code on the PCI-Based Macintosh.") In a short while, we'll see how the fact that these functions must be called from particular points affects the transfer process.


    EXECUTION LEVELS FOR CODE ON THE PCI-BASED MACINTOSH

    BY TOM SAULPAUGH

    Native code on PCI-based Macintosh computers may run in any of four execution contexts: software interrupt, secondary interrupt, primary interrupt, or task. All driver code contexts have access to a driver's global data. No special work (such as calling the SetA5 function on any of the 680x0 processors) is needed to access globals from any of these contexts.

    SOFTWARE INTERRUPT

    A software interrupt routine runs within the execution environment of a particular task. Running a software interrupt routine in a task is like forcing the task to call a specific subroutine asynchronously. When the software interrupt routine exits, the task resumes its activities. A software interrupt routine affects only the task in which it's run; the task can still be preempted so that other tasks can run. Those tasks, in turn, can run their own software interrupt routines, and a task running a software interrupt routine can be interrupted by a primary or secondary interrupt handler.

    All software interrupt routines for a particular task are serialized; they don't interrupt each other, so there's no equivalent to the 680x0 model of nested primary interrupt handlers.

    Page faults are allowed from software interrupt routines. A software interrupt routine is analogous to a Posix signal or a Windows NT asynchronous procedure call. A software interrupt routine running in the context of an application, INIT, or cdev doesn't have access to a driver's global data.

    SECONDARY INTERRUPT

    The secondary interrupt level is the execution context provided to a device driver's secondary interrupt handler. In this context, hardware interrupts are enabled and additional interrupts may occur. A secondary interrupt handler is a routine that runs in privileged mode with primary interrupts enabled but task switching disabled.

    All secondary interrupt handlers are serialized, and they never interrupt primary interrupt handlers; in other words, they resemble primary interrupt handlers but have a lower priority. Thus, a secondary interrupt handler queued from a primary interrupt handler doesn't execute until the primary interrupt handler exits, while a secondary interrupt handler queued from a task executes immediately.

    Page faults are not allowed at primary or secondary interrupt level. A secondary interrupt handler is analogous to a deferred task in Mac OS System 7 or a Windows NT deferred procedure call. Secondary interrupt handlers, like primary interrupt handlers, should be used only by device drivers. Never attempt to run application, INIT, or cdev code in this context or at primary interrupt level.

    PRIMARY INTERRUPT

    The primary interrupt level (also called hardware interrupt level) is the execution context in which a device's primary interrupt handler runs. Here, primary interrupts of the same or lower priority are disabled, the immediate needs of the device that caused the interrupt are serviced, and any actions that must be synchronized with the interrupt are performed. The primary interrupt handler is the routine that responds directly to a hardware interrupt. It usually satisfies the source of the interrupt and queues a secondary interrupt handler to perform the bulk of the servicing.

    TASK (NON-INTERRUPT)

    The task level (also called non-interrupt level) is the execution environment for applications and other programs that don't service interrupts. Page faults are allowed in this context.

If the data is currently in physical memory, PrepareMemoryForIO locks the memory page containing the data so that it cannot be relocated. If the data isn't in physical memory, PrepareMemoryForIO calls the virtual memory subsystem and a page fault occurs, reorganizing physical memory to make space in it for the data. After the transfer finishes, CheckpointIO releases the memory page locks.

PrepareMemoryForIO and CheckpointIO perform an important function related to the use of caches. A cache is a private, very fast memory area that the CPU can access at full speed. The processor runs much faster than its memory runs; to keep the processor running at its best speed, the CPU copies data from main memory to a cache. Both the PowerPC and the Motorola 68040 processors support caching, although their implementation details differ. The important point is that a value of a data item in memory can differ from the value for the same data item in the cache (called cache incoherence). Furthermore, you have to explicitly tell the PowerPC or 680x0 processor to synchronize the cache with memory.

Normally, the processor hardware prevents cache incoherence from causing data value problems. However, for some processor architectures, DMA transfers access main memory independently of the processor cache. PrepareMemoryForIO (for write operations) and CheckpointIO (for read operations) synchronize the processor cache with main memory. This means that DMA write operations write the valid contents of memory, and the processor uses the valid data just read from the external device.

As noted earlier, some devices cannot perform DMA transfers; instead, they use programmed I/O, in which the CPU moves data between logical addresses and the device. PrepareMemoryForIO also returns the logical address that such devices must use.

A SIMPLE MEMORY PREPARATION EXAMPLE

Listing 1 presents a very simple example that shows how a memory area may be prepared for I/O.
    To simplify listings, I've often omitted data type casting. Think of all data types as unsigned 32-bit integers. Because of this omission, you can't implement these listings as written, but should base your code on the sample on this issue's CD.*
Listing 1. Simplified memory preparation
#define kBufferSize   512
#define kMapCount      2
/* The buffer your driver or application is preparing */
UInt8                  gMyBuffer[kBufferSize];
IOPreparationTable   gIOTable;
/* Logical & physical mapping tables, */
/* filled in by PrepareMemoryForIO */
LogicalAddress         gLogicalMapping[2];
PhysicalAddress      gPhysicalMapping[kMapCount];

void SimpleMemoryPreparation(void)
{
   OSStatus      osStatus;

   gIOTable.options =
      (kIOMinimalLogicalMapping | kIOLogicalRanges | kIOIsInput);
   gIOTable.state = 0;
   gIOTable.addressSpace = kCurrentAddressSpaceID;
   gIOTable.granularity = 0;
   gIOTable.firstPrepared = 0;
   gIOTable.lengthPrepared = 0;
   gIOTable.mappingEntryCount = kMapCount;
   gIOTable.logicalMapping = gLogicalMapping;
   gIOTable.physicalMapping = gPhysicalMapping;
   /* Set the logical address to be mapped and the length of the area
      to be mapped. */
   gIOTable.rangeInfo.range.base = (LogicalAddress) gMyBuffer;
   gIOTable.rangeInfo.range.length = sizeof gMyBuffer;
   /* Call PrepareMemoryForIO and process the preparation. */
   do {
      osStatus = PrepareMemoryForIO(&gIOTable);
      if (osStatus != noErr)
         break;
      MyDriverDMARoutine(...);
      CheckpointIO(gIOTable.preparationID, kNilOptions);
      gIOTable.firstPrepared += gIOTable.lengthPrepared;
   } while ((gIOTable.state & kIOStateDone) == 0);
}
PrepareMemoryForIO is called with one parameter, an IOPreparationTable. Among other things, this table specifies one or more address ranges to prepare (only one, in this example). Each address range is indicated by a starting logical address and a count of the number of bytes in the range.

The IOPreparationTable also points to a logical mapping table and a physical mapping table (gLogicalMapping and gPhysicalMapping in our example). The physical mapping table is where PrepareMemoryForIO returns the page addresses that the driver can use to access the client's buffer during DMA. The logical mapping table is the list of addresses that the driver must use for doing programmed I/O.

The simplest IOPreparationTable options -- kIOMinimalLogicalMapping and kIOLogicalRanges -- are set in this example. The kIOMinimalLogicalMapping flag indicates that only the first and last logical pages need to be mapped, while the kIOLogicalRanges flag indicates that the data (here, the gMyBuffer vector) consists of logical addresses.

Because kIOMinimalLogicalMapping is set, the logical mapping table requires two entries for each address range; we have only one range, so our logical mapping table needs a total of two entries. The physical mapping table requires one entry per page; we set this to two entries because our 512-byte buffer may cross a page boundary. When writing your driver, you can use the GetMapEntryCount function in the DMA support library to compute the actual number of physical mapping table entries needed for an address range.

If the preparation is successful, the driver performs the DMA transfer and calls CheckpointIO to release internal operating system structures that were used by PrepareMemoryForIO. PrepareMemoryForIO sets the kIOStateDone flag in the IOPreparationTable's state field if the entire area has been prepared.

If PrepareMemoryForIO can't prepare the entire area, it doesn't set the kIOStateDone flag, and your driver needs to call PrepareMemoryForIO again with the firstPrepared field updated to reflect the number of bytes prepared in this range of memory. The recall must be done from a software interrupt routine; it cannot be performed from an interrupt handler.

MORE ABOUT MAPPING

Address ranges to be prepared by PrepareMemoryForIO may cross one or more page boundaries and thus may take up two or more pages in physical memory. Figure 1 shows what the physical mapping might look like for two address ranges: the first is more than two pages long and crosses two page boundaries, while the second is an even page long and crosses one page boundary.

Figure 1. Mapping to multiple pages

Each address range maps to an area in physical memory that can be thought of as having up to three sections: the beginning page, the middle pages, and the ending page.

  • Every address range produces a beginning page. Your data may start at an offset into this page, depending on the starting address of the range. This is true for both address ranges in Figure 1. The address in the mapping table for the beginning page points to the beginning of your data in the page. Notice that for the second address range in our example, the logical address for the start of the data, 0x4400, maps to the physical address 0x6400.

  • If your address range maps to three or more pages, some number of middle pages are completely filled with your data. The first address range in Figure 1 illustrates this.

  • If your address range maps to two or more pages, the data on the ending page begins at the beginning of the page, but it may cover only part of the page, depending on the count in your address range.
Unfortunately, there's no simple one-to-one correspondence between entries in the physical and logical mapping tables and the address range (or ranges) that a driver or application specifies when it calls PrepareMemoryForIO. Because of this, the function that controls a driver's DMA or programmed I/O process must iterate through the input address ranges and output mapping tables to compute the address and size of each data transfer segment. As you'll see when you look at the DMA support library on this issue's CD, this turns out to be an extremely complex process.

The DMA support library functions iterate through the address ranges and mapping tables, matching the two together to provide each data transfer segment in order. The library recognizes when two physical pages are contiguous and extends the data transfer length as far as possible.

When called for the example in Figure 1, the DMA support library returns five physical transfer segments (this example doesn't demonstrate logical alignment problems). To learn how PrepareMemoryForIO's algorithm works, I'd recommend that you work out the actual addresses and segment transfer lengths using pencil and paper. (When you look at the DMA support library in DMATransfer.c, you'll see a more mechanized approach that I strongly recommend if you're developing complex software.)

THE DATA TRANSFER PROCESS

Figure 2 illustrates how a data transfer might proceed through the system. It shows the five steps involved in a transfer that requires partial preparation of a large chunk of data that can't be prepared in one gulp. The diagram also shows the proper execution levels for each step. As we'll see later, the process is considerably simpler without partial preparation.

Figure 2. The progress of a data transfer with partial preparation

Here's a breakdown of the steps in the data transfer:

    1. The transfer starts at task (application or driver mainline) level. The driver must call PrepareMemoryForIO from task level because PrepareMemoryForIO may require virtual memory page faults and has to reserve system memory for its own tables. After memory is prepared, the driver examines the logical and physical mapping tables and starts the DMA operation. It then waits for an interrupt. (Of course, the actual driver behavior depends on your hardware.)

    2. When the driver's primary interrupt handler runs, it determines that another DMA transfer is needed, but that no more data is prepared (because the number of bytes transferred equals the value in the lengthPrepared field in the IOPreparationTable). Since another partial preparation must be performed, the primary interrupt handler queues a secondary interrupt and exits the primary interrupt. The device is in a "frozen" state: it either has data available (to read) or needs more data (to write) but cannot proceed at this time. I'll talk more about this problem later.

    3. The driver's secondary interrupt handler starts. It examines its internal state and determines that a DMA transfer has been completed. It calls CheckpointIO with the kMoreIOTransfers flag to complete the current partial transfer. Since another data transfer will be needed, it begins the process of calling PrepareMemoryForIO again, by calling SendSoftwareInterrupt to queue a software interrupt routine. Then, with nothing more to do, the secondary interrupt handler exits. The device is still frozen.

    4. The software interrupt routine runs. It updates the firstPrepared field and calls PrepareMemoryForIO to prepare the next segment (range of memory). This may require a page fault, causing the virtual memory subsystem to move data between main memory and the virtual memory disk file. When PrepareMemoryForIO finishes, the logical and physical mapping tables are updated and the lengthPrepared field contains the number of bytes that can be transferred in the next segment. The software interrupt routine calls a secondary interrupt handler (which is equivalent to queuing the handler).

    5. The sequence returns to the secondary interrupt handler, and the DMA operation is restarted. The partial preparation algorithm continues at step 2, progressing through steps 2 to 5 until all data is transferred.

The device is frozen in steps 2 to 5; it cannot proceed on the current I/O request until the partial preparation completes. But note that the page fault handler in step 4 may require disk I/O; consequently, any device that can service the page fault device (such as the SCSI bus manager) cannot support partial preparation. Writers of disk drivers and other SCSI-based interface software must understand these restrictions.

A CLOSER LOOK: SOME EXAMPLES

Unfortunately, as a result of some necessary constraints of PrepareMemoryForIO, the code in Listing 1 isn't usable in an actual device driver when the data transfer results in the interruption of the hardware device by the CPU. In this section, I'll return to the five-step transfer process outlined above, with more detail on the way that a driver interacts with memory preparation. I'll illustrate the process with three different examples: the simple case of a single DMA transfer; the more complicated case where more than one DMA transfer is needed because the physical mapping entries are discontiguous; and finally the full five-step transfer process, complete with partial preparation.

A SIMPLE TRANSFER

Our first example uses the sample preparation shown in Figure 3. Here your application or driver created a simple IOPreparationTable for an application data buffer that's 512 bytes long and begins at logical address 0x01B89F80. In this case the transfer process consists of only three steps:
    1. The buffer in our example crosses a physical page boundary, so two mapping entries are needed. PrepareMemoryForIO fills in the logical and physical mapping tables and sets the lengthPrepared field. Since it has successfully prepared the entire buffer, it sets the kIOStateDone flag in the state field. After your driver uses the NextPageIsContiguous macro (in DMATransfer.h) to determine that the two physical mapping entries are contiguous, it puts the first physical address, 0x0077EF80, and the entire byte count into the DMA registers and starts the device.

    2. When the transfer finishes, the driver's primary interrupt handler runs. It determines that the transfer has finished and queues a secondary interrupt to complete processing.

    3. The driver's secondary interrupt handler calls CheckpointIO to complete the transfer. It then completes the entire device driver operation by calling IOCommandIsComplete.

DISCONTIGUOUS PHYSICAL MAPPING

The above example requires a single DMA transfer; however, if the physical mapping entries are discontiguous, the first two steps of the process become more complicated:
    1. After preparation, your driver determines that the two physical mapping entries are not contiguous. Therefore, it puts the first physical address, 0x0077EF80, and the first byte count (128 bytes in this case) into the DMA registers and starts the DMA operation.

    2. When the transfer finishes, the driver's primary interrupt handler runs. It determines that the transfer has finished; however, another physical transfer is needed and can be performed, so it loads the DMA registers with the new physical address and the remaining byte count (384 bytes in this case), restarts the DMA operation, and exits the primary interrupt handler.

    After this DMA operation finishes, the operating system reenters the primary interrupt handler. Upon the completion of the entire transfer, the primary interrupt handler queues the secondary interrupt handler to finish the entire operation.

PARTIAL PREPARATION

The example in Figure 3 requires only a single preparation, but in some cases PrepareMemoryForIO cannot prepare the entire area at once and so requires partial preparation. To illustrate this, I'll change a few parameters in the IOPreparationTable.
  • The logical address of the buffer is 0x01B89F80.

  • The transfer length is 20480 bytes.

  • The transfer granularity is 8192 bytes. This value limits the length of the longest preparation.

Figure 3. A simple IOPreparationTable

PrepareMemoryForIO performs partial preparation of the data three times, as shown in Table 1.

The entire transfer requires these three repetitions of the five-step transfer process:

    1. The driver prepares the first DMA operation for physical address 0x0077EF80, length 4224. After it interrupts, the primary interrupt handler queues a secondary interrupt that, when run, calls CheckpointIO and causes a software interrupt routine to run. This software interrupt routine updates the firstPrepared field from 0 to 4224 (the amount previously prepared) and calls PrepareMemoryForIO for the next partial preparation. When PrepareMemoryForIO finishes, the software interrupt routine calls the secondary interrupt handler.

    2. The secondary interrupt starts the next transfer for physical address 0x00780000, length 8192. When this transfer finishes, the primary interrupt queues the secondary interrupt, which, in turn, calls CheckpointIO and causes the software interrupt routine to run a second time. This task calls PrepareMemoryForIO for the next preparation and calls the secondary interrupt handler again.

    3. The secondary interrupt handler starts the final transfer. When it finishes, the driver completes the entire preparation.

LOGICAL DATA TRANSFER: PROGRAMMED I/O

Some hardware devices do not support DMA but rather use programmed I/O, in which the main processor moves data between program logical addresses and the device. Programmed I/O is also needed when the device's DMA hardware cannot use DMA in a particular situation or context -- for example, a one-byte transfer.

Some hardware devices cannot transfer data that isn't properly aligned to some hardware-specific address value. For example, the DMA controller on the Power Macintosh 8100 requires addresses to be aligned to an 8-byte boundary; it can only transfer to physical addresses in which the low-order three bits are set to 0. Also, data transfers must be a multiple of 8 bytes. To handle such cases, the DMA support library returns the logical addresses of unaligned segments so that a device driver can transfer them with programmed I/O operations.

This restriction on logical alignment means that before starting a DMA transfer, the driver must look at the low-order bits of the physical address and the low-order bits of the count. The actual data transfer process is illustrated by the code in Listing 2, which presumes 8-byte alignment and ignores a few additional complications. The ugly stuff is in the ComputeThisSegment function, which examines the global IOPreparationTable and handles multiple address ranges. The DMA support library simplifies the procedure, as we'll see in the next section.

Listing 2. Data transfer with logical alignment

LogicalAddress      thisLogicalAddress;
PhysicalAddress   thisPhysicalAddress;
ByteCount         thisByteCount, segmentByteCount;

ComputeThisSegment(&thisLogicalAddress, &thisPhysicalAddress,
   &thisByteCount);
if ((thisPhysicalAddress & 0x07) != 0) {
   /* Pre-alignment logical transfer */
   segmentByteCount = 8 - (thisPhysicalAddress & 0x07);
   if (segmentByteCount > thisByteCount)
      segmentByteCount = thisByteCount;
   DoLogicalTransfer(thisLogicalAddress, segmentByteCount);
   thisByteCount -= segmentByteCount;
   thisLogicalAddress += segmentByteCount;
   thisPhysicalAddress += segmentByteCount;
}
if (thisByteCount > 0) {
   /* Aligned physical transfer */
   segmentByteCount = thisByteCount & ~0x07;
   if (segmentByteCount != 0) {
      DoPhysicalTransfer(thisPhysicalAddress, segmentByteCount);
      thisByteCount -= segmentByteCount;
      thisLogicalAddress += segmentByteCount;
   }
}
if (thisByteCount != 0) {
   /* Post-alignment logical transfer */
   DoLogicalTransfer(thisLogicalAddress, thisByteCount);
}

PUTTING IT ALL TOGETHER

Here we'll take a look at how your driver can use several of the functions in the DMA support library to simplify dealing with PrepareMemoryForIO.

Before you can call any of the functions in the DMA support library to make a partial preparation, you need to create the system context for a software interrupt. This context is created by the CreateSoftwareInterrupt system routine, as shown in the InitializePrepareMemoryGlobals function in Listing 3. CreateSoftwareInterrupt must be called from your driver's intialization routine because it allocates memory. Your driver's interrupt handler uses a software interrupt to start a task that can call PrepareMemoryForIO (as described earlier in step 4 of the data transfer process).

Listing 3. Initialization for DMA

SoftwareInterruptID      gNextDMAInterruptID;

/* This function is called once, when your driver starts. */
OSErr InitializePrepareMemoryGlobals(void)
{
   OSErr      status;

   gLogicalPageSize = GetLogicalPageSize();
   gPageMask = gLogicalPageSize - 1;
   status = CreateSoftwareInterrupt(
         PrepareNextDMATask,     /* Software interrupt routine */
         CurrentTaskID(),        /* For my device driver */
         NULL,                   /* Becomes the p1 parameter */
         TRUE,                   /* Persistent software interrupt */
         &gNextDMAInterruptID); /* Result is the task ID. */
   return (status);
}
The DMA support library contains two functions that a driver can use to simplify processing the output from PrepareMemoryForIO: InitializeDMATransfer, which is called once to configure the overall transfer operation, and PrepareDMATransfer, which is called to set up each individual transfer.

The MyConfigureDMATransfer function in Listing 4 calls PrepareMemoryIO and InitializeDMATransfer to configure the transfer. This function is called by the mainline driver function (and by a software interrupt routine for partial preparation, as we'll see later).

Listing 4. MyConfigureDMATransfer

/* In a production system, kPageCount should be retrieved from the
   operating system by calling GetLogicalPageSize. */
#define kPageCount         4096
#define kLongestDMA         65536
#define kLogicalAlignment   8
#define kMappingEntries
                    ((kLongestDMA + (kPageCount - 1)) / kPageCount)

DMATransferInfo            gDMATransferInfo;
IOPreparationTable         gIOTable;
LogicalAddress             gLogicalMapping[2];
PhysicalAddress            gPhysicalMapping[kMappingEntries];
AddressRange               gThisTransfer;
Boolean                    gIsLogical;
OSErr MyConfigureDMATransfer(
         IOCommandCode   ioCommandCode, /* Parameter to DoDriverIO */
         ByteCount      firstPrepared   /* Zero at first call */
   )
{
   OSErr      status;

   gThisTransfer.base = NULL;        /* Setup for programmed I/O */
   gThisTransfer.length = 0;         /* Interrupt handler */
   gIsLogical = FALSE;

   if (firstPrepared == 0) {
      /* This is an initial preparation for the transfer. */
      gIOTable.preparationID = kInvalidID;   /* Error exit marker */
      switch (ioCommandCode) {
         case kReadCommand:  gIOTable.options = kIOIsInput;  break;
         case kWriteCommand: gIOTable.options = kIOIsOutput; break;
         default:               return (paramErr);
      }
      ioTable.ioOptions |=
         ( kIOLogicalRanges            /* Logical input area */
         | kIOShareMappingTables       /* Share with OS kernel */
         | kIOMinimalLogicalMapping    /* Minimal table output */
         );
      gIOTable.state = 0;
      gIOTable.addressSpace = CurrentTaskID();
      gIOTable.granularity = kLongestDMA;
      gIOTable.firstPrepared = 0;
      gIOTable.lengthPrepared = 0;
      gIOTable.mappingEntryCount = kMappingEntries;
      gIOTable.logicalMapping = gLogicalMapping;
      gIOTable.physicalMapping = gPhysicalMapping;
      gIOTable.rangeInfo.range.base = pb->ioBuffer;
      gIOTable.rangeInfo.range.length = pb->ioReqCount;
   }
   else   {  /* We were called to continue a partial preparation. */
      gIOTable.firstPrepared = firstPrepared;
   }
   status = PrepareMemoryForIO(&gIOTable);
   if (status != noErr)
      return (status);
   status = InitializeDMATransfer(&gIOTable, kLogicalAlignment, 
      &gDMATransferInfo);
   return (status);
}
If MyConfigureDMATransfer is successful, the driver initializes the hardware to begin processing. I assume here that the hardware interrupts the process when it requires a data transfer. The primary interrupt handler is shown in Listing 5.

Listing 5. The primary interrupt handler

InterruptMemberNumber
    MyInterruptHandler(InterruptSetMember  member, void *refCon,
                      UInt32 theIntCount)
{
   OSErr      status;

   if (<device has or requires more data> == FALSE)
      status = noErr;               /* Presume I/O completion. */
   else 
      status = MySetupForDataTransfer();
   if (status != kIOBusyStatus)
      /* This partial transfer (or device operation) is complete. */
      QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,
            NULL, NULL, (void *) status);
   return (kIsrIsComplete);
}

OSErr MySetupForDataTransfer(void)
{
   OSErr      status;

   if (gIsLogical && gThisTransfer.length > 0) {
      /* Continue a programmed I/O transfer. */
      DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
      gThisTransfer.base += 1;
      gThisTransfer.length -= 1;
      status = kIOBusyStatus;
   }
   else {      /* We need another preparation segment. */
      status = PrepareDMATransfer(&gDMATransferInfo,
            &gThisTransfer, &gIsLogical);
      if (status == noErr) {      /* Do we have more data? */
         status = kIOBusyStatus;  /* Don't queue secondary task. */
         if (gIsLogical) {     /* Start a programmed I/O transfer. */
            DoOneProgrammedIOByte(* ((UInt8 *) gThisTransfer.base));
            gThisTransfer.base += 1;
            gThisTransfer.length -= 1;
         }
         else   /* Start a DMA transfer segment. */
            StartProgrammedIOToDevice(&gThisTransfer);
      }
      else      /* This preparation is done. Can we start another? */
         status = kPrepareMemoryStartTask;
   }
   return (status);
}
When the primary interrupt handler determines that a data transfer is needed, it calls the function MySetupForDataTransfer, which tries to continue a logical (programmed I/O) transfer. If no logical transfer is appropriate, it calls PrepareDMATransfer, to configure the next data transfer segment. This will be either a logical or a DMA transfer, depending on the interaction between the user's data transfer parameters and the device's logical alignment restrictions. If more data remains to be transferred, MySetupForDataTransfer starts either a DMA transfer or another logical transfer; otherwise, it returns a private status value that will eventually cause a software interrupt routine to call PrepareMemoryForIO again to continue a partial preparation.

Listing 6 shows the secondary interrupt handler -- at least the part that handles the DMA operation. The primary interrupt handler provides the operation status in the p2 parameter; the secondary interrupt handler uses this parameter to determine whether the operation is complete (in which case this is the final status), or whether some intermediate operation is required.

Listing 6. The secondary interrupt handler

OSStatus DriverSecondaryInterruptHandler(void   *p1, 
                                          void   *p2)
{
   OSStatus      osStatus;

   osStatus = (OSErr) p2;
   switch (osStatus) {
      case kPrepareMemoryStartTask:      /* Need more preparation */
         CancelDeviceWatchdogTimer();
         osStatus = SendSoftwareInterrupt(gNextDMAInterruptID, 0);
         if (osStatus != noErr) {
            /* Handle error status by stopping the device. */
            ...
         }
         break
      case kPrepareMemoryRestart:         /* Preparation completed */
         osStatus = MySetupForDataTransfer();
         break;
   }
   if (osStatus != kIOBusyStatus) {       /* If I/O is complete */
      CancelDeviceWatchdogTimer();
      CheckpointIO(&ioTable, kNilOptions);
      IOCommandIsComplete(ioCommandID, (OSErr) osStatus);
   }
   return (noErr);
}
Finally, Listing 7 shows the software interrupt routine that's called when the driver must call PrepareMemoryForIO again to perform a partial preparation.

Listing 7. A software interrupt routine for partial preparation

void PrepareNextDMATask(void   *p1, void   *p2)
{
   OSErr         status;
   ByteCount   newFirstPrepared;

   if ((gIOTable.state & kIOStateDone) != 0)
      status = eofErr;        /* Data overrun or underrun error */
   else {                     /* Do the next partial preparation. */
      newFirstPrepared =
            gIOTable.firstPrepared + gIOTable.lengthPrepared;
      status = MyConfigureDMATransfer(0, newFirstPrepared);
                                 /* ioCommandCode is not used. */
   }
   QueueSecondaryInterruptHandler(DriverSecondaryInterruptHandler,
         NULL, NULL, (void *) status);
}

YOUR TURN IN THE BARREL

At times, working through the complexity of this problem felt like going off Niagara Falls in a barrel. There used to be a joke among the developers of the UNIX operating system: "We never document our code: if it was hard to write, it should be hard to understand." The algorithms I've described here were hard to write, but I hope I was able to document and clarify the most important features of the library well enough that you don't have to go through the same struggle I did.

MARTIN MINOW is writing the SCSI plug-in for Copland on a computer named "There must be a pony here" and competes with his boss to see who is more cynical about Apple management. During the few moments he can escape from meetings, he runs with the Hash House Harriers.

Thanks to our technical reviewers David Harrison, Tom Saulpaugh, Dave Smith, and George Towner.

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.