TweetFollow Us on Twitter

Macintosh Display Card 8*24GC: The Naked Truth

Macintosh Display Card 8*24GC: The Naked Truth

GUILLERMO ORTIZ

The Macintosh Display Card 8*24 GC, which supports monitors with depths up to 24 bits per pixel, allows use of a special version of 32-Bit QuickDraw that improves drawing performance on computers in the Macintosh II family. This article details the new card's features, describes how third-party developers can make sure their products are compatible, and tells how to take advantage of the card and its software.


Since the invention of the first computer, users and developers have been complaining about the amount of memory available, the speed of the machine, or the number of things that could be done at the same time. (Do you remember when 16K was considered a lot of memory? Of course not.)

The new Macintosh Display Card 8*24 GC addresses the perennial issue of speed, specifically the speed with which the Macintosh executes drawing commands. With its on-board processor and accompanying software, the new 8*24 GC card can execute QuickDraw TM commands from 5 to 30 times faster than standard 32-Bit QuickDraw.

The Macintosh Display Card 8*24 GC has two independent components: the circuitry that controls the display and the hardware and software that accelerate 32-Bit QuickDraw.

DISPLAY NUTS AND BOLTS
We'll start with the display circuitry of the Macintosh Display Card 8*24 GC, which closely matches the behavior of the Macintosh Display Card 8*24. Figure 1 shows the principal components.

[IMAGE 824GC_V007_html1.GIF]

Figure 1Macintosh Display Card 8*24 GC

MFB Frame Buffer Controller Controls the flow of video data and acts as the memory management unit for the Am29000.

Am29000 RISC-architecture processor running at 30 MHz. For those with mainframe mentality, Am29000 performance is measured at 22 MIPS.

SRAM 64K of fast static RAM used to cache Am29000 instructions.

Configuration ROM Holds the declaration structures, sResources, and so forth; carries the initialization software (Primary and Secondary Inits) and holds the card's driver.

RDNC NuBus Controller Controls the traffic to and from the NuBus bus. Allows for block transfers both as master and slave card.

DRAM Up to 8 MB of dynamic RAM used by the GC software.

AC842 Custom Chip Provides video support; has three digital-to-analog converters and three dual-port color tables capable of supporting 256 8-bit levels each.

VRAM 2 MB of video RAM for buffering the display.

Programmable Pixel Clock At boot time the card detects the monitor being used and programs this chip to generate the signal that defines the period for refreshing each individual pixel.

MONITOR SUPPORT
The new card supports all Apple monitors, including the Apple 13-Inch (B/W & Color) monitor, the Apple Portrait Display, and the Apple Two-Page Display.

The Macintosh Display Card 8*24 GC connects to a monitor through a DB-15 connector and, via the sense lines, detects the type of monitor to which it is connected. At boot time the card senses the monitor and configures itself for it. Third party-monitors with sense lines that are compatible with Apple standards should work as well. One important difference between the 8*24 GC card and its companion Macintosh Display Card 8*24 is that the 8*24 GC does not fall back into a dormant state when it finds no monitor connected during boot time. To allow for cases when users may want to have an 8*24 GC to accelerate output to other monitors, but don't want to connect a monitor to the card, the 8*24 GC card remains active, allowing 8*24 GC software to operate.

DEPTH SUPPORT
The 8*24 GC card supports depths of up to 8 bits for all monitors and 24-bit color for the 13-inch monitor (and RS-170A and PAL monitors). The 8-bit-per-pixel support for all Apple monitors implies, among other things, that true gray-scale output is possible with both the Apple Portrait Display and the Apple Two-Page Display.

On a high-resolution (13-inch) monitor, the 8*24 GC card can display 24 bits of color per pixel. As many people have noted (repeatedly), with this level of depth support, applications can display more colors than most human eyes can discern.

NUBUS BLOCK TRANSFERS
The new card uses NuBus TM block transfers to accelerate display in other display buffers present in the system. The Macintosh Display Card 8*24 GC is a NuBus master card. When it detects other cards in the system that can accept block transfer calls, the card uses block transfer mode to improve the performance of QuickDraw operations all across the board. For video buffer cards that do not support block transfer mode, the Macintosh Display Card 8*24 GC uses a special pseudo block transfer to optimize video performance.

Hardware developers should take special interest in designing cards that will make use of the block transfer mode, which will allow them to squeeze the most performance out of NuBus. The 8*24 GC card can receive block transfers (acting as slave), so other cards that may move data to the card's memory can move the data faster.

This is probably a good place to emphasize that, although you can have as many 8*24 GC boards as you want (or as many as you can afford), only one will function as a graphics accelerator. At boot time QuickDraw GC uses the card in the lowest slot. Any other 8*24 GC card becomes a glorified display card that is basically equivalent to the Macintosh Display Card 8*24.

VIDEO SIGNALS
The RS-170A standard video signals produced by the 8*24 GC card allow you to connect computers in the Macintosh II family to NTSC devices. Note, however, that the RS-170A signals are not directly NTSC compatible. A box is necessary to produce NTSC output that can be displayed on a standard television set or used along with other video equipment such as a VCR. You can generate NTSC black-and-white output by making a cable that uses the green video signal (which also carries a sync pulse), as shown in Figure 2.

[IMAGE 824GC_V007_html2.GIF]

Figure 2 Simple NTSC B/W Connector

When displaying images Macintosh monitors refresh all the scan lines every time they refresh the screen. This process is called noninterlaced video. RS-170A monitors, which are interlaced devices, can scan only half the lines during each vertical scan. Every other line is "repainted" every time the screen is refreshed.

Interlaced video is reasonably good for pictures and images in general, but really poor for the display of thin horizontal lines, which seem to flicker when repainted only every other scan. Because the Macintosh desktop is ordinarily full of such lines, the desktop looks bad when displayed on interlaced devices. To overcome this problem, the RS-170A output of the 8*24 GC card uses a technique called Apple convolution. The technique is basically a filter that, before displaying a scan line, averages each line with the line above and the line below. This filter is applied to all depths except direct RGB (24 bits per pixel) when the card is operating in RS-170A mode (see Figure 3).

[IMAGE 824GC_V007_html3.GIF]

Figure 3 Convolution Filter Weights for Interlaced Video

PAL-COMPATIBLE SIGNALS
The Macintosh Display Card 8*24 GC also produces video signals that are compatible with PAL timings. These signals can be used to produce PAL output to drive video devices of the type used in most European countries.

The PAL-compatible signals have the same characteristics as the RS-170A output; that is, the output is interlaced. For settings of 1 to 8 bits deep, a convolution filter is applied before each line is produced. The PAL output mode is triggered through one of the extended sense-line configurations, as described in the accompanying sidebar, "Extended Sense Line Protocol."

EXTENDED SENSE LINE PROTOCOL

The Sense Line Protocol was implemented when Apple recognized the need for a mechanism that would allow a display card to identify the monitor connected to it. For example, the Macintosh IIci display circuitry and the Macintosh 8*24 and 8*24 GC display cards can now configure themselves according to the monitor that is connected at boot time. The identification scheme works fine, but there is one problem. Three sense lines limit the number of different monitors to seven. To overcome this limitation, newer display cards use an extension to the sense line scheme that allows for 28 new codes.

The extension is based on the following idea: When the display circuitry senses a configuration that in the original scheme signals "no display connected" (in other words, when all three sense lines are not connected), the card pulls down each sense line, one by one, and reads back what the other lines return. To return a unique code, the only requirement is that the sense lines be connected, in the cable or the monitor itself, by wires or diodes. The beauty of this idea is that existing monitors are detected correctly. Newer monitors can have their own encoding, and the circuitry for detecting new monitors is relatively simple. Since there are no active components, adding the encoding to new or existing monitors involves only a few inexpensive diodes and a little wire.

[IMAGE 824GC_V007_html4.GIF]

Figure 4 PAL Connector

GC QUICKDRAW: SPIRIT STRONGER THAN FLESH

Software for the Macintosh Display Card 8*24 GC is made up of three main components (see Figure 5).
  • GC QuickDraw: An optimized version of 32-Bit QuickDraw tailored for the best performance on the Am29000 processor.
  • The Am29000 kernel (also referred to as GC OS): The software in the card that takes care of scheduling the execution of GC QuickDraw; also manages memory on the card.
  • IPC Software: The communication mechanism between the 680x0 environment and the GC QuickDraw software. For maximum performance, the IPC software was designed to deal only with QuickDraw operations, thus limiting the overhead. The software intercepts QuickDraw drawing commands and redirects them to GC QuickDraw on the card, buffering commands when needed.

[IMAGE 824GC_V007_html5.GIF]

Figure 5Software Architecture of the 8*24 GC Card

All these components come in a single file called 8*24 GC, which must be moved to the System Folder as a single-step installation process. At boot time, after the "Welcome to Macintosh" screen appears, the System looks for the file and, when it finds it, installs the GC software as a transparent upgrade to 32-Bit QuickDraw. The installation consists of loading the GC QuickDraw code into the card memory, loading the GC kernel (GC OS) and initializing its structures, and loading and initializing the IPC software. At INIT time, the rocket icon appears to indicate the presence of the GC software in the System.

The 8*24 GC file contains a Control Panel device that allows the user to turn acceleration on and off.

THE HAND IS QUICKER THAN THE EYE
A good way to start the discussion of GC QuickDraw is by separating QuickDraw calls into two global classes. The first class consists of the "drawing" commands-- LineTo and FrameRect, for example. The second class consists of the "state"-oriented calls, such as SetPenState andRGBForeColor.

DRAWING CALLS
When 32-Bit QuickDraw is running the show, all drawing commands cause one of the standard QuickDraw bottleneck procedures to be called. For example, calling PaintRect causes StdRect to be called, and calling FillPoly ends up invoking StdPoly. "Under" the bottleneck procedures, QuickDraw takes the commands and goes into a set of calls that execute commands based on the type of drawing taking place. The lowest level for QuickDraw is the code that actually draws to the devices affected by the drawing that is being executed.The software for the 8*24 GC card takes effect at the level immediately under the standard (bottleneck) procedures. If DrawChar is called, for example, QuickDraw checks to see if the CQDProcs field in the current port is nil and, if so, calls the StdText routine. At this point the IPC software intercepts the call and passes the request to GC QuickDraw to initiate the accelerated process.

The previous paragraph points to an important fact: If an application completely replaces the standard bottleneck procedures, it is effectively turning acceleration off. Ordinarily standard bottleneck procedures are completely replaced only when driving nondisplay devices such as printers, so there is no conflict with the acceleration scheme. But some applications may bypass QuickDraw completely. By doing so they forgo the benefits of accelerated QuickDraw.

When the IPC takes control, it handshakes with the card kernel, queues the command in the asynchronous buffer, and returns control to the application. From the application's point of view, the call to QuickDraw returns almost immediately and allows the application to continue its execution. This parallelism reduces the apparent time it takes QuickDraw to perform a drawing operation. Performance is also enhanced because, while GC QuickDraw is performing the task, the application can be busy calculating whatever is necessary for the next call.

When GC QuickDraw processes one command from the queue, two paths are available. If the target is the current port, and if no changes have been made, GC QuickDraw goes ahead and does the drawing; it has in its cache everything it needs. On the other hand, if the target is a different port, or if the current port has changed, GC QuickDraw proceeds to import the necessary parameters from main memory, set its own structures, and finally do the actual drawing. In this discussion, we've used the wordport, but the same principle applies to any change if the destination is aGWorld or if theGDeviceassociated with the destination has changed.

The application can issue as many drawing commands as necessary. The IPC software buffers them as needed, and GC QuickDraw completes all operations as quickly as it can. The result is a completely asynchronous operation that gives applications the fastest responsiveness and frees more processor time for application calculations (applications have more time to think!).

There are some exceptions to the complete asynchronous scheme. Calls (such as CopyBits) that involve not only the destination port/device combination, but also different source and destination environments, make it necessary to flush the queue by processing all pending operations and then performing the setup for the call. Once the CopyBits call has been initiated, it is executed in parallel for optimum performance. Software developers should note that using GWorlds to buffer PixMapsmakes CopyBits intrinsically faster.

PARAMETER-CHANGING ("STATE") CALLS
The Macintosh Display Card 8*24 GC acceleration mechanism concerns itself mainly with the drawing class of calls. Parameter-changing calls also have an important effect on the overall performance of GC QuickDraw. The 8*24 GC software does not work in its own environment, but heavily relies on the global structures that QuickDraw keeps in main memory.

Instead of loading all the parameters with every call, GC QuickDraw caches all the data structures it needs, but has to reload the data when changes are detected. Some of the structures cached by GC QuickDraw are color tables, GDevices, GWorlds, PixPats, Fonts, and Width Tables. Changing the pen or modifying the foreground color, for example, invalidates the cached data. To squeeze the maximum out of the 8*24 GC card, it is therefore important to group calls that draw elements with shared characteristics (same color, same pattern, and so forth) instead of constantly changing port parameters between drawing calls.

Changing directly any structure maintained and used by QuickDraw has always been a clear and dangerous compatibility risk. The 8*24 GC software cannot detect changes to the drawing environment unless you use the proper calls to accomplish such changes.

Not all QuickDraw calls are redirected when acceleration is enabled. Acceleration affects only calls that either perform drawing operations or change the state of QuickDraw structures. A list of such calls follows.

SetPortBits PortSsize MovePortTo
SetOrigin SetClip ClipRect
StdLine StdBits StdText
StdRgn StdArc StdRRect
StdOval StdRect StdPoly
InitGDevice DisposGDevice AddSearch
DelSearch AddComp DelComp
DisposPixPat CopyPixPat MakeRGBPat
GWorldDispatch HidePen ShowPen
SetPenState PenSize PenMode
PenNormal BackColor ColorBit
OpenRgn OpenPicture OpenPoly
CopyRgn SetRectRgn RectRgn
OffsetRgn InsetRgn SectRgn
UnionRgn DiffRgn XorRgn
MapRgn RGBForeColor RGBBackColor
CopyPixMap PenPixPat BackPixPat
OpColor HiliteColor SetPortPix
PenPat BackPat CopyBits
DrawPicture PMgrDispatch

THE DEVELOPER POINT OF VIEW
The best feature of the Macintosh Display Card 8*24 GC is that application developers have little to worry about when it comes to compatibility. You must put forth some effort to do something in an application that GC QuickDraw cannot straighten out.

The one area that may require some rewriting is changing the way an application allocates offscreen drawing environments (see "Braving Offscreen Worlds" in d e v e l o p , issue 1). When a GDevice is created by hand (instead of by a call to NewGWorld), all the structures are kept in main memory. Drawing to this environment and then using CopyBits to display the result takes a greater number of NuBus transfers.

When a drawing operation that involves a GWorld occurs, GC QuickDraw immediately caches the complete GWorld structure in the card's memory if the structure has not yet been cached and if sufficient memory is available. (The card's optional DRAM kit is an important addition for applications that work with large GWorlds.) When CopyBits is called to display the results, the transfer of pixels to the screen driven by the 8*24 GC card is therefore really fast because there is no NuBus transfer. Even displaying the image into other monitors benefits, especially when the other cards can accept block transfers. Drawing operations to and from GWorlds can be executed in parallel. This is not the case when drawing to or from old-style offscreens (see Figures 6 and 7).

[IMAGE 824GC_V007_html6.GIF]

Figure 6 Offscreen Old Style


When applications create offscreen environments by hand, GC QuickDraw performance is affected because the data has to go many more times across NuBus. For example, if an application draws to an offscreen port and then calls CopyBits to display the results on the screen, the following happens:

  1. IPC passes the drawing command to GC QuickDraw.
  2. GC QuickDraw does the drawing across the Nubus to buffer.
  3. The application waits for the completion signal.
  4. IPC passes the CopyBits call to GC QuickDraw.
  5. GC QuickDraw copies from main memory...
  6. ...to the frame buffer.

Finally, QuickDraw operates more efficiently when thePixMap's rowBytesis a multiple of four (long word alignment). It just happens that whenNewGWorld is called it creates the offscreenPixMapin such a fashion, which increases the performance of QuickDraw even when the offscreen buffer could be in main memory.

[IMAGE 824GC_V007_html7.GIF]

Figure 7 OffscreenGWorlds


When an application uses GWorlds to buffer the display, GC QuickDraw can use the cached data in its memory and minimize NuBus traffic. The steps are as follows:

  1. IPC passes the draw command and returns control to the application immediately.
  2. GC QuickDraw executes the command as soon as possible.
  3. IPC passes the CopyBits call and returns.
  4. GC QuickDraw moves pixels from the local copy of the GWorld to the screen buffer while the application does its stuff.

COMPATIBILITY ISSUES
As mentioned earlier, GC QuickDraw is port oriented, which suggests that to improve performance it caches the port's structure in its entirety while drawing to a port. The implication is that, if an application draws to different ports in an alternating fashion, the application is forcing GC QuickDraw to flush its asynchronous buffer and move data from main memory with each drawing command. To get the best performance from GC QuickDraw, a good programming technique is to bundle all drawing operations that affect a given port and complete them before changing ports to do some more drawing. As noted earlier, it is also important to put together all the calls that affect a single port and share characteristics such as color, pattern, and pen. The same admonition applies to GWorlds because GC QuickDraw caches the GWorld into its memory when a GWorld is the destination of a drawing operation. Changing GWorlds and drawing to each one in rapid succession means that GC QuickDraw has to keep flushing its asynchronous buffer and moving the necessary data from memory, which could imply copying the new GWorld, including its PixMap (and 32-bit PixMaps can be a lot of bytes to move).

BOTTLENECKS AND STRUCTURE CHANGES
As mentioned earlier, two areas make life difficult for an application running under GC QuickDraw. These areas are replacing the bottleneck procedures and changing QuickDraw structures directly.

Replacing bottleneck procedures. Replacing the standard bottleneck procedures is a time-honored tradition in the Macintosh world. The problem is that, if an application replaces a standard procedure and does not end up calling the original default trap after it finishes its manipulations, the application is turning off acceleration. Whenever possible--and if acceleration is desired--the application that replaces the standard bottleneck procedures should call the original through the trap dispatcher before returning to the main program.

Changing QuickDraw structures. The dangers of messing up with QuickDraw structures directly are well known to all. Nevertheless, some applications still go about happily changing structures. As a rule, you should call the ToolBox whenever possible to change the state of the drawing environment. When the need is too strong, use the calls that alert QuickDraw to the changes you're making.

TIMING
One interesting compatibility problem is not uniquely tied to the 8*24 GC card but has to do with faster hardware in general. Some techniques still being used are direct descendants of routines that were implemented for the 64K Macintosh. Now, with new machines, these techniques simply run too fast.

One example is the "marching ants" technique of repeatedly callingFrameRect, with each repetition shifting a pattern 1 bit to create a rippling frame on the screen. The trick is still valid, but now causes a problem. In the time it took the Ol' Macintosh to make four passes through theFrameRectloop, a newer Macintosh can make hundreds of passes. With 8*24 GC acceleration on, the number is even greater. The result is that the marching becomes jerky and annoying, and the cursor tends to disappear, becauseHideCursoris being called to complete theFrameRectcall. The cursor appears and disappears so quickly that it becomes invisible.

Do not time loops based on the performance of a given machine. For any form of animation, use the Time Manager routines to time your application.

DRAWING DIRECTLY TO THE SCREEN
As a final admonition, do not draw directly to the screen . Drawing directly to the screen puts any application at immediate compatibility risk with 32-Bit QuickDraw and with all Apple and third-party 24-bit video cards. Drawing directly into the 8*24 GC card's display buffer will probably cause crashes and, at the minimum, create weird artifacts if both the application and GC QuickDraw are drawing at the same time.

PROGRAMMING THE Am29000 (NOPE!)
No, you can not program the Am29000 yourself. At the moment of this writing, third-party applications cannot make direct use of the Am29000 processor for any purpose.

The good news is that Apple recognizes the burning desires developers have to use the Am29000 for more than accelerating QuickDraw, and future releases of the software may provide such capability. So if you have a brilliant idea, Apple wants to know about it. Although implementation details are not yet available, you can start by sending a message that describes what you want to do and what kind of support you hope the GC software can give you.

Send these and any other comments about programming the Am29000 on the 8*24 GC card to AppleLink address FAST.GRAPHIC. Apple will get back to you when more information is available.

[IMAGE 824GC_V007_html8.GIF]

Figure 8 Block Diagram of the 8*24 GC Card


NOTEWORTHY CALLS
One piece of software that has not been mentioned is the 8*24 GC cdev. With it users can turn acceleration on and off through the Control Panel. Although turning acceleration on and off should be left under the control of the user, you may want to provide users with some kind of on/off dialog box or menu option. The Developer Essentials disc (this issue) contains the GraphAccel.o file, an MPW library that accomplishes this task. A sample FKey for turning acceleration on and off is included with the library.

A new call was implemented with 32-Bit QuickDraw to allow an application to determine whether a drawing operation initiated by it, and affecting a given port, has been finished:

Function QDDone(pPtr: CGrafPtr): Boolean;

This call may be of especially good use if you're interested in timing each individual call. It may also be of use in some animation situations, such as when you want to initiate the next drawing action only after execution of a prior call has definitely concluded.

QDDone returns FALSE if QuickDraw is in the process of drawing to pPtr and TRUE when QuickDraw is done. If pPtr is nil, QDDone returns TRUE only when drawing to all ports is completed. Note that when nil is passed to the call, background processes such as clocks could prevent QDDone from ever returning TRUE.

Function QDDone(pPtr: CGrafPtr): Boolean;
INLINE $203C, $0004, $0013, $AB1D;	{	Move.l #$00040013,D0
										_QDOffscreen
									}

FINALLY
The Macintosh Display Card 8*24 GC is Apple Engineering's response to the demands for enhanced graphics performance for the Macintosh family of computers. Designers of graphics- intensive applications now can concentrate on the algorithms that will improve overall performance instead of using design resources to squeeze the last drops of display speed, a choice which often compromises compatibility and ease of use.

Developers get the benefits of the 8*24 GC card with almost no programming hit. Coding of special routines to achieve faster performance is unnecessary. Following old, simple QuickDraw rules, developers can be assured of faster graphics performance at no extra cost.

ALERTING QUICKDRAW TO CHANGES

Applications can use the calls listed here to make QuickDraw and GC QuickDraw aware of direct changes to forbidden structures.

PROCEDURE CTabChanged (ctab: CTabHandle) This call says, "Yes, I know I shouldn't mess with a color table directly, but I did it, and I want to come clean." Use SetEntries, or--even better--let the Palette Manager maintain the color table for you.

PROCEDURE PixPatChanged (ppat: PixPatHandle);Use this call to say, "I admit I modified the fields of a PixPat directly. Please fix the resulting mess for me." When the modifications include changing the contents of the color table pointed to by PixPat.patMap^^ .pmTable, you should also call CTabChanged.PenPixPat and BackPixPat are better ways to install new patterns.

PROCEDURE PortChanged (port: GrafPtr);You should not modify any of the port structures directly. But if you cannot control yourself, use this call to let QuickDraw know what you have done.

If you modify either the PixPat or the color table associated with the port, you need to call PixPatChangedand CTabChanged.

PROCEDURE GDeviceChanged (gdh: GDHandle);The best practice is to stay away from the fields of any GDevice. But if you do change something, make this call to rectify any problems. If you change the color table data in the device's PixMap, you must also call CTabChanged.

GUILLERMO ORTIZ (in a rare interview): How long have you been with Apple and why? Six years plus, and we've got good people and better beer busts.

Did you enjoy your sabbatical? Yes, the energy it restored lasted a full two weeks.

What's the best book you recently read? Between Past and Present by Neil A. Silberman, a new look at archeological findings and discussion of how facts present and past are seen according to the political/social currents of the times.

What're you reading now? Invisible Matter and the Fate of the Universe by Barry Parker. He says that according to current knowledge, 90 percent of the matter of the universe is missing. This leaves some possibilities:

  1. We don't have a clue of what is going on.
  2. Our current models don't closely enough represent the universe.
  3. Physical laws don't apply out of the local universe.
  4. I don't know what I am talking about.
  5. All or none of the above.
Now a paid political announcement: "Contrary to the lies of his opponents, Mark Harlan is not a crook. Trust me!" *

For More Information Designing Cards and Drivers for the Macintosh Family, second edition, Addison-Wesley, 1990, available from APDA.

Macintosh Display Card 8*24 GC, Developer Notes, April 1990, available from Developer Technical Publications.

Thanks to Our Technical Reviewers:Dave Cho, Casey King, Mark Krueger, Jean-Charles Mourey

 

Community Search:
MacTech Search:

Software Updates via MacUpdate

Latest Forum Discussions

See All

Tokkun Studio unveils alpha trailer for...
We are back on the MMORPG news train, and this time it comes from the sort of international developers Tokkun Studio. They are based in France and Japan, so it counts. Anyway, semantics aside, they have released an alpha trailer for the upcoming... | Read more »
Win a host of exclusive in-game Honor of...
To celebrate its latest Jujutsu Kaisen crossover event, Honor of Kings is offering a bounty of login and achievement rewards kicking off the holiday season early. [Read more] | Read more »
Miraibo GO comes out swinging hard as it...
Having just launched what feels like yesterday, Dreamcube Studio is wasting no time adding events to their open-world survival Miraibo GO. Abyssal Souls arrives relatively in time for the spooky season and brings with it horrifying new partners to... | Read more »
Ditch the heavy binders and high price t...
As fun as the real-world equivalent and the very old Game Boy version are, the Pokemon Trading Card games have historically been received poorly on mobile. It is a very strange and confusing trend, but one that The Pokemon Company is determined to... | Read more »
Peace amongst mobile gamers is now shatt...
Some of the crazy folk tales from gaming have undoubtedly come from the EVE universe. Stories of spying, betrayal, and epic battles have entered history, and now the franchise expands as CCP Games launches EVE Galaxy Conquest, a free-to-play 4x... | Read more »
Lord of Nazarick, the turn-based RPG bas...
Crunchyroll and A PLUS JAPAN have just confirmed that Lord of Nazarick, their turn-based RPG based on the popular OVERLORD anime, is now available for iOS and Android. Starting today at 2PM CET, fans can download the game from Google Play and the... | Read more »
Digital Extremes' recent Devstream...
If you are anything like me you are impatiently waiting for Warframe: 1999 whilst simultaneously cursing the fact Excalibur Prime is permanently Vault locked. To keep us fed during our wait, Digital Extremes hosted a Double Devstream to dish out a... | Read more »
The Frozen Canvas adds a splash of colou...
It is time to grab your gloves and layer up, as Torchlight: Infinite is diving into the frozen tundra in its sixth season. The Frozen Canvas is a colourful new update that brings a stylish flair to the Netherrealm and puts creativity in the... | Read more »
Back When AOL WAS the Internet – The Tou...
In Episode 606 of The TouchArcade Show we kick things off talking about my plans for this weekend, which has resulted in this week’s show being a bit shorter than normal. We also go over some more updates on our Patreon situation, which has been... | Read more »
Creative Assembly's latest mobile p...
The Total War series has been slowly trickling onto mobile, which is a fantastic thing because most, if not all, of them are incredibly great fun. Creative Assembly's latest to get the Feral Interactive treatment into portable form is Total War:... | Read more »

Price Scanner via MacPrices.net

Early Black Friday Deal: Apple’s newly upgrad...
Amazon has Apple 13″ MacBook Airs with M2 CPUs and 16GB of RAM on early Black Friday sale for $200 off MSRP, only $799. Their prices are the lowest currently available for these newly upgraded 13″ M2... Read more
13-inch 8GB M2 MacBook Airs for $749, $250 of...
Best Buy has Apple 13″ MacBook Airs with M2 CPUs and 8GB of RAM in stock and on sale on their online store for $250 off MSRP. Prices start at $749. Their prices are the lowest currently available for... Read more
Amazon is offering an early Black Friday $100...
Amazon is offering early Black Friday discounts on Apple’s new 2024 WiFi iPad minis ranging up to $100 off MSRP, each with free shipping. These are the lowest prices available for new minis anywhere... Read more
Price Drop! Clearance 14-inch M3 MacBook Pros...
Best Buy is offering a $500 discount on clearance 14″ M3 MacBook Pros on their online store this week with prices available starting at only $1099. Prices valid for online orders only, in-store... Read more
Apple AirPods Pro with USB-C on early Black F...
A couple of Apple retailers are offering $70 (28%) discounts on Apple’s AirPods Pro with USB-C (and hearing aid capabilities) this weekend. These are early AirPods Black Friday discounts if you’re... Read more
Price drop! 13-inch M3 MacBook Airs now avail...
With yesterday’s across-the-board MacBook Air upgrade to 16GB of RAM standard, Apple has dropped prices on clearance 13″ 8GB M3 MacBook Airs, Certified Refurbished, to a new low starting at only $829... Read more
Price drop! Apple 15-inch M3 MacBook Airs now...
With yesterday’s release of 15-inch M3 MacBook Airs with 16GB of RAM standard, Apple has dropped prices on clearance Certified Refurbished 15″ 8GB M3 MacBook Airs to a new low starting at only $999.... Read more
Apple has clearance 15-inch M2 MacBook Airs a...
Apple has clearance, Certified Refurbished, 15″ M2 MacBook Airs now available starting at $929 and ranging up to $410 off original MSRP. These are the cheapest 15″ MacBook Airs for sale today at... Read more
Apple drops prices on 13-inch M2 MacBook Airs...
Apple has dropped prices on 13″ M2 MacBook Airs to a new low of only $749 in their Certified Refurbished store. These are the cheapest M2-powered MacBooks for sale at Apple. Apple’s one-year warranty... Read more
Clearance 13-inch M1 MacBook Airs available a...
Apple has clearance 13″ M1 MacBook Airs, Certified Refurbished, now available for $679 for 8-Core CPU/7-Core GPU/256GB models. Apple’s one-year warranty is included, shipping is free, and each... Read more

Jobs Board

Seasonal Cashier - *Apple* Blossom Mall - J...
Seasonal Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Read more
Seasonal Fine Jewelry Commission Associate -...
…Fine Jewelry Commission Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) Read more
Seasonal Operations Associate - *Apple* Blo...
Seasonal Operations Associate - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Read more
Hair Stylist - *Apple* Blossom Mall - JCPen...
Hair Stylist - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Read more
Cashier - *Apple* Blossom Mall - JCPenney (...
Cashier - Apple Blossom Mall Location:Winchester, VA, United States (https://jobs.jcp.com/jobs/location/191170/winchester-va-united-states) - Apple Blossom Mall Read more
All contents are Copyright 1984-2011 by Xplain Corporation. All rights reserved. Theme designed by Icreon.