TweetFollow Us on Twitter

December 92 - BE OUR GUEST

BE OUR GUEST

COMPONENTS AND C++ CLASSES COMPARED

DAVID VAN BRINK

[IMAGE 037-040_Van_Brink_rev1.GIF]

If you're familiar with C++ classes but new to thinking about components, you may find it instructive to know how the two compare. Although each has its own niche in Macintosh software development, components and C++ classes have many features in common.

In general, both components and C++ classes encourage a building-block approach to solving complex problems. But whereas a component is separate from any application that uses it, a class exists only within the application that uses it. Components are intended to add systemwide functionality, while classes are intended to promote a modular approach to developing a program.

We can also compare components and C++ classes in terms of how they're declared and called, their use of data hiding and inheritance, and their implementation. But first, let's briefly review what a class is and what a component is.

SOME BASIC DEFINITIONS
A class, in the programming language C++, is a description of a data structure and the operations (methods) that can be performed on it. An instance of a class is known as an object. Classes are provided in C++ to promote an "object-oriented programming style." By grouping a data type and its methods together, classes enable programmers to take a modular approach to developing a program.

A component, as described in the preceding article ("Techniques for Writing and Debugging Components"), is a single routine that accepts as arguments a selector and a parameter block. The selector specifies which of several (or many) operations to perform, and the parameter block contains the arguments necessary for that operation. Components are "registered" with the Component Manager and can be made available to either the program that registered the component or to any program that's executed, making it possible to add systemwide functionality. For instance, if Joe's Graphics Corporation develops a new image compression technique, it can be sold to users as a component. Users install the component simply by dragging an icon into a folder, and that form of image compression is then automatically available to all programs that make use of graphics.

DECLARING CLASSES AND COMPONENTS
A C++ class is declared in much the same way as a struct, with the addition of routines that operate only on the structure described. Once the class is declared, instances can be declared in exactly the same way as other variables. That is, to create an instance of a class, you either declare a variable of that class or dynamically allocate (and later deallocate) a variable of that class.

A component must be registered with the Component Manager. At that time, its type, subtype, manufacturer, and name are specified. The type, subtype, and manufacturer are long integers; the name is a string. Component instances can only be created dynamically, using specific Component Manager routines. To create an instance of a component that has been registered, a program must first find the component. If the seeking program is the same one that registered the component, it already has the component. If not, it can make Component Manager calls to search for all available components with a given type, subtype, and manufacturer; any part of the description can be a wild card.

Once a component has been found, it must be opened, and this operation produces a reference to the component instance. Operations can be performed on the component instance using this reference.

Table 1 compares how classes and components are declared and how instances of each are created. (Note that for components, the code is idealized.)

CALLING ALL ROUTINES
Calling a routine that operates on a C++ object is slightly different from making a standard routine call: the call more closely resembles a reference to an internal field of a struct. The routine that gets called is identical to any other routine, except that it's declared within the class definition rather than at the same brace level as the main routine.

Calling a component routine is identical to calling any other routine. The first argument is always the component instance, and other arguments may optionally follow. The return type of every component routine is a long integer, and part of the numerical range is reserved for error messages from either the component or the component dispatch mechanism.

The Component Manager lets a program issue calls to a component that it has never "met" before. This form of dynamic linking is crude, because no type checking is performed.

Table 1 compares how classes and components are called.

DATA HIDING
A C++ class can have "private" fields and methods, which are accessible by class methods but not by the caller. The programmer can see these private parts simply by perusing the class declaration. If a change to the implementation of a class requires that the private parts be changed, relinking with the implementation of the class won't be sufficient: all clients must be recompiled, since the positions of public fields might have changed. (One tricky way around this is to include a private field of type char * that's really a pointer to the class's internal state data. The class constructor allocates memory for whatever internal state it likes and coerces a pointer to it to live in that char * field. This technique is useful for object-only software library distribution and also protects proprietary algorithms from curious programmers.)

A component is responsible for allocating memory for its internal state (the component's "globals") when it's opened and releasing that memory when it's closed. There are both component globals and component instance globals. These correspond to static and automatic variables in a C++ class and have similar utility. A component might keep track of how many instances of itself have been opened and restrict that number by failing on the open call.

INHERITANCE
It's often useful to build software on top of existing functionality or, alternatively, to take existing functionality and alter it to perform a more specialized function. Both of these things can be accomplished for C++ classes with inheritance. In the former case, the new class will have methods that don't exist in the base class; in the latter, the new class will have methods with the same name as methods in the base class but that take precedence over the base methods.

Components and the Component Manager support both kinds of inheritance as well, as discussed in the preceding article. All components of a given type must support the same set of calls, although this is enforced only by convention. Components of a particular type and subtype may optionally support other calls as well, and components of a particular type, subtype, and manufacturer may support still more calls. In the case where a component wants to use the services of another component and perhaps override some of its functions with modifications, Component Manager utilities let a component designate another component as its "parent." A simple protocol ensures that the correct variant of a routine gets called. When a component must call itself, it must issue the call to its child component, if any. When a component wants to rely on the existing implementation of the parent component, it must pass the call to its parent.

IMPLEMENTING CLASSES AND COMPONENTS
My discussion of implementation is based on the 68000 platform, since that's the only one I've scrutinized with regard to compiled C++ and Component Manager calls.

The routines that can be used with a C++ class are declared, and optionally implemented, within the class declaration. They behave like normal C routines, as described earlier.

A call to a C++ class that has no parents or descendants is compiled as a direct subroutine call, exactly as is a standard routine call. A call to a C++ class that has parents or descendants is slightly more complicated. A table lookup is used at run time to determine exactly which implementation of a routine gets called for the particular object being operated on. Such a call takes perhaps a dozen assembly instructions.

A component consists of only a single routine. It's passed a selector and a parameter block. The selector is used to decide which operation to actually perform, and the parameter block contains all the arguments passed by the caller.

The component's parameter block is untyped -- the component routine has no way to determine what kinds of arguments were originally passed, and herein lies the danger. Some languages, such as LISP, have untyped arguments; in LISP, however, a routine can determine how many arguments have been passed and what the argument types are. A component interface is more like assembly language -- or C without prototypes! -- in that it can determine nothing about what has been passed to it.

You can't compile a C++ program containing a call to a nonexistent routine; the compiler will balk. (Well, OK, this isn't strictly true: there are dynamically linking systems for C++, and other languages, that let you call a C++ routine that hasn't been linked with the rest of the compiled source code; the routine can be linked to later, at run time. But no facility of this type is currently standard in the Macintosh Operating System or supported under the standard Macintosh development tools.) In the case of components, the compiler can't check for such illegal calls, since the particular components that may be opened are decided at run time. Therefore, the caller must be prepared to handle a "Routine Not Implemented" error if a call is made with an unknown selector.

All calls to components pass through the Component Manager's dispatch mechanism. The dispatcher must locate the component's entry point and globals from the component reference, which is not simply a pointer but a packed record containing an index into a table and some bits used to determine whether the component reference is still valid. If a client makes a call to a component it no longer has open, the Component Manager has a statistical likelihood of catching this call and returning an appropriate error.

The Component Manager has facilities to redispatch the parameter block to one of many routines, and those routines are written to take the arguments as originally passed. The Component Manager was originally written for use on the 68000 series of processor; on computers with that processor, the parameter block doesn't have to be recopied onto the stack for further dispatching. On other processors the parameters might have to be recopied, however.

The Component Manager has been highly optimized and fast dispatching can reduce its overhead still more, but in general its lookup-and-dispatch process still takes several dozen instructions. If the component being called is using the Component Manager's inheritance mechanism, further overhead is incurred by passing control to the parent or child component. Overall, the Component Manager is quite efficient, but still not as efficient as direct routine calls. Table 1 compares how classes and components are implemented.

IN SUM
Components, as supported by the Component Manager, exhibit many of the features of C++ classes. Both encourage a modular approach to solving problems. Both feature inheritance and data hiding. Where they differ is in how they're declared and implemented, how they do (or fail to do) type checking, and how expensive they are to call. Each occupies its own distinct niche in Macintosh programming: classes as a way to ease development of a single program, components as a way to add systemwide functionality and give control and choice to the user.


Table 1A Comparison of Calls: Classes (Actual Code) Versus Components (Idealized Code)

Declaring a Class

class MyClass {
/* Variables and methods for 
    the class */
}

Declaring a Component

myComponent = RegisterComponent(MyEntryRoutine,
        myType, mySubType, myManufacturer, "A Component");

Creating a Class Instance

MyClass x;

Creating a Component Instance

myComponent= FindComponent(myType, mySubType, myManufacturer);
myInstance = OpenComponent(myComponent);

Calling a Class

x.MyMethod(arg1, arg2);

Calling a Component

result = MyMethod(myInstance, arg1, arg2);

Implementing a Class

class MyClass {
    void MyMethod(int arg1, int arg2) {
    /* Some code for MyMethod */
    }
}

Implementing a Component

long MyEntryRoutine(ComponentParams *params, char *globals) {
    switch(params->selector) {
        case kOpen:
        case kClose:
            return noErr;
        . . . /* other required calls here */
        case MyMethod:
        /* Do my method. */
        /* arg1 and arg2 are in params. */ return noErr;
        default:
            return routineNotImplementedErr;
    }
}

DAVID VAN BRINK is a computer programmer. When he's not busy programming computers, he can usually be found writing computer programs. Mostly, he does this in the soothing fluorescent glow of his cubicle at Apple. He's presently writing components (with great fervor) to support musical synthesizers for QuickTime. *

We welcome guest columns from readers who have something interesting or useful to say. Send your column idea or draft to AppleLink DEVELOP or to Caroline Rose at Apple Computer, Inc., 20525 Mariani Avenue, M/S 75-2B, Cupertino, CA 95014.*


Thanks to Casey King and Gary Woodcock for reviewing this column. *

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Top Mobile Game Discounts
Every day, we pick out a curated list of the best mobile discounts on the App Store and post them here. This list won't be comprehensive, but it every game on it is recommended. Feel free to check out the coverage we did on them in the links... | Read more »
Price of Glory unleashes its 1.4 Alpha u...
As much as we all probably dislike Maths as a subject, we do have to hand it to geometry for giving us the good old Hexgrid, home of some of the best strategy games. One such example, Price of Glory, has dropped its 1.4 Alpha update, stocked full... | Read more »
The SLC 2025 kicks off this month to cro...
Ever since the Solo Leveling: Arise Championship 2025 was announced, I have been looking forward to it. The promotional clip they released a month or two back showed crowds going absolutely nuts for the previous competitions, so imagine the... | Read more »
Dive into some early Magicpunk fun as Cr...
Excellent news for fans of steampunk and magic; the Precursor Test for Magicpunk MMORPG Crystal of Atlan opens today. This rather fancy way of saying beta test will remain open until March 5th and is available for PC - boo - and Android devices -... | Read more »
Prepare to get your mind melted as Evang...
If you are a fan of sci-fi shooters and incredibly weird, mind-bending anime series, then you are in for a treat, as Goddess of Victory: Nikke is gearing up for its second collaboration with Evangelion. We were also treated to an upcoming... | Read more »
Square Enix gives with one hand and slap...
We have something of a mixed bag coming over from Square Enix HQ today. Two of their mobile games are revelling in life with new events keeping them alive, whilst another has been thrown onto the ever-growing discard pile Square is building. I... | Read more »
Let the world burn as you have some fest...
It is time to leave the world burning once again as you take a much-needed break from that whole “hero” lark and enjoy some celebrations in Genshin Impact. Version 5.4, Moonlight Amidst Dreams, will see you in Inazuma to attend the Mikawa Flower... | Read more »
Full Moon Over the Abyssal Sea lands on...
Aether Gazer has announced its latest major update, and it is one of the loveliest event names I have ever heard. Full Moon Over the Abyssal Sea is an amazing name, and it comes loaded with two side stories, a new S-grade Modifier, and some fancy... | Read more »
Open your own eatery for all the forest...
Very important question; when you read the title Zoo Restaurant, do you also immediately think of running a restaurant in which you cook Zoo animals as the course? I will just assume yes. Anyway, come June 23rd we will all be able to start up our... | Read more »
Crystal of Atlan opens registration for...
Nuverse was prominently featured in the last month for all the wrong reasons with the USA TikTok debacle, but now it is putting all that behind it and preparing for the Crystal of Atlan beta test. Taking place between February 18th and March 5th,... | Read more »

Price Scanner via MacPrices.net

AT&T is offering a 65% discount on the ne...
AT&T is offering the new iPhone 16e for up to 65% off their monthly finance fee with 36-months of service. No trade-in is required. Discount is applied via monthly bill credits over the 36 month... Read more
Use this code to get a free iPhone 13 at Visi...
For a limited time, use code SWEETDEAL to get a free 128GB iPhone 13 Visible, Verizon’s low-cost wireless cell service, Visible. Deal is valid when you purchase the Visible+ annual plan. Free... Read more
M4 Mac minis on sale for $50-$80 off MSRP at...
B&H Photo has M4 Mac minis in stock and on sale right now for $50 to $80 off Apple’s MSRP, each including free 1-2 day shipping to most US addresses: – M4 Mac mini (16GB/256GB): $549, $50 off... Read more
Buy an iPhone 16 at Boost Mobile and get one...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering one year of free Unlimited service with the purchase of any iPhone 16. Purchase the iPhone at standard MSRP, and then choose... Read more
Get an iPhone 15 for only $299 at Boost Mobil...
Boost Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering the 128GB iPhone 15 for $299.99 including service with their Unlimited Premium plan (50GB of premium data, $60/month), or $20... Read more
Unreal Mobile is offering $100 off any new iP...
Unreal Mobile, an MVNO using AT&T and T-Mobile’s networks, is offering a $100 discount on any new iPhone with service. This includes new iPhone 16 models as well as iPhone 15, 14, 13, and SE... Read more
Apple drops prices on clearance iPhone 14 mod...
With today’s introduction of the new iPhone 16e, Apple has discontinued the iPhone 14, 14 Pro, and SE. In response, Apple has dropped prices on unlocked, Certified Refurbished, iPhone 14 models to a... Read more
B&H has 16-inch M4 Max MacBook Pros on sa...
B&H Photo is offering a $360-$410 discount on new 16-inch MacBook Pros with M4 Max CPUs right now. B&H offers free 1-2 day shipping to most US addresses: – 16″ M4 Max MacBook Pro (36GB/1TB/... Read more
Amazon is offering a $100 discount on the M4...
Amazon has the M4 Pro Mac mini discounted $100 off MSRP right now. Shipping is free. Their price is the lowest currently available for this popular mini: – Mac mini M4 Pro (24GB/512GB): $1299, $100... Read more
B&H continues to offer $150-$220 discount...
B&H Photo has 14-inch M4 MacBook Pros on sale for $150-$220 off MSRP. B&H offers free 1-2 day shipping to most US addresses: – 14″ M4 MacBook Pro (16GB/512GB): $1449, $150 off MSRP – 14″ M4... Read more

Jobs Board

All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.