TweetFollow Us on Twitter

Polymorphic Code Resources In C++

Polymorphic Code Resources In C++

PATRICK C. BEARD

The C++ programming language supports data abstraction and object programming. Until now, using C++ to its full capacity in stand-alone code has not been possible. This article demonstrates how you can take advantage of two important features of C++, inheritance and polymorphism, in stand-alone code. An example shows how to write a window definition function using polymorphism.


In object programming, polymorphism gives programmers a way to solve problems by beginning with the general and proceeding to the specific. This process is similar to top-down programming, in which the programmer writes the skeleton of a program to establish the overall structure and then fills in the details later. Polymorphism differs from top-down programming, however, in that it produces designs that are reusable outside the context of the original structure. The attractiveness of reusable code is one of the reasons object programming is catching on.

The shape hierarchy shown in Figure 1 is one of the most frequently cited examples of polymorphism.

[IMAGE polymorphic_html1.GIF]

Figure 1Shape Hierarchy

The most general concept is the shape; all objects in the hierarchy inherit attributes from the shape. Area, perimeter, centroid, and color are attributes common to all shapes. Notice that the hierarchy proceeds from the general to the specific:

  • Polygons are shapes with a discrete number of sides.
  • Rectangles are polygons that have four sides and all right angles; squares are rectangles having all equal sides.
  • Ellipses are shapes that have a certain mathematical description; circles are ellipses whose widths equal their heights.

In C++, concepts are represented as classes. The more abstract the concept, the higher in the inheritance hierarchy the concept resides. Two key C++ features support polymorphism: inheritance and virtual member functions. We can use these to develop more concretely specified shapes and ask questions of any shape about its area, perimeter, or centroid.

The virtual functions provide a protocol for working with shapes. Here is an example of the shape hierarchy as it could be represented in C++:

class Shape {
public:
    virtual float area();       // Area of the shape.
    virtual float perimeter();  // Its perimeter.
    virtual Point centroid();   // Its centroid.
};

class Ellipse : public Shape {
public:
    virtual float area();       // Area of the shape.
    virtual float perimeter();  // Its perimeter.
    virtual Point centroid();   // Its centroid.
private:
    Point center;           // Center of ellipse.
    float height;           // How high.
    float width;            // How wide.
};

class Circle : public Ellipse {
public:
    virtual float area();       // Area of the shape.
    virtual float perimeter();  // Its perimeter.
    virtual Point centroid();   // Its centroid.
};

In this implementation, a circle is an ellipse with the additional constraint that its width and height must be equal.

Once an object of a type derived from Shape has been instantiated, it can be manipulated with general code that knows only about shapes. The benefit is that, having written and debugged this general code, you can add more kinds of shapes without having to alter the general code. This eliminates many potential errors.

IMPLEMENTATION IN MPW C++

MPW C++ is a language translator that translates C++ to C. Programs are compiled by first being translated to C, after which the MPW C compiler takes over and compiles the C to object code.

IMPLEMENTATION OF VIRTUAL FUNCTIONS

As noted, polymorphism is accomplished by using inheritance and virtual member functions. How does the C++ compiler decide which function should be called when an instance of unknown type is used? In the current release of MPW C++, every instance of an object in an inheritance hierarchy has a hidden data member, which is a pointer to a virtual function table. Each member function is known to be at a particular offset in the table. The member functions for the different classes in an inheritance chain are stored in different tables. The table pointed to is determined at the time of object creation. (See the sidebar called "Layout of Objects and Their Virtual Functions in Memory.")So far, nothing in the implementation of virtual functions seems to preclude their use in nonapplication contexts. Once an object is instantiated, the code needed to call a virtual function can be executed from any context, including stand-alone code resources. However, MPW C++ does not currently support a mechanism to allocate storage for, or to initialize, the virtual function tables in nonapplication contexts.

CODE RESOURCE SUPPORT FOR POLYMORPHISM

As noted above, virtual function tables are required for polymorphism in C++. To support virtual function tables in stand-alone code, two issues must be resolved:
  • How to allocate the virtual function tables.
  • How to initialize the virtual function tables.

GLOBAL VARIABLES IN CODE RESOURCES
In MPW C++, virtual function tables live in C global variable space. Unfortunately, the MPW languages do not support the use of global variables in stand-alone code. However, Technical Note #256, Stand- Alone Code,ad nauseam , shows how to add support for global variables in standalone code resources. In simple terms, this involves allocating storage for the globals, initializing the globals, and arranging for the proper value to be placed in machine register A5. These functions can be neatly expressed as a class in C++. The following class, called A5World, provides these services.

class A5World {
public:
    A5World();      // Constructor sets up world.
    ~A5World();     // Destructor destroys it.

    // Main functions:  Enter(), Leave().
    void Enter();   // Go into our world.
    void Leave();   // Restore old A5 context.

    // Error reporting.
    OSErr Error()   { return error; }

private:
    OSErr error;    // The last error that occurred.
    long worldSize; // How big our globals are.
    Ptr ourA5;      // The storage for the globals.
    Ptr oldA5;      // Old A5.
};

To use globals, a code resource written in C++ merely creates an instance of an A5World object. Here is an example:

// Hello_A5World.cp
// Simple code resource that uses global variables.

#include "A5World.h"

// Array of characters in a global.
char global_string[256];


void main()
{
    // Temporarily create global space.
    A5World ourWorld;

    // Check for errors.
    if(ourWorld.Error() != noErr)
        return;

    // We got it; let's go inside our global space.
    ourWorld.Enter();

    // Use our global variable.
    strcpy(global_string, "Hi there!");
    debugstr(global_string);

    // Time to go home now.
    ourWorld.Leave();

    // The destructor automatically deallocates 
    // our global space.
}

The full implementation of class A5World appears on the Developer Essentials disc (Poly. in Code Resources folder). By itself, this is a useful piece of code.

INITIALIZING THE VIRTUAL FUNCTION TABLES
As noted, MPW C++ is implemented as a language translator (called CFront) that translates C++ to C. As you might guess, classes are implemented as structs in C, and member functions are just ordinary C functions. As also noted, the virtual function tables are implemented as global variables. We have solved the problem of having globals in stand-alone code, so the remaining issue is how to initialize these tables with the proper pointers to the member functions.

The initialization of a global variable with a pointer to a function is not supported in stand-alone code written in MPW languages. This initialization is normally done by the linker, which creates a jump table, and the current version of the MPW Linker will not generate jump tables for stand- alone code. Therefore, the only way to initialize global variables with pointers to code is manually at run time.

To understand the solution to this problem, let's take a look at what CFront does when it sees a hierarchy of classes with virtual functions. Here is a simple hierarchy of two classes, Base andDerived:

class Base {
public:
    Base();
    virtual void Method();
};

class Derived : public Base {
public:
    Derived();
    virtual void Method();
};

When MPW C++ sees these class definitions, it emits the following C to allocate and initialize the virtual function tables:

struct __mptr __vtbl__7Derived[]={0,0,0,
0,0,(__vptp)Method__7DerivedFv,0,0,0};
struct __mptr *__ptbl__7Derived=__vtbl__7Derived;
struct __mptr __vtbl__4Base[]={0,0,0,
0,0,(__vptp)Method__4BaseFv,0,0,0};
struct __mptr *__ptbl__4Base=__vtbl__4Base;

The variables __vtbl__4Base[] and __vtbl__7Derived[] are the virtual function tables for the classes Base and Derived. To support polymorphism in stand-alone code, this code must be split into two parts: a declaration part and an initialization part. The initialization part is simply a C function that initializes the tables. The following code shows how the tables might be transformed for use in stand-alone code:

struct __mptr __vtbl__7Derived[3];
struct __mptr *__ptbl__7Derived;
struct __mptr __vtbl__4Base[3];
struct __mptr *__ptbl__4Base;

void init_vtbls(void)
{ 
    __vtbl__7Derived[1].d = 0;
    __vtbl__7Derived[1].i = 0;
    __vtbl__7Derived[1].f = (__vptp)Method__7DerivedFv;
    __ptbl__7Derived=__vtbl__7Derived;
    
    __vtbl__4Base[1].d = 0;
    __vtbl__4Base[1].i = 0;
    __vtbl__4Base[1].f = (__vptp)Method__4BaseFv;
    __ptbl__4Base=__vtbl__4Base;
}

What we end up with is a declaration of global variables and a simple C function that must be called before the virtual functions are called. The code transformation shown is easy to implement. TheDeveloper Essentials disc contains a simple MPW Shell script and two MPW tools that perform this function. The script is called ProcessVTables, and the tools are called FixTables andFilterTables.

COMBINING THE CONCEPTS
What remains is to combine the concepts of allocating global variables and initializing virtual function tables into a single construct. The following code, class VirtualWorld, based on classA5World, provides these two services.

class VirtualWorld : public Relocatable {
public:
    // Constructor sets up world.
    VirtualWorld(Boolean worldFloats);
    // Destructor destroys it.
    ~VirtualWorld();
    
    // Main functions; Enter sets A5 to point to 
    // our world.
    
    // Go into our world.
    void Enter();
    // Restore old A5 context.
    void Leave();
    
    // Error reporting.
    OSErr Result()  { return error; }

private:
    // The last error that occurred.
    OSErr error;
    // Whether we have to call the vtable init.
    Boolean codeFloats;
    // How big our globals are.
    long worldSize;                     

    // The storage for the virtual world.
    Ptr ourA5;                          
    // Old A5.
    Ptr oldA5;                          
};

The constructor for class VirtualWorld requires one parameter, worldFloats, a Boolean value that tells whether or not the code resource floats between calls. This flag is used to decide whether or not the virtual function tables need reinitializing on every call to the code resource. Code resources such as WDEFs do float, and can even be purged, so this flag is essential. If worldFloatsis false, the virtual function tables are initialized once in the constructor. This initialization is performed by calling the function init_vtables(), shown earlier.

The Enter() and Leave() member functions set up and restore the A5 global space, respectively. If the member variable codeFloats is true, Enter() calls theinit_vtables() each time.

As in the A5World class, the Error() member function reports error conditions, which should be checked before assuming the world is set up correctly.

EXAMPLE: AN ICONIFIABLE WINDOW DEFINITION

To show off this really cool technique, I have written one of everybody's favorite code resources, a window definition function, or WDEF, that uses polymorphism. The example demonstrates how to define a base class for windows that is easy to inherit from--so you can add a feature to a window while leaving the original window code untouched.

CLASS WINDOWDEFINITION
Class WindowDefinition forms the template for all other window definitions. Here is its interface:

class WindowDefinition : public Relocatable {
public:
    // Initialize window.
    virtual void New(WindowPeek theWindow)
        { itsWindow = theWindow; }
    // Destroy window.
    virtual void Dispose() {}                               
    // Compute all relevant regions.
    virtual void CalcRgns() {}
    // Draw the frame of the window.
    virtual void DrawFrame() {}
    // Draw the goaway box (toggle state).
    virtual void DrawGoAwayBox() {}
    // Draw window's grow icon.
    virtual void DrawGIcon() {}
    // Draw grow image of window.
    virtual void DrawGrowImage(Rect& growRect) {}
    // Do hit testing.
    virtual long Hit(Point& whereHit)
        { return wNoHit; }
protected:
    // Window we are keeping track of.
    WindowPeek itsWindow;
};

WindowDefinition uses methods to respond to all the messages to which a WDEF is expected to respond. All the methods are just placeholders here, as WindowDefinition is an abstract base class.

Class WindowDefinition's superclass, Relocatable, provides services to all handle-based classes, such as locking this, moving it high, and unlocking it. This class makes the casts to type Handle that are normally necessary and makes dealing with handle-based classes pleasant--and safer.

CLASS WINDOWFRAME
The next class to look at isWindowFrame. WindowFrameimplements a basic window that can be resized, moved, and shown in highlighted or unhighlighted state.

class WindowFrame : public WindowDefinition {
public:
    virtual void New(WindowPeek theWindow);
    virtual void Dispose();
    virtual void CalcRgns();
    virtual void DrawFrame();
    virtual void DrawGrowImage(Rect& growRect);
    virtual long Hit(Point& whereHit);

private:
    // Border between content and structure
    // boundaries.
    RgnHandle itsBorderRgn;
};



The code that makes this window work is included in the full source example on the Developer Essentials disc.

[IMAGE polymorphic_html2.GIF]

Figure 3 Class WindowFrame's Window on the Desktop

CLASS ICONWDEF
To implement a window that is iconifiable, we can derive from the class WindowFrame, and modify its behavior, without having to rewrite the code that implements the window. All an icon has to do is respond to clicks and be dragged around. So, the class IconWDef just has to worry about keeping track of whether the window is iconified or not, and lets the WindowFrame part take care of being a window. Here is the interface to class IconWDef.

class IconWindowDef : public WindowFrame {
public:
    // Window methods.
    virtual void New(WindowPeek theWindow);
    // We have different regions when iconified.
    virtual void CalcRgns();
    // We draw an icon if in the iconified state.
    virtual void DrawFrame();
    virtual long Hit(Point& whereHit);
private:
    // State of our window.
    Boolean iconified;
    // If we've ever been iconified.
    Boolean everIconified;
    // Flag that says we want to change our state.
    Boolean requestingStateChange;
    // How many times CalcRgns has been called.
    short calcRgnsCount;
    // Place to hit to iconify window.
    Rect iconifyRect;   
    // Where to put when iconified.
    Point iconifiedLocation;
};

The decision about when to iconify the window is made in theIconWDef's Hit()method. In the current implementation, if the window's zoom box is hit with the Option key held down, the window toggles between being an icon and being a window.

SUMMARY

This article has shown how to use polymorphism--the combination of inheritance and run-time binding of functions to objects--in the context of stand-alone code resources. Issues that had to be resolved were how to provide support for globals in stand-alone code and how to arrange for the initialization of virtual function tables.

Although the code for the example shows how to use polymorphism for window definition functions, you can use the same technique to write any type of code resource: menu definitions, list definitions, control definitions, and even drivers.

ROOM FOR IMPROVEMENT
The code could be improved in two ways:

  • By using handles to allocate the A5 globals and passing in a parameter to tell VirtualWorld that the data can float.
  • By removing the QuickDraw-specific code and placing it in a subclass of VirtualWorld.

CAVEATS
A couple of words of warning are in order. The tools that process the virtual function tables depend on the way CFront generates the tables. If AT&T or Apple ever decides to change the way these tables are generated (probably unlikely), the tools described in the example will probably break. However, it would not be difficult to modify the tools if changes were made.

Classes inherited from class PascalObject are not supported by the techniques described in this article. This is because these classes do not implement run-time binding using virtual function tables. This is not a problem since PascalObjects were intended only for use with MacApp, and (for now) MacApp can be used only for applications.

Look at the code on Developer Essentials for more information, and good luck!

LAYOUT OF OBJECTS AND THEIR VIRTUAL FUNCTIONS IN MEMORY

For a typical class such as class foo, how does the compiler generate code to call the proper virtual function at run time? The following class and diagram show how this is accomplished.

class foo {
public:
    virtual void method1 ();
    virtual void method2 ();
private:
    int member1;
    int member2;
};

As shown by the figure, an instance of class foo has three data members. Two of the members, member1 and member2, are part of the class definition, while a third member we'll call pVTable is a hidden member automatically created by the compiler. pVTable is a pointer to a table of function pointers (also automatically generated by the compiler) that holds pointers to all the functions in the class that are declared virtual. The code that is generated to call a virtual function is therefore something like this:

// Code written in C++:
myFoo->method1();
/* Becomes this code in C: */
(*myFoo->pVTable[0])();

This is the memory layout for a virtual function table used in single inheritance. For multiple inheritance, the structures used are more complicated.

[IMAGE polymorphic_html3.GIF]

Figure 2 Calling Virtual Functions at Run Time

HANDLE-BASED CLASSES

The C++ default storage strategy is to create objects as pointers. As we all know, using pointers to allocate storage on the Macintosh makes memory management a lot less efficient. The ability to store data in relocatable blocks allows the Macintosh to use more of its memory since relocatable blocks can be shuffled around to make space.

Luckily, Apple has extended C++ in a way that allows us to take advantage of the Macintosh Memory Manager by adding the built-in classHandleObject. The only restrictions placed on handle-based objects is that they can be used only for single-inheritance hierarchies. Most object programming tasks, however, can be handled using single inheritance. To make handle-based objects easier to work with, here is class Relocatable, a class derived fromHandleObject. Class Relocatable provides functions for manipulating handle-based objects without the hassle of all those casts.

class Relocatable : HandleObject {
protected:
    void Lock()             {HLock((Handle)this);}
    void Unlock()           {HUnlock((Handle)this);}
    void MoveHigh()         {MoveHHi((Handle)this);}
    SignedByte GetState()   {return HGetState((Handle)this);}
    void SetState(SignedByte flags)
        {HSetState((Handle)this, flags);}
};

PATRICK BEARD of Berkeley Systems, Inc., is a totally rad dude, living in a world somewhere between hard-core physics and fantasy. He prepared for this lifestyle by getting a B.S.M.E. at the University of California, Berkeley. He claims native Californian status, although he's from Illinois. A programming addict who relishes treading the very edge of what's possible,Pat dreams of writing his own programming language so he can really express himself. Meanwhile, he has written screen- savers and sundry compiler hacks, and has helped develop a Macintosh talking interface for the blind. He's a jazz musician (looking for a rhythm section--any takers?), a snow skier, snowboarder, and skateboarder, whose motto in life is " Stop and breathe from time to time." He never puts anything away, fearing an inability to find stuff when he needs it; the piles are growing at an alarming rate. However, he swears his brain is organized and that he knows where everything is, except Tech Note #31. *

Thanks to Our Technical Reviewers Herman Camarena, Jack Palevich *

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Tokkun Studio unveils alpha trailer for...
We are back on the MMORPG news train, and this time it comes from the sort of international developers Tokkun Studio. They are based in France and Japan, so it counts. Anyway, semantics aside, they have released an alpha trailer for the upcoming... | Read more »
Win a host of exclusive in-game Honor of...
To celebrate its latest Jujutsu Kaisen crossover event, Honor of Kings is offering a bounty of login and achievement rewards kicking off the holiday season early. [Read more] | Read more »
Miraibo GO comes out swinging hard as it...
Having just launched what feels like yesterday, Dreamcube Studio is wasting no time adding events to their open-world survival Miraibo GO. Abyssal Souls arrives relatively in time for the spooky season and brings with it horrifying new partners to... | Read more »
Ditch the heavy binders and high price t...
As fun as the real-world equivalent and the very old Game Boy version are, the Pokemon Trading Card games have historically been received poorly on mobile. It is a very strange and confusing trend, but one that The Pokemon Company is determined to... | Read more »
Peace amongst mobile gamers is now shatt...
Some of the crazy folk tales from gaming have undoubtedly come from the EVE universe. Stories of spying, betrayal, and epic battles have entered history, and now the franchise expands as CCP Games launches EVE Galaxy Conquest, a free-to-play 4x... | Read more »
Lord of Nazarick, the turn-based RPG bas...
Crunchyroll and A PLUS JAPAN have just confirmed that Lord of Nazarick, their turn-based RPG based on the popular OVERLORD anime, is now available for iOS and Android. Starting today at 2PM CET, fans can download the game from Google Play and the... | Read more »
Digital Extremes' recent Devstream...
If you are anything like me you are impatiently waiting for Warframe: 1999 whilst simultaneously cursing the fact Excalibur Prime is permanently Vault locked. To keep us fed during our wait, Digital Extremes hosted a Double Devstream to dish out a... | Read more »
The Frozen Canvas adds a splash of colou...
It is time to grab your gloves and layer up, as Torchlight: Infinite is diving into the frozen tundra in its sixth season. The Frozen Canvas is a colourful new update that brings a stylish flair to the Netherrealm and puts creativity in the... | Read more »
Back When AOL WAS the Internet – The Tou...
In Episode 606 of The TouchArcade Show we kick things off talking about my plans for this weekend, which has resulted in this week’s show being a bit shorter than normal. We also go over some more updates on our Patreon situation, which has been... | Read more »
Creative Assembly's latest mobile p...
The Total War series has been slowly trickling onto mobile, which is a fantastic thing because most, if not all, of them are incredibly great fun. Creative Assembly's latest to get the Feral Interactive treatment into portable form is Total War:... | Read more »

Price Scanner via MacPrices.net

Early Black Friday Deal: Apple’s newly upgrad...
Amazon has Apple 13″ MacBook Airs with M2 CPUs and 16GB of RAM on early Black Friday sale for $200 off MSRP, only $799. Their prices are the lowest currently available for these newly upgraded 13″ M2... Read more
13-inch 8GB M2 MacBook Airs for $749, $250 of...
Best Buy has Apple 13″ MacBook Airs with M2 CPUs and 8GB of RAM in stock and on sale on their online store for $250 off MSRP. Prices start at $749. Their prices are the lowest currently available for... Read more
Amazon is offering an early Black Friday $100...
Amazon is offering early Black Friday discounts on Apple’s new 2024 WiFi iPad minis ranging up to $100 off MSRP, each with free shipping. These are the lowest prices available for new minis anywhere... Read more
Price Drop! Clearance 14-inch M3 MacBook Pros...
Best Buy is offering a $500 discount on clearance 14″ M3 MacBook Pros on their online store this week with prices available starting at only $1099. Prices valid for online orders only, in-store... Read more
Apple AirPods Pro with USB-C on early Black F...
A couple of Apple retailers are offering $70 (28%) discounts on Apple’s AirPods Pro with USB-C (and hearing aid capabilities) this weekend. These are early AirPods Black Friday discounts if you’re... Read more
Price drop! 13-inch M3 MacBook Airs now avail...
With yesterday’s across-the-board MacBook Air upgrade to 16GB of RAM standard, Apple has dropped prices on clearance 13″ 8GB M3 MacBook Airs, Certified Refurbished, to a new low starting at only $829... Read more
Price drop! Apple 15-inch M3 MacBook Airs now...
With yesterday’s release of 15-inch M3 MacBook Airs with 16GB of RAM standard, Apple has dropped prices on clearance Certified Refurbished 15″ 8GB M3 MacBook Airs to a new low starting at only $999.... Read more
Apple has clearance 15-inch M2 MacBook Airs a...
Apple has clearance, Certified Refurbished, 15″ M2 MacBook Airs now available starting at $929 and ranging up to $410 off original MSRP. These are the cheapest 15″ MacBook Airs for sale today at... Read more
Apple drops prices on 13-inch M2 MacBook Airs...
Apple has dropped prices on 13″ M2 MacBook Airs to a new low of only $749 in their Certified Refurbished store. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty... Read more
Clearance 13-inch M1 MacBook Airs available a...
Apple has clearance 13″ M1 MacBook Airs, Certified Refurbished, now available for $679 for 8-Core CPU/7-Core GPU/256GB models. Apple’s one-year warranty is included, shipping is free, and each... Read more

Jobs Board

Seasonal Cashier - *Apple* Blossom Mall - J...
Seasonal Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Seasonal Fine Jewelry Commission Associate -...
…Fine Jewelry Commission Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) Read more
Seasonal Operations Associate - *Apple* Blo...
Seasonal Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Read more
Hair Stylist - *Apple* Blossom Mall - JCPen...
Hair Stylist - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.