

T A B L E O F C O N T E N T S

Creating A Cocoa
AppController Class
by Dave Mark 4

Python For AppleScripters
Introduction By Comparison
by Ryan Wilcox. 10

Perforce
Powerful Version Control For The Mac

by Paul Pharr 18

NoCode Browser
Using Apple’s Web Kit SDK To Make A
Web Browser
by David Linker 26

The Application Formerly
Known As...
by Dean Shavit 31

The Webserver In OS X
What Has Apple Done With Apache?

by Edward Marczak 40

Thinkng Logically
by Benjamin S. Waldie 52

Using Entourage And Mail
With An Exchange Server
by Mark Underwood. 58

Backup! Backup! Backup!
Data Security For The Extremely Paranoid

by Brad Belyeu 66

Remote Control
It’s Not Just For Your TV
by Brad Belyeu 73

BZFlag: A SourceForge
Open Source Project
by Dave Mark 79

Getting Started With PHP
by Dave Matk 86

More Finder Scripting
by Benjamin S. Waldie 94

T A B L E O F C O N T E N T S

Fill Online PDF Forms
Using HTML Forms
by Sid Steward. 100

Becoming A Blogger With
iBlog
by Maria Langer 106

Active Directory &
Mac OS X
by Michael Bartosh. 114

Screen Savers In Cocoa
by Scott Knaster 124

Securing Mac OS X
A Guide For Security Hardening
by Paul Day 130

The Motorola RAZR Is
Cool, But I Want To Use
Bluetooth
by Neil Ticktin 147

Podcasting 101
How To Create Your Own Podcast
by August Trometer 148

The Terminal: Why?
Love It Or Leave It!
by Edward Marczak 155

The Journal of Macintosh Technology
®

If you find just one or two of the following articles really
useful, imagine what a whole year will bring you.

Subscribe today. It’s RISK FREE.
You can cancel at anytime.

http://store.mactech.com/sampler

4

GETTING STARTED • by Dave Mark

Sampler WWW.MACTTEECCHH.COM

This month, we’re going to build a
Cocoa app with an interface we designed
using Interface Builder. The app will use
Cocoa’s NSSpeechSynthesizer class to
speak a line of text. We’ll add a pushbutton
to start the speech and another to halt it,
even in mid-sentence. The example comes
from Chapter 4 of Aaron Hillegass’ book,
Cocoa Programming for Mac OS X. We’ll
start by taking a look at a class
diagramming approach Aaron uses
throughout the book.

A Diagram Speaks a
Thousand Words

Before we actually start the process of
building our project, take a look at the
object diagram shown in Figure 1. This
diagramming convention was developed by
Aaron Hillegas and I find it works quite
well at describing the interrelationships
between the classes, objects, methods, and
instance variables that come together to
make your program work.

The class at the heart of this example
is the AppController class. Note that this
class features two methods: sayIt: and
stopIt:. In Hillegas’ drawings, each box
represents a class and each arrow
connecting two boxes represents the
control-dragging connection you create in
Interface Builder. For example, in Figure 1,
note that 4 of the 5 classes are Cocoa

classes (they start with NS). All of our code will be built into a
new class that we create called AppController. We’ll create two
instances of NSButton, one labeled Say it and one labeled Stop.
Each of the buttons will target one of the two AppController
methods. When we build the project in Interface Builder, we’ll
create an instance of AppController, then control-drag from each
button to the AppController instance and double-click on the
method we want called to finish the connection.

We’ll also add instance variables to AppController to keep
track of the NSTextField (so we can retrieve the text to say it)
and the NSSpeechSynthesizer (so we can send it the text to start
speaking and send it a stop message to halt the speaking).

Figure 1. An object diagram for the first
incarnation of our SpeakLine program.

CREATING A COCOA

APPCONTROLLER CLASS

5

Create the SpeakLine Project
Launch Xcode and create a new project using the Cocoa

Application template. Name the project SpeakLine.

Editing the .nib File
In your SpeakLine project file, in the Groups & Files pane,

find the file MainMenu.nib and double-click it to launch
Interface Builder. You can find the file in the NIB Files group as
well as under the SpeakLine group, in the Resources subgroup.

Once Interface Builder launches, click on the third icon
from the left in the palette window, then drag an NSTextField
from the palette onto the main window. As you can see in
Figure 2, the NSTextField is in the upper-left corner of the set
of text items.

Figure 2. Dragging out an NSTextField.

Drag the NSTextField so it is almost as wide as the window
(so the dashed blue line appears when you get about a
scrollbar’s width from the right side of the window). Double-
click on the text field and change its text to read Peter Piper
picked a peck of pickled peppers or, if you are by yourself,
perhaps something a bit more spicy.

Next, click on the second icon from the left at the top of
the palette window to show the control palette items. Drag two
buttons onto the window, below the NSTextField, with the
proper spacing between them and the right side of the window.
Label the right button Say It and the left button Stop (double-
click on a button to edit its label).

Finally, resize the window itself, making it as short as
possible. Figure 3 shows my Interface Builder session. In this
picture, I am dragging the Stop button into place. You can see
the dashed blue lines showing that the two buttons are aligned
with each other and that the Stop button is the correct distance
from the text field above it and the Say It button to its right.

Figure 3. Use the blue dashed lines to line
up your buttons and NSTextField.

WWW.MACTTEECCHH.COMSampler

n our last Cocoa column, we downloaded the latest and greatest
version of Xcode. We created a Foundation Tool, which is an
Objective-C program with a console-based interface. II

WWW.MACTTEECCHH.COM6 Sampler

Create the AppController Class
Now that your interface is laid out, it’s time to create the

new AppController class.
Click on the MainMenu.nib window and click on the

Classes tab. Scroll all the way to the left and click on the
NSObject class. With NSObject highlighted, select Subclass
NSObject from the Classes menu. Name the new subclass
AppController (see Figure 4).

Figure 4. Click on the NSObject class and select
Subclass NSObject from the Classes menu.

Now you’ll add two actions (one for each button) and an
outlet (an instance variable that points to the text field) to
AppController. Open the Info window by selecting Show Info
from the Tools menu. Click on the AppController class in the
classes tab in the MainMenu.nib window, then click on the Info
window and select Attributes from the popup near the top of the
Info window.

Click on the Actions tab, then click on the Add button at the
bottom right of the Info window. When the new action appears,
name it sayIt:, then click Add and name the second action stopIt:
(see Figure 5).

Figure 5. The Info window, showing the
AppController class attributes.

Next, click on the Outlet tab and click Add to add an outlet
named textField to AppController. Click in the Type column and
select NSTextField to set the textField type to NSTextField
instead of the generic id.

If you look back at Figure 1, you’ll see that we’ve
addressed 3 of the 4 arrows in the object diagram. We’ll add the
missing outlet, speechSynth, in code in just a minute.

Be sure that the AppController class is selected in the
Classes tab and select Create Files for AppController from the
Classes menu. This will generate two source files
(AppController.m and AppController.h) in your Xcode project
which we’ll edit in a bit.

Next, create an instance of the AppController class by
selecting Instantiate AppController from the Classes menu.
Interface Builder will switch the MainMenu.nib window to the
Instances tab and a new, blue cube will appear with the name
AppController.

As you can see in Figure 6, the AppController instance is
represented by a blue cube. The tiny exclamation point in a
circle to the lower right of the blue cube tells you that there is
at least one unconnected outlet. Let’s take care of that now.

Figure 6. The new instance of AppController
with an unconnected outlet.

Making Connections

Before you start making your connections, take a quick
peek back at Figure 1. There are four connections that need to
be made. Three of them will be made by control-dragging. The
fourth (speechSynth) will be made in code.

First, we’ll connect AppController’s textField outlet so it
points to the NSTextField in the main window. Make sure the
Info window is open before you start your drag.

Control-drag from the AppController blue cube to the text
field in the main window. When you release the mouse button,
the Info window should display its Connections pane and list the
textField outlet. Either double-click on the textField line or make
sure it is selected and click the Connect button in the lower-right
corner of the Info window (Figure 7).

Figure 7. Click the Connect button to connect the
AppController to the textField.

7 Sampler WWW.MACTTEECCHH.COM

“4 mice” – Macworld

$49.95 - download free demo at PDFpen.com
Also available: PDFpenPro for creating fillable forms

Now you can fill out and save forms,
split, combine, search and even
scribble on your PDFs with ease!

Effortlessly edit your PDFs

smileonmymac.com

Creative software for your Mac
that does what you want!

Dave Mark is a long-time Mac developer and author
and has written a number of books on Macintosh
development, including Learn C on the Macintosh,
Learn C++ on the Macintosh, and The Macintosh
Programming Primer series.

Dave’s been busy lately cooking up his next
concoction. Want a peek? http://www.spiderworks.com.

About The Author

MT

WWW.MACTTEECCHH.COM8 Sampler

Next, we’ll connect the two buttons to their respective
AppController methods. Control-drag from the Say It button to
the AppController cube then, in the Info window, connect to the
sayIt: method.

Now control-drag from the Stop button to the AppController
cube and connect to the stopIt: method.

NSWindow’s initialFirstResponder
The last bit of Interface Builder work we’ll do is to set the

NSWindow initialFirstResponder outlet to point to the text field.
This tells the window that you want the text field to be active
when the window appears so you don’t have to click in the text
field to start typing. To get a feel for this, try running the
program with the initialFirstResponder connected and then with
it disconnected to see what happens.

Control-drag from the Window icon (to the left of the blue
AppController cube) to the text field. In the Info window, click
on the initialFirstResponder outlet and click the Connect button.

Now let’s type in the code!

Enter the AppController Code
Head back over to Xcode and edit the AppController.h file.

We’ll add the declaration of speechSynth:

#import <Cocoa/Cocoa.h>

@interface AppController : NSObject
{

IBOutlet NSTextField *textField;
NSSpeechSynthesizer *speechSynth;

}
- (IBAction)sayIt:(id)sender;
- (IBAction)stopIt:(id)sender;
@end

Next, edit AppController.m to look like this:

#import “AppController.h”

@implementation AppController

- (id)init
{

[super init];

NSLog(@”init”);

speechSynth = [[NSSpeechSynthesizer alloc]
initWithVoice:nil];

return self;
}

- (IBAction)sayIt:(id)sender
{

NSString *string = [textField stringValue];

if ([string length] == 0) {
return;

}

[speechSynth startSpeakingString:string];

NSLog(@”Have started to say: %@”, string);
}

- (IBAction)stopIt:(id)sender
{

NSLog(@”stopping”);
[speechSynth stopSpeaking];

}

- (void)dealloc
{

NSLog(@”dealloc”);
[speechSynth release];
[super dealloc];

}

@end

Build and run the application. Notice that you can click the
Stop button to stop the speaking, even in the middle.

Take a look through the code. Most of it should make
sense, especially if you’ve been following along with my
previous Cocoa columns.

The init: method calls the superclasses’ init drops a
message to the console, creates an instance of the
NSSpeechSynthesizer, then returns a pointer to itself.

sayIt: sends a stringValue message to textField to retrieve
the text, then, if there’s at least one character in the field, send
it via a startSpeakingString message to speechSynth. The string
is sent to the console as well, just to help you follow along.

stopIt: sends a message to the console, then sends a
stopSpeaking message to speechSynth.

dealloc: is called when the AppController object is released.
You’ll likely never see the console message, since the
AppController object was created automatically and is never
sent a release message. When it is loaded from the .nib file, the
AppController instance has a ref count of one. Not a big deal,
but worth noting.

Till Next Month…
One thing that Aaron does in his book is add a color well

to the program so the user can choose their own text color. See
if you can do this on your own. You’ll want to take advantage
of the NSColorWell class.

Be sure to check out http://spiderworks.com and I’ll see
you next month…☺

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

10 Sampler WWW.MACTTEECCHH.COM

Introduction
Python is easy to use, simple, powerful, and chock-full

of great modules (similar to AppleScripts you load via the
load script command). The design of the language “just
makes sense,” the modules are well thought out, and best
of all the language has many similarities to AppleScript.

Every day it seems I find more uses for Python than I
could have imagined. I use Python along with BBEdit to
automate all sorts of common text-based tasks: I have
scripts to help me resolve CVS conflicts, to convert decimal
to hexadecimal (and back), to encode selected text into
URL encoded format and more. Python’s readable structure
and multitude of included modules lends itself to quick
one-off utilities, often with less pain than a similar
AppleScript – at least in this author’s opinion.

In this article I’ll discuss how Python and AppleScript are
similar, and how they differ. Then we’ll walk through an
example script in both languages. Finally, I’ll conclude
showing how you can use Python and AppleScript
simultaneously in your projects.

AppleScript and Python share many
similar traits

Looking at a Python script should be a vaguely
familiar experience for an AppleScripter – the same
indented flow, and understandable syntax. When you are
creating a Python script you often try out little chunks of
code first, make sure they work, then put them in a larger
whole – just like you might when adding code to an
AppleScript. Let’s tackle these similarities in more detail:

WWhhiitteessppaaccee mmaatttteerrss
In AppleScript whitespace is automatically added by

the compiler so that nested commands (such as those in
an if, repeat, try, tell, etc) are always indented properly.
In Python whitespace is also important – in fact
whitespace tells the compiler that a line or block of code
is nested. When the indentation stops, the block of code
has ended. Contrast this to AppleScript’s approach, where
blocks of code are ended with end statements. The key
difference with Python is that it does not automatically

By Ryan Wilcox

add whitespace as AppleScript does. This isn’t as much of
an issues as it sounds, as most text editors auto-indent
when you type a return. It’s worth mentioning here that
statements that mark a block of code (such as for loops,
if statements, and even functions) require a colon at the
end of the “parent” line. The sample script presented later
in the article shows several indented blocks of code.

Having whitespace matter is both a good thing and a
bad thing. The good news: every Python script you run
into will have a similar style, indentation-wise. The bad
news: the compiler will complain if you mix spaces and
tabs to indent, and it’s annoying to have to debug
something you can’t see. For this reason using a text
editor that can Show Invisibles is so very important

(maybe even a requirement) while programming in
Python. As a sidenote, in cross-platform scripts, using 4
spaces to indent is recommended over using a tab, as
spaces are not so easily mangled by unsavvy text editors.

““ssiimmppllee”” ssyynnttaaxx
Python’s syntax is very straightforward, and often

compared to pseudo-code. For contrast, look at the
sample script later in this article, implemented first in
AppleScript, then in Python. The Python version, while it
is not as readable as the near-English AppleScript, reads
like English plus a bit of 8th grade algebra. AppleScript’s
approach of English-Like-Syntax-Wherever-Possible often
results in extra typing. Compare if you will AppleScript’s:

se t end of myList to “the end”
to Python’s:
myList.append(“the end”).

Python is not AppleScript
For some, the apparent similarity stops there.

Python brings its own unique flavor to the language
party, differing from AppleScript in some key areas:
cross-platformness, case sensitivity, and Python’s
(significantly) different approach to types are some of
what make Python a unique scripting language when
compared to AppleScript.

Python is Cross-Platform
Python runs on most major platforms – both

flavors of Mac OS, Windows, Linux, Unix, even the
PalmOS. Much of Python’s functionality knows what
platform a script is currently running under, and
adjusts platform specific things. For example, the

““bbuuiilldd aass yyoouu ggoo””
Both AppleScript and Python make it easy to

construct big scripts out of externally created
functions. Consider a script that needs to list all the
files in a folder. With AppleScript you can create a
blank script and start experimenting, and when you
have it working incorporate it into a bigger script.
Python also has this capability: taking small, building-
block pieces and constructing big things with them.
Python also has an interactive mode, so you can try
something out to see if it works, and when you are
satisfied that it works, paste it into your main script.

11 Sampler WWW.MACTTEECCHH.COM

A Tale of two languages

TThhee aaddvveenntt ooff OOSS XX bbrroouugghhtt wwiitthh iitt aa wweeaalltthh ((ssoommee mmiigghhtt ssaayy iinnvvaassiioonn)) ooff
ttoooollss ffrroomm tthhee UUnniixx wwoorrlldd:: tthhee ccoommmmaanndd sshheellllss,, gg rreepp,, sseedd,, llss,, ccaatt,, lleessss,, vvii,,
eemmaaccss –– aallll tthheessee uuttiilliittiieess aanndd ccoouunnttlleessss ootthheerrss.. IItt aallssoo bbrroouugghhtt wwiitthh iitt
pp rrooggrraammmmiinngg llaanngguuaaggeess –– pprroobbaabbllyy tthhee mmoosstt ppooppuullaarr oonnee bbeeiinngg PPeerrll.. OOSS XX
1100..22,, hhoowweevveerr,, aaddddeedd ttoo iittss rreeppeerrttooiirree aa ssccrriippttiinngg llaanngguuaaggee ccaalllleedd PPyytthhoonn..

WWW.MACTTEECCHH.COM12

linesep attribute of the os module will return the line
separator character(s) for the current platform. There
are certain times when you want to use a platform
specific API, and that’s perfectly acceptable as well.
One Python rule of thumb is “We’re all consenting
adults here,” meaning that the language won’t try to
prevent you from doing something potentially
“naughty” if you want to.

CCaassee MMaatttteerrss
In AppleScript, the compiler changes the case of a

variable to be the same as the first instance of that
variable. So, while case matters, the compiler takes
care of it for you. In Python case also matters, except
there is no automatic correction – what you type is
what you get.

WWhhaatt ddoo yyoouu ccoonnttaaiinn?? TTyyppeess MMaatttteerr
As any experienced scripter knows, AppleScript

plays fast-and-loose with type. Sometimes you can’t be
sure exactly what you will get back. This has its
advantages as well as its disadvantages. Take this line
of AppleScript for example:

set firstNum to “1”
set testVar to firstNum + 1

If you know that firstNum can always be converted
into number, this works great – it saves everybody
some typing. But here’s the puzzle: what is testVar? Is
it a string? A number? Without a specific declaration,
AppleScript will automatically coerce all of the values
to the same type, but the question still remains: what
type of object will you end up with? (To those of you
who answered that the result will be a number, go to
the head of the class.) However, as scripts grow in
complexity, being explicit regarding what type a
variable is becomes essential – you end up almost
fighting the implicit coercion you used (and loved)
with your smaller script.

With Python, there is no implicit coercion –
instead, variables have a very strict sense about what
type they are, and what they can do. (For those of you
versed in programming terminology, Python is
dynamically, but strongly, typed. You can create a
variable without caring what type it will be, but
Python keeps track of what kind of data that variable
currently has in it. Here is that same sample in Python:

testVar = int(“1”) + 1

This is how Python does coercion - instead of
AppleScript’s as xxxxx notation, Python uses xxxx(),
as C/C++ does. Trying to run “1” + 1 in python will
give a runtime error, as you can not concatenate ‘str’
and ‘int’ objects. Python has no idea what to do (it

Sampler

could do two things: cast “1” to an integer, or cast 1 to
a string. One answer will result in 2, while the other
gives “11”). One of the guidelines (Zens) of Python
says: “When faced with ambiguity, resist the temptation
to guess.” The “Zens of Python” guide both the
development of Python as a language and provide a
good framework for writing your own scripts and
modules. To read more about the culture of Python,
and the Zen/Design Principles of Python, visit the
following URL: http://www.python.org/dev/culture.html

BBaatttteerriieess IInncclluuddeedd
Like AppleScript, Python has a small core language,

while external modules provide additional
functionality. In AppleScript, these external modules
come in the form of Scripting Additions and Scriptable
Applications (created by Apple and third parties).
There are a few Scripting Additions that come
preinstalled with every Mac OS installation (Standard
Additions, URL Access Scripting, Image Capture
Scripting, among others), and several of the apps that
come preinstalled are scriptable. All Scriptable
Applications and Scripting Additions are written in
languages like C/C++ or Objective-C. In Python the
focus is not so much on applications as it is on
modules – collections of Python routines or objects,
usually written in Python, that perform certain tasks.
These modules are similar in style to AppleScript’s
script libraries. While some Python modules include
C/C++ code, these seem to be the exception, rather
than the rule. Python comes with a huge collection of
modules called the Standard Library, so instead of
asking the Finder for the size of a file, you would call
a function in the Standard Library.

IItt’’ss iinn tthhee ____ddoocc____ss
In AppleScript, there is always some human

readable documentation: the dictionary of the
application or scripting addition. Sometimes the
dictionary is not enough but it is always there, on your
machine. When I am writing AppleScript, I always have
at least one or two dictionaries open, referring to them
as I write my script, like a cheat-sheet right there on
my desktop.

Python, on the other hand, takes more of a “reference
book” approach to documentation – it is available in a
number of different formats, (downloadable from
http://python.org), but like any reference book, you hope the
documentation is up to date, complete, and that it describes
the method you want to use. There have been several utilities
written to reduce the risk of these mistakes in the
documentation happening, and the Python documentation is
usually of high quality. Still, the possibility of out of date
documentation exists. The Mac Python IDE includes a

module browser, letting you explore different modules like
you do an AppleScript dictionary, but it’s often not as
helpful. As mentioned before, most Python modules are
coded in Python itself, and you can usually view the source
code for a module, trying to figure out what a function
actually does.

The standard Python practice is to add a string literal
describing the function and parameters it takes as the first line
of the function. This string is called a “docstring.” If you view
a module in the Mac Python IDE’s Module Browser, this string
will be described as __doc__ (pronounced “under under doc
under under”) – however this __doc__ string is what is
rendered for the documentation – meaning that if the
documentation is poor, the __doc__ will probably be as well.

Here’s an example of a function with a docstring. But first
it is also important to note Python’s string literal functionality.
If you have a character in a string literal that you would
ordinarily have to escape, for example a quote character, you
can instead triple-quote the string literal – the string is
considered everything enclosed in triple quotes (“””I’m in
triple quotes”””, for example, is a perfectly valid string literal.)

def addValues(value1, value2):
“””addValues adds two numbers. Simple. value1 is

the first value to add, value2 is the second. Returns
these two values added together”””

return (value1 + value2)

This standard practice is a great practice to adopt for
your own methods. Adopting this documentation convention
will help you remember what a function does, why you need
it, and what the parameters do when you revisit the function
at a later date. AppleScript is without such a standard
practice; everybody has their own styles of documenting an
AppleScript method, if they do it at all.

An IDE and an example:
Kicking the tires

Python makes a great multi-purpose language. Internally
we use it from everything from creating shell programs, to
making BBEdit Unix filters, creating throw-away one-time
scripts, or designing custom CGI scripts for our clients. You
can even use Python in conjunction with Apple’s Cocoa
application framework using PyObjC. With some additional
modules, you can use Python just like you would AppleScript
– to display simple GUIs, talk to other applications, and do
other user administration tasks.

SSttaarrttiinngg aatt tthhee bbeeggiinnnniinngg:: IInnssttaalllliinngg aa GGUUII ffrriieennddllyy
PPyytthhoonn

While you can use Python on the command line, the
command line program gives you everything you would
expect from a Unix based tool: no GUI capabilities, no IDE
and no graphical debugger. In short, it’s not the best
environment for Mac people who are used to such niceties.

In the pre-OS X days, a Mac OS 9 version of Python,
including an IDE, was provided by Jack Jansen. The IDE and
all the Mac specific modules from those days still work
under OS X, but their appearance has not been updated for
OS X. Those looking for prettier IDEs on OS X shouldn’t fret
– there are several that show promise, but as of this writing
most are still in the early stages of development.

You can download the MacPython package at
http://homepages.cwi.nl/~jack/macpython/
This package will install the PythonIDE application

(found in your Applications/MacPython-2.3 folder) along
with some other things. Double click on the Python IDE
and you should get something similar to this:

Got it? Does it look something like this? Good. Let’s go
to work.

AA ssiimmppllee iilllluussttrraattiioonn,, lliinnee bbyy lliinnee
Let’s start things off with a simple example – a script

that accepts user input and appends it to a file. It should be
noted here that simple AppleScript display dialog like
interfaces aren’t Python’s strong suit. While the MacPython
package helps, it’s still not as easy as AppleScript’s display
dialog. This (and inter-application communication) are two
of the things that Python does poorly, however there are two
packages currently competing to become the de facto
standard for inter-application communication in Python, so
the tide (at least on that front) should turn rather quickly.

First, the AppleScript:

set filepath to choose file with prompt “select a file
to append to”
set fileRef to open for access filepath with write
permission

13 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM14

repeat
set dialogResult to display dialog “enter a line”

default answer “line” buttons ¬
{“No More”, “Enter”} default button 2

if button returned of dialogResult is “Enter” then
set textReturned to text returned of dialogResult
write textReturned & return to fileRef

else
exit repeat

end if
end repeat
close access fileRef
Now, the Python:
import EasyDialogs, os

filepath = EasyDialogs.AskFileForOpen(“select a file to
append to”)

if filepath:
fileRef = open(filepath, ‘w’)
while True:

textReturned = EasyDialogs.AskString(
prompt = “enter a line”, default = “line”,
ok=”Enter”, cancel = “No more”)

if textReturned:
fileRef.write(textReturned + os.linesep)

else:
break

fileRef.close()

Let’s take the Python sample line by line:

import EasyDialogs, os

As mentioned before, Python organizes sets of
functionality into modules. Import loads these modules into
your script. Here we import both the EasyDialogs module (a
Mac specific module) and the cross-platform os module.

filepath = EasyDialogs.AskFileForOpen(“file to
append

to please”)

This line calls the AskFileForOpen method in the
EasyDialogs module, which will ask the user to select a file.
By comparison, AppleScript searches all of the installed
scripting additions for you, looking for the command, and
sometimes it “helpfully” finds the wrong one. This is what
often causes a terminology conflict. If AppleScript required
you to specify where to get the terminology from, you might
have to write something like set filepath to standard
addition’s choose file which may be more typing, but would
remove any potential ambiguity. Sadly, AppleScript does not
support this style of reference.

if filepath:

In AppleScript, if the user presses cancel in a choose file
dialog, AppleScript raises an error and terminates the script
(unless you handle the error in an on error block). Python’s
AskFileForOpen function does no such thing – it just returns
None and keeps on executing the script. We must explicitly
test the value of filepath for its existence (filepath would be
None if the user pressed the “Cancel” button on the dialog).

Sampler

In Python variables that are None are simply considered
false. Truth in Python is a tricky thing, but best explained by
the following web page:

http://www.users.csbsju.edu/~clusena/python/fundamentals/node10.html.

fileRef = open(filepath, ‘w’)

Again, similar looking to the AppleScript – open the file
at filepath with write permissions.

while True:

Here the aforementioned Zen of Python “when faced
with ambiguity, resist the temptation to guess” returns. The
above line shows how deeply this statement is ingrained in
the Python culture. The equivalent AppleScript statement is
just “repeat” – to which Pythonistas would ask “repeat
what?”. Here Python explicitly says “do the following as long
as this statement is true”. The True must be capitalized –
True means true, while true means nothing. Got it? Good.

textReturned = EasyDialogs.AskString(
prompt = “enter a line”, default = “line”,
ok=”Enter”, cancel = “No more”)

By reading the documentation I found this method, and
figured out what parameters to pass to it. These parameters
are self-explanatory, but it did take a bit of hunting in the
documentation (and maybe even a read of the source) to
learn exactly how to construct this line.

if textReturned:

Here again we test the value of textReturned – if it
contains anything, the if executes. Same as the if filepath line
above. It is worth repeating that lines that begin blocks of
indented code, such as this line, need a colon at the end.

fileRef.write(textReturned + os.linesep)

Here we write the text the user entered, and a line separator
(of whatever platform we’re on) to the file. As mentioned before,
os.linesep will return the end-of-line character(s) for whatever
platform the script is on.

else:
break

Here we come to the end of the if textReturned block. If
textReturned is None, as belabored in more detail above, the user
pressed the cancel button – we should abort our while loop.

fileRef.close()

Always close our file – in this case, by calling fileRef object’s
close() method. Note the indentation level of this line – it is on the
same level indentation wise, as the while statement. This signals the

WWW.MACTTEECCHH.COMSampler

end of the while loop – the indentation level changed. While this
was mentioned previously in the article, in the “whitespace matters”
section, it deserves repeating here.

Two Worlds Collide: AppleScript,
meet Python

Even if you don’t want to use Python as your main scripting
language, you can slowly move parts of your AppleScripts into
Python – for instance having your Python scripts do things that
are hard to do (or slow to do) in AppleScript, but easy in Python.
Here’s an example that will find a string inside a string (or return
0 if it does not). This task is easy to do in AppleScript (using the
offset of functionality), but it can be very slow. Instead of using
offset of we use a Python script to do it.

Python script: substr.py:

#!/usr/bin/env python
#first line tells us where to find python.

#a # character means the rest of the
#line is a comment, just like AppleScript’s —

import sys

findWord = sys.argv[1] #get the first command line
argument
thestring = sys.argv[2] #get the string

print thestring.find(findWord) + 1
#AppleScript strings start at 1, python’s @ 0. Adjust
the answer for AS.

Create the above Python script your favorite text editor,
and save it. Make sure the line endings are set to Unix line
endings, just to be safe.

Now, create the following AppleScript, and save it in the
same folder as the above Python script, in Application format.

on run
display dialog (“world has been found at character: “

& pythonSubStr(“world”, “hello world”))
end run

to pythonSubStr(toFind, theString)
set myContainer to getContainerofMe()

set myResult to do shell script “python “ &
myContainer

& “substr.py “ & “ \”” & toFind & “\”” & “ \”” &
theString & “\””

—tell python what script to open up, and what params
to pass

—also note that the quotes we put around both strings
are to prevent the shell from

—breaking them into lots of different arguments (the
shell sees a space

— as an argument separator)
— this is usually not what we want to do. These will

be removed
—automatically by Python.

return myResult
end pythonSubStr

on getContainerofMe()
tell application “Finder”

set dest to path to me
set temp_container to container of dest as alias
return (quoted form of POSIX path of temp_container)

—POSIX = unix path
end tell

end getContainerofMe

However, it’s worth noting here that do shell script on my
test machine (400Mhz Powerbook G4) takes about .5 seconds to
execute. This is not because Python is slow, but rather do shell
script can take a while to do its initialization and termination
routines. This slowness, however, may just beat out a vanilla
AppleScript using offset of, depending on the data.

Using Python, you can sometimes build functionality into
your scripts that normally would require third party OSAXen in
AppleScript. Complex string manipulations, regular expressions,
even sending email. Using do shell script to merge AppleScript
and Python code might just provide that extra oomph for your
script, or may just speed up your development process.

Conclusion
With it’s familiar-feeling language, cross-platform abilities,

large standard library, and simple, readable syntax, you might
find Python an interesting choice for your next project – even if
it’s only a part of it. Feel free to experiment with the built-in
Python interpreter. Fire up Terminal.app and enter the command
python to be taken into the command line Python’s interactive
mode (Control-D to get out). For those of you of the GUI
persuasion, see the Python Interactive window in the Python IDE.
Learn more about Python by visiting the Python website at
http://www.python.org, in particular the Introduction section
(http://www.python.org/doc/Intros.html).

References
For additional information on Python, see

http://www.python.org. For additional information on using
Python on the Mac, see http://www.pythonmac.org/. Thanks go
to Matthew Strange and Jared Barden for reviewing this article.

16

Ryan Wilcox is the founder of Wilcox Development Solutions
(www.wilcoxd.com) specializing in carbonization, cross-platform
application development and e-commerce solutions. He often has a hard
time thinking of witty things to say in these blurbs. You can reach him
at rwilcox@wilcoxd.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

PERFORCE

Figure 1 – P4V, the MacOS X client GUI

Introduction
When I was in engineering school, my software

engineering professor made a point of saying to the
undergraduates, “Use the tools you have.” This bit of real-
world advice was useful both because the tools we use
are rarely the enabling factor for the success of software
projects, and also because individual engineers are rarely
in a position to dictate the tools to be used on a project.
Mac developers are especially aware of limitations
imposed on their choices by factors beyond their control.
With this in mind, Mac developers are fortunate to have
Perforce as an available and well-supported option when
shopping for a revision control system.

My Perspective
I work for Nemetschek North America – formerly

Diehl Graphsoft – makers of MiniCAD & VectorWorks
CAD software. We have a development environment with
about 40 engineers interacting with our source code base

through Perforce – a tool that we selected three years
ago to replace Microsoft’s Visual SourceSafe. Before that
(a long time before) we used MPW’s Projector from
Apple for version control. I will use our SourceSafe
experience as a point of comparison, and I’ll mention
CVS comparisons if I happen to know, but I have never
used CVS in a production environment. I will try to use
Perforce terminology where possible and clarify it where
necessary. One exception to this is that I will use the
term “check-out” in some cases to indicate the
functionality known in Perforce terms as “Open for Edit”
because it makes the description more accessible for
non-Perforce users.

What is version control
I think it’s a safe bet that anyone who works with

other developers on a team of any size has a pretty good
idea of the basic elements of version control, but to get
everyone on the same page, I’ll outline some of the basic
features. All version control systems allow multiple
engineers to work within the same code base by serving
as a file librarian and tracking individual users’ work on
the files that are being modified. They maintain a history
of the changes made to files within the system so that
earlier versions of the files can be retrieved and
differences between versions can be displayed. Version
control systems also provide a mechanism to track some
additional data about the changes such as who made a
change, a description of what was done, and when it
happened. Beyond this very basic set of functionality, the
capabilities of various systems diverge.

WWW.MACTTEECCHH.COM18 Sampler

Powerful version control for the Mac (and all
those other platforms)

By Paul PharrFocus Review

19 Sampler WWW.MACTTEECCHH.COM

System Capabilities
Perforce, produced by Perforce Software in Alameda,

California, is a modern and full-featured version control
system intended to be the main repository of all of a software
project’s files, structure, and history. It has a feature set which
can look similar to that of CVS, PVCS, SourceSafe, or
ClearCase. With such products, however, a high level outline
of the feature set often leaves out a lot about how the
product will actually work in a given development
environment. Perforce differentiates itself in the following
ways:

Robust
Fast & Efficient
Automated merging
Inter-File Branching Model
Atomic change submission
Low administration overhead

I’ll cover each in some detail, and then describe some
of the Mac-specific tools and functionality. But first, I’ll
introduce some basic concepts and terminology.

Perforce basics
Understanding Perforce involves a few concepts that

I’ll cover from a user’s point of view so they can be used
as a point of reference for examples that follow. Perforce
is a client-server system in which the main database runs
on a single central server and clients connect using a
TCP/IP based protocol to interact with the server. The
server can be run on or MacOS X, Windows NT/XP, or
various flavors of Linux and Unix. Command line client
software is available for almost any conceivable platform,
whereas more mature GUI client implementations are
available for fewer platforms. Windows has the most
mature GUI client software called P4Win - implemented
as native Windows code. Mac, Windows, and Linux share
a more recently introduced, but very full featured client
called P4V (short for Visual) which is about a year old. It
is implemented using the QT cross-platform toolkit and is
fast and reliable with a native looking GUI on the
platforms it supports. The second major release of P4V is
in late beta and is what I used on the Mac while working
on this review.

Perforce is set up with user accounts for those that
will be accessing the system. The “depot” – Perforce’s
term for the main hierarchy of files under version control
– is populated with the files that make up the

development projects of the company or department
using Perforce. Each user can have one or more client
workspaces, which are each associated via preferences
maintained on the server with a particular root path on
their development machine. Users can have as many
workspaces on one or more machines as they find useful.
In normal use, the user will keep a copy of some part of
the overall depot on their local file system. They will
update their workspace files with changes made to the
depot by others (described by Perforce as “Sync-ing”), edit
files within their local workspace, and submit changes
back to the depot.

From this description, Perforce is similar to other
version control tools available. Now we’ll look at the
details that differentiate Perforce.

Perforce is Robust
Keeping source code safe is one of the highest

priorities of a software developer, and it’s good to know
that the tool that is most responsible for the safety of your
code places a high priority on maintaining a robust
repository. Perforce is architected to facilitate recovery if
disaster strikes, but is implemented so well that recovery
is rarely if ever necessary.

Perforce is a client-server system in which all client
interaction takes place via a TCP/IP connection to a
single centralized server. This eliminates a plethora of
potential problems compared to systems such as
SourceSafe where multiple clients access database files
through a shared file system. This architecture gives the
server responsibility for recording changes to system
data in a way that allows full recovery should disaster
ever strike. Perforce uses an industrial strength database
for its metadata and provides for checkpointing and
journaling, thereby allowing full recovery from most
disaster scenarios. Source code files in Perforce are
stored using industry-standard formats for reverse-delta
storage, compression, and Mac resource file encoding
allowing recovery of their content even if Perforce’s
databases were completely deleted.

The system also has ample tools to assure you that
everything is working as expected. Every revision of
every file is given an MD5 hash which is stored in the
database and it is straightforward to ask the server to
verify that every checksum matches for all files and
revisions stored in Perforce. It’s an easy and common
practice for Perforce sites to regularly verify that every
revision in the system is corruption-free.

WWW.MACTTEECCHH.COM20 Sampler

Knowing that Perforce is built with recovery in mind
gives you the comfort of sleeping well at night, but
productivity is still compromised if you experience
frequent problems. Perforce has an outstanding reputation
in this regard among its customers, and our site is certainly
evidence of their high reliability. In our three years of
using Perforce heavily, we have seen only one server
crash - related to differencing revisions of a very large file
with very long lines. Perforce support worked with us to
carefully but quickly identify the problem and a
workaround. They had isolated and fixed the cause and
issued a public update to their entire product line within
a week of the problem report.

Our use of the product has also confirmed for us that
it is virtually impossible for any kind of client failure to
cause a database or file corruption on the server. We have
occasionally seen bugs in the client software which affect
specific features, but they have never had material impact
on the overall robustness of Perforce, and have, for the
most part, been resolved by a subsequent release of the
software. Perforce is, as a whole, at least as robust as any
other software we use.

A final factor in robust system performance is that
Perforce provides outstanding support – especially in
case of emergency. I have heard of a handful of cases
where a Perforce server was compromised by hardware
failure, but have never heard of a significant loss of data.
The consensus in the Perforce user community is that
they will do anything in their power to maintain the
robust reputation of their software.

Every one of these points stands in stark contrast to
the experiences we had with SourceSafe, where we
would suffer from file corruptions on a weekly basis, and
more significant system corruptions every few months.
There were no mechanisms to prevent this or aid
recovery. The analysis tool always complained of dire
corruption, but provided no means of fixing it. Support
was non-existent. We felt like we could lose our entire
database at any moment. My impression is that CVS is
much better in this respect, but support can still be very
hard to come by.

Perforce is Fast & Efficient
Speed is not often considered a feature of software,

but in the world of revision control where individual
operations can involve the inspection or transfer of tens
of thousands of files, you will soon come to realize which
operations are doing more work than they should – and
Perforce prides itself on having built efficiency into the
system from the ground up.

The database used by the server that I mentioned
as a key element of the system’s reliability also has
dramatic impact on the speed of most normal
operations. I’ll use updating or syncing a client’s

source code as an example. In Perforce, the central
database keeps a record of every file revision held by
every workspace. If you ask to sync to the latest
revision of a set of files you don’t have in your local
workspace, then the server is forced to send you
everything, which can be time consuming. During
normal work, however, you will usually already have
the current revision of most of the files you’re
working on. In that case, Perforce will only need to
send you the files that have changed since your prior
sync operation, and it can determine this with a very
fast query on an indexed database without inspecting
anything on the client machine’s file system. A sync
operation on a project with 10,000 files typically takes
a few seconds, unless it is very out-of-date. The
longest sync operations I routinely see are a couple of
minutes. SourceSafe and CVS have no provision for
optimizing this common operation and will typically
exhibit performance corresponding to the total
number of files in the hierarchy being updated. We
would often wait 10-15 minutes using SourceSafe,
whereas Perforce is almost always done in seconds.

As an example, after a week of vacation, I synced our
main development branch in just over 2 minutes and got
3500 new files of 18,600 total files in the branch. I synced
a maintenance branch and got 5 new files of 10,000 total
in about 3 seconds. Most Perforce operations are similarly
efficient, including merging changes between branches.
Another example - It took about 15 seconds to list all
243,000 files in our depot to a text file using “p4 files
//depot/... > filelist.txt”

An obvious benefit of this efficiency is that off-site
work becomes feasible. Three of our users are on another
continent connected by a 128kbps internet connection.
They certainly need to adjust their work habits to account
for the lower bandwidth, but not by much. We have never
sent them a code snapshot, and they have never been at
our site. Nevertheless, they have the same level of project
interaction as our local users. Better still, working over a
cable-modem sized pipe for local users connecting from
home rarely feels much slower than the 100Mb/s switched
Ethernet at the office. Perforce also has a recently
introduced remote caching server called Perforce Proxy
intended to speed up access for an entire remote site.
(Our remote site performance without using Perforce
Proxy has been good enough that we have decided not to
use this tool yet.)

Perforce Automates Merging
One of the primary benefits of version control is that

it enables concurrent development among engineers. The
success of this in a production situation varies depending
on the extent to which the tools have been refined, and
Perforce does this very well. Merging or resolving

21 Sampler WWW.MACTTEECCHH.COM

differences is also an area that has seen marked
improvement in the MacOS clients in recent releases –
especially P4V, the new MacOS X GUI client.

There are two situations where you can be exposed to
the need to resolve differences. The first is during normal
development when you are working on the same set of
files as someone else. The second is during multi-branch
development where one branch has changes which need
to be moved or propagated to another branch. For the
sake of this discussion, I’ll keep it simple and talk about
the first case, but bear in mind that all resolve functionality
is pretty much the same regardless of whether you are
checking in a small file change to the project you are
working on or doing a large inter-branch merge.

For example, you and another developer both check-
out and begin editing a file at the same time, but your
changes are more extensive, and take longer. You attempt
to submit your changes and find that the latest revision of
the file you’ve been editing is newer than the one you
started with because the other engineer submitted her
changes first. Perforce provides a great deal of control over
this process using their resolve functionality. Whenever you
ask Perforce to update a file using another version of that
file, it uses the always-present database to determine what
kinds of changes might be coming across and what kind of
action may be necessary. It knows if you have opened a file
for editing operations, so if you ask to sync to a newer
revision of that file, you may need to resolve potential
conflicts between the changes made. Similarly, if you try to
submit changes to a file that has been changed in the depot
by someone else, you may need to resolve differences. This
is the case described above, and there are a number of
resolve options available to the user.

After any operation that can encounter conflicting
differences, the Perforce GUI indicates files that need to be
resolved with a special icon. First, you might try an
“Automatic resolve” in which changes made by either
engineer will be merged to the result file as long as the
changes do not overlap. This typically works and the file is
merged, but if it fails because of overlapping changes, you
will want to interactively merge the changes. When you
merge interactively, you are given the opportunity to review
all of the changes made by yourself and the other engineer,
and choose which to use. The conflicting changes are the
most interesting, as they are the ones that require some
modification to the code to preserve the original intent of
each change in the final merged file. Perforce will typically
handle all but the conflicts automatically, leaving only the
work that benefits most from direct user interaction.

If necessary, Perforce will apply all of these operations
to very large sets of files at once. My company routinely
uses feature branches to accomplish large development
projects, wherein a complete set of features is developed
outside of our main development branch to avoid
disrupting other engineers. This development effort may go

on for months, and affect hundreds or thousands of files.
At the end of all of this, we need to get the changes back
into our main branch intact. Without discussing too many
details, I’ll cover the process you would use with Perforce
in this situation.

First, you’d tell Perforce to “integrate” changes from one
branch to another. In other words, you are specifying what
set of changes to merge without telling it specifically how
you want that accomplished. You can limit the scope of the
integration based on the path to the files, or specific
versions of the files, but you can just as easily tell it to do
the whole set of changes at once. Perforce will then “check-
out” all of the files in the destination branch that were
changed in the source branch. All of these files now have
the special icon that indicates Perforce is waiting for you to
specify how to resolve differences.

You would then tell Perforce to automatically resolve
all the files that had no conflicting changes. This operation
usually eliminates about 90%-95% of all changes with no
manual work on the part of the engineer doing the merge.
It can be done in a single step no matter how many files
are involved.

Finally, you are left with a much smaller set of files that
still have the special icon that indicates they have
differences which have not yet been successfully resolved.
Now you’ll need to resort to interactively merging the
conflicting differences using the visual three way merge tool
provided by Perforce.

The above discussion may be too detailed for some, but
the overall concept is that even when manipulating large sets
of files, Perforce always tries to avoid involving you if it’s not
necessary, but if there are situations that need your attention,
you will be involved, and given the detailed information you
need to proceed efficiently. Perforce provides a consistent set
of integrate & resolve functionality that is applied the same to
all merging operations. It stands far ahead of CVS or
SourceSafe in this respect, and ahead of most non-MacOS
version control tools as well.

Inter-File Branching
Since we have been talking about merging between

branches, I’ll discuss the branching model used by
Perforce. They call it Inter-File Branching, but in essence
it is the use of the depot directory hierarchy to represent
different branches of your development projects. The path
to each individual file in the depot includes a full human
readable representation of the intended purpose of that
file. For example, it’s easy to differentiate the intent of
these two files:

//depot/Engineering/VectorWorks/ReleaseBranches/VectorWorks10.0
.0/AppSource/Project Setup.txt
//depot/Engineering/VectorWorks/TaskBranches/VW10/3DDevelopme
nt/AppSource/Project Setup.txt

WWW.MACTTEECCHH.COM22 Sampler

Behind the scenes supporting the seemingly simple
Inter-File Branching concept is the Perforce database.
which is aware of all branching relationships between any
two files in the system. For every pair of files that has a
branching relationship, it tracks the specific revisions that
have been integrated. For large hierarchies of files that are
related to other branched files, it’s quite easy to display all
changes made to a particular branch chronologically, or
even to display all revisions in one branch that have yet
to be merged to another.

To a large extent, the Inter-File Branching model
works in concert with the automated merging capabilities
described above. It allows independent branches within
the codebase (and their independent change histories) to
exist in a logical environment where every engineer
cannot help but know how they are differentiated from
each other simply by virtue of the path to the files. Inter-
File Branching provides the conceptual foundation that
can keep large teams of developers efficiently working on
parallel development branches with very little
management overhead.

Other tools such as CVS have a file hierarchy for your
files, but then each file has a tree of numeric versions with
no immediately apparent meaning. Thus every important
event in CVS needs to be represented by a label that pulls
together an arbitrary set of files and versions into a
meaningful package. What an individual engineer needs
to do in CVS to accomplish a simple task such as “Merge
all of your version 4.1 changes into the main development
branch” becomes so complex and error-prone that it
prevents projects from even attempting to do large-scale
parallel development. (Perforce also has labels, but they
are rarely used because other Perforce functionality makes
them much less necessary.)

SourceSafe has no meaningful tools to assist merging
changes between branches and cannot effectively be used
for any significant parallel development efforts.

Atomic Change Submission

Figure 2 – Revision history of a single file
with changelist comments

Figure 3 – Pending changelists before submission

Atomic change submission is another refinement that
stems from the rigorous database architecture developed
by Perforce at the outset. The concept is simple to grasp,
and prevents a host of ugly side-effects which afflict
competing products without this feature. Simply stated, if
I try to submit changes to a set of files, and for whatever
reason I am unable to change one or more files, then the
entire submission is rejected. This dramatically improves
the chances that the project as submitted to the version
control system will be in a consistent, and buildable state,
and improves the ability to analyze complex changes that
have gone into the project after the fact.

In SourceSafe or CVS, If I submit ten files, and the last
one has a conflict with a change that was already
submitted by another engineer, I won’t know it until the
first nine have already been submitted. At that point, I
may have a big problem, and will need to scramble to
come up with a fix. If other engineers step into that trap,
and check-in more files before the problems are solved,
then the mess keeps getting bigger. In Perforce, if I submit
ten files, and one of them has a conflict, then the entire
submit fails before the central database is modified at all.
I can then resolve the conflict without the pressure of
having just checked-in a partial set of files which do not
build.

In normal use, the organization of work allowed by
Perforce changelists is also very beneficial. All of an
engineer’s open files are assigned to one or more pending
changelists visible to all users of the system. (See Figure
3) The choice of which files to include as well as the
description of the changes can all be prepared in advance
to eliminate last-minute errors when submitting changes
to the depot.

Unlike some other revision control systems where
atomic change submission is tacked on as an afterthought,
it is core to the implementation of Perforce. Every change
that has been successfully submitted to the system is
represented by the set of files that changed, a high level
description of the significance of that change, and a list of
files that were affected. The description of a change
applies to the entire change (and all files that make up the
change) rather than each individual file being given a
duplicate of the description. The history of a hierarchy of
files includes a list of the high level changes and their

23 Sampler WWW.MACTTEECCHH.COM

descriptions, not the less useful list of every file that
changed between two dates. One can even implement
server-side trigger scripts that can examine a proposed
submission and programmatically accept or reject it in its
entirety based on a centrally maintained submission policy.

Low Administration Overhead
Perforce requires very, very little administration

attention. If you install the server properly, set up your
backups, and maintain the server hardware with adequate
RAM and drive space, the only administrative attention
required is upgrading the software as frequently or
infrequently as you like, and a small amount of overhead
when adding new user accounts or cleaning up after users
who depart. Perforce has never once created an
emergency for us, and I can’t see a site needing a full time
administrator for this system until it has many hundreds of
users. Even then, I think there would be a lot of free time
on that person’s hands.

SourceSafe will quickly burden an administrator with
unpleasant tasks such as the investigation and patching of
file and database corruptions. Based on our experience,
and that of others I’ve talked to, this is virtually certain
over the long term with more than a handful of engineers
using the system.

CVS will probably be less troublesome with regular
maintenance, but the lack of thorough documentation and
support and the need to assemble client and server pieces
from various open source projects can certainly add to the
initial outlay of effort.

Other info
There are some other features that do not warrant

extensive discussion, but are important to mention.
Perforce maintains the ability to fully access all of the
client functionality through their command line tools. This
is the universal Perforce interface. It’s available
everywhere and can do anything that can be done with
Perforce. This means that there is a backup plan if you
ever run into something that can’t easily be done using
the GUI. It also means that the system is highly scriptable
and extensible, as you’d expect any mission-critical
developer tool to be. It works well with most any scripting
environment (Python, Perl, and possibly Ruby being the
most commonly used).

Mac Software Support
Having talked at some length about the core system

functionality, I’ll spend some time talking about Mac-
specific support. As far as the server goes, MacOS X is a
supported platform as well as Linux & Windows. We use
a Windows 2000 server platform, and there are no issues

I’m aware of related to mixing Mac & Windows clients
and servers.

The client software on the Mac includes MacOS X
native command line tools as well as P4V - the visual GUI
client, P4Web – a web browser based client, and a
CodeWarrior plug-in. There are also legacy clients for MPW,
older versions of CodeWarrior, and a MacOS 9 based
version of P4Web. Finally, Apple has integrated native
Perforce support into the Xcode development environment.

GUI Interface – P4Web & P4V

Figure 4 – Graphical text differences display

P4Web used to be the only “GUI” interface to Perforce
on the Mac, and we used it successfully for a couple of
years. It takes a little getting used to, but became quite
easy to use, if a little slow. From my point of view, there
is no reason for most users to continue using P4Web as
the current version of P4V is faster, easier, more capable,
and nicer looking. It introduces much better file
differencing and merging capabilities, which were sorely
lacking on the Mac under P4Web. Figure 4 is an example
of the kind of text difference display P4V produces. You
can easily display the difference between your local copy
and any version in Perforce – or between any two
versions of any file in the depot.

P4V is being developed by Perforce as the next
generation GUI for Mac and Linux. With only a few
exceptions, P4V has the full functionality of P4Win – the
native Windows GUI client. In some respects, such as the
graphical diff viewer, it’s better. I think Perforce would
ultimately like for P4V to be the only GUI client – even on
Windows. They may have a way to go to achieve that, but
they are rapidly improving P4V, and it’s already at a state
of good usability.

CodeWarrior Integration
The Perforce CodeWarrior plug-in is most useful for

environments where CodeWarrior is the development
platform, and you want quick access to syncing,
checking out, and differencing files from within the
IDE. You can submit changes from within the IDE, but
the ability to resolve conflicts if they occur is weaker
than either P4Web or P4V, and you’ll probably gravitate
to those more capable tools.

Xcode Integration
Apple has integrated Perforce support directly into

Xcode, and it provides the same feature set as their CVS
integration – namely sync, check-out, check-in, and diff.
As I don’t use Xcode for production work, I’m not sure
whether this integration works better than the
CodeWarrior integration when submitting conflicting
files. Either way, we don’t find it difficult to use the GUI
tools for the more demanding tasks.

References
There is a long list of major software companies, and

projects with hundreds or thousands of developers who
are happy Perforce users. See the customer spotlight
page at http://www.perforce.com/perforce/customers.html for a
bunch of interesting reading. Companies like Palm,
Symantec, Macromedia, and TiVo, among many other
household names, have standardized on Perforce as a
best-of-breed solution for Mac development as well as
virtually any other platform.

Pricing
Current pricing for Perforce is $750 per user, which

includes a year of upgrades and support. Continuing the
upgrade & support contract costs $150 per user per year.
Perforce has special site licensing available for educational
institutions, free licenses available for open source projects,
and an unlimited time evaluation version which includes
two users and two workspaces. If you’d like to evaluate
more in depth in a production environment, Perforce will
supply you with a time-limited license enabling a larger
number of seats, depending on your environment.

Final Word
Perforce is a full-featured revision control system that

differentiates itself from the competition by the
uncompromising quality of its implementation. Mac
support was acceptable three years ago, but due to recent
improvements such as P4V for MacOS X, it is now very
good, and still improving rapidly. Perforce is developed
by a team that sets priorities early, and sticks to them.
Producing a top-notch Mac development product is
clearly one of their priorities. Oh - and if you’re interested
– Perforce is clearly one of the top players in Windows
and Unix version control as well.

Paul Pharr manages the ongoing software development of the VectorWorks
family of CAD applications at Nemetschek North America. You can reach him at
pharr@nemetschek.net.

MT
About The Author

What’s under your hood?
High-performance inventions are driven by powerful and
robust engines. That’s why OpenBase SQL delivers real
fault-tolerance—and the horse-power today’s multi-user
applications need.

Find out how OpenBase SQL stacks up against other
databases at http://www.openbase.com/databases.pdf

“OpenBase allowed us
to quit worrying about
the database so we could
focus on our business.”

Josh Paul, Overhyped Technologies,
creator of software that stores
fi lm clips for Reality TV shows.

Test-drive OpenBase SQL
with a free, single-user developer license

OpenBase Forms™ database GUI building

application available soon for OpenBase SQL!

What will you build with OpenBase?
www.openbase.com/testdrive

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

WWW.MACTTEECCHH.COM26 Sampler

Want some rapid development?
One of the advantages that is mentioned about the Cocoa

development environment is the well-developed frameworks that
are provided, giving impressive functionality without much effort.
A recent addition is Web Kit, which is the framework which
provides a full suite of components required for web browsing, and
are the basis of the Safari web browser from Apple. To illustrate the
power of Web Kit, Apple explains in the documentation how to
make a browser with only one line of code. Some folks have
expanded on this explanation, and in the discussions that ensued,
others pointed out that it is possible to write a browser using Web
Kit with NO lines of code. This article will explain how, and discuss
some of the capabilities of Web Kit as well.

Fast lane
In this age of 24/7, just-in-time and accelerated learning,

some of you may want to get right to the point, while others
want more details. To satisfy the more experienced readers, or
the less patient, here is the executive summary of the main
points necessary:

Install Project Builder, December 2002, if not already
installed

Install Safari, if not already installed
Install Web Kit
Make a new Cocoa Application project in Project Builder
Add the Web Kit Framework to the project
Open up the MainMenu.nib file in Interface Builder

Drab the Webview header file to Interface Builder
Add a Customview to the main window
Change its type to Webview
Add a text box to the main window
Connect the target output of the text box to

takeStringURLFrom in the Webview
Build the project
Type a URL in the text box and hit Enter
Browse away!

The rest of this article fills in the details, and add a few
niceties along the way.

Origins and background
Apple built the technology used in its new browser, Safari,

on existing open source projects. KDE is an open source
“desktop” environment for unix. Part of KDE is a set of tools for
rendering HTML, called KHTML, and a set of tools called KJS,
which assist with scripting. These two components were used
by Apple to develop the core classes that are used in Safari. The
framework incorporating these classes which they developed
for Safari is called Web Kit, and Apple released the interface to
Web Kit during the WWDC in June of this year.

Web Kit provides an amazing amount of functionality
with little effort. It supports HTML, DOM, SSL, Javascript,
stylesheets, embedding Java applets, and a “history” of
recent sites. What this means in practical terms is that it is

By David Linker

RAPID DEVELOPMENT

NoCode Browser

Using the Apple’s Web Kit SDK to make a web browser

27 Sampler WWW.MACTTEECCHH.COM

possible to incorporate all of this functionality in your
applications with minimal effort.

Apple provided a very terse description of how to do this
on the pages describing the use of Web Kit at:

http://developer.apple.com/documentation/Cocoa/Conceptual/Displa
yWebContent/index.html

If you choose “Simple Browsing”, there is a short
description of how you can create a browser with one line of
code, which is as follows:

[[webView mainFrame] loadRequest:[NSURLRequest
requestWithURL:[NSURL URLWithString:urlText]]];

Of course, there is a fair amount of “wrapper” that has to go
around this to incorporate it in a program, including making a
header file, class file, and all of the connections in the interface.

Name that tune!
Many years ago, was a TV game show called “Name that

tune”. In it, the contestants would try to name a tune in the
fewest notes, challenging each other with “I can name that tune
in N notes”, where N was a small number, and the person who
named the smallest number got the first chance.

I had a flashback of that show when I was reading through
a discussion about using Web Kit. The original page, by Martin
Simoneau, was an excellend article on Cocoa Dev Central filling
in the details on how to make a browser using the line of code
provided by Apple, and the Web Kit framework.

http://cocoadevcentral.com/articles/000077.php

In the follow-up discussions that were posted, there were
comments that the one line of code was unnecessary! This
sounded to me like “I can name that tune in no notes!”. There
were some very brief descriptions of how to do this, and then a
link to another page which described how to do this in slightly
more detail.

http://www.livejournal.com/users/foxmagic/238347.html

The essential ingredient is the fact that there is already a
connection called takeURLFrom, which will extract the URL from
a text field. This makes it possible to create a functional browser
without writing any code.

To do this, there are three essential step that are
necessary. The first is that you need to have Safari installed,
since that also installs the Web Kit framework. You can find it
at: http://www.apple.com/safari/download/ if you don’t have it
already. Next, you need to have the developer tools,
December 2002 version installed, if you haven’t already. To
get this, you need to become an ADC developer, but

fortunately you can join for free. The site to get this from is
http://connect.apple.com/. Follow the links Download Software -
> Developer Tools to find what you need.

Finally, you need to get the Web Kit SDK. This is also
available at the same site, under Download Software ->
WWDC 2003. Once you have installed all of the software, you
are ready to go.

Start up Project Builder, and choose New Project from the
File menu. Pick Cocoa Application from the list, and enter the
name NoCodeBrowser in the Project Name field. Click on Finish.

Now, we have to add the Web Kit interface to the project.
Choose Add Frameworks from the Project menu (see FFiigguurree
11).On the list that comes up, choose Webkit.framework and then
click Add on the next dialog. If you want to be very neat, you
can move the Webkit.framework to the folder Other frameworks
under Frameworks. Save the project.

Figure 1- Select Add Framework from the Project menu
(left), then choose WebKit.framework from the dialog

that comes up, and click Add (right).

We now move to Interface Builder. Click on the little
triangle to the left of Resources in the project window, and
double click on Mainmenu.nib. This will open Interface Builder,
with a Window called “Window”. In the window titled Cocoa-
Containers, click on the second icon from the right on the top,
which shows a tabbed window. Drag a Customview over to
“Window”, and drop in in the window. Resize it to fill almost
the entire window, with space to put a text box at the top. Click
on the second icon from the left in the “Cocoa-Containers”
window, and drag a text field to the top of the window, and
resize it to make it wider.

Now, arrange the windows so that you can see the window
“Mainmenu.nib” in Interface Builder, and the main project
window from Project Builder. Open Webkit.framework, and the
Headers folder inside that (FFiigguurree 22). At the bottom, there is a
file called WebView.h. Drag this over to the Mainmenu.nib
window, and drop it there.

28 WWW.MACTTEECCHH.COMSampler

Figure 4 – Connect the text field to WebView and then
specify that the connection is to takeStringURLFrom

You can now type a full URL in the text field, and when
you hit enter, the page will load! Note that the URL must begin
with “http://”. You can then click in links in the loaded page,
and those links will load as well. You can navigate to secure
pages, load java applets, execute javascript, and lots more. Play
around with it!

Feature Fill
A number of things are missing but easily added to this first

version. First, we can add additional functionality without any
more code.

WebView maintains a history of recently visited pages by
default. Methods exist in the WebView class to back up a level
(goBack), go back down a level (goForward), reload a page
(reload), or stop loading a page (stopLoading). All we need to do
to implement these is to add a button for each function, and
connect them to the WebView class and the appropriate method.
We can then add appropriate text or icon to each button.

Another problem is that the WebView does not change it’s
size when we resize the window. This is easy to fix. Click on the
WebView in Interface Builder, and then choose Show Info from
the Tools menu. From the pop-up, choose Size (FFiigguurree 55). The
box indicates the WebView object, and the straight lines indicate
a fixed relationship. If the lines are straight within the object, the
size will not change with a resize. If the lines outside are straight,
the relationship to the containing window will not change. If all
of the outside lines are straight, the object will be centered with
a resize. If you click on a line, it turns into a “spring”, which will
allow resizing. You can do the same thing to all of the other
object, such as the buttons and the text box, to control their
behavior during resizing as well.

Figure 2 – Choose the WebView class from the file list in
ProjectBuilder (left), and drag to the MainMenu.nib

window in InterfaceBuilder (right).

Figure 3 – In the Show Info window, select Custom Class
from the pop-up, and then select WebView as the class.

Now, select the CustomView in Interface Builder, and
choose Show Info from the Tools menu. On the pop-up menu
that says Attributes, choose Custom Class, and then choose
WebView from the list (FFiigguurree 33). Close the info window. Now,
use ctrl-click and drag to make a connection from the text field
to the WebView (FFiigguurree 44). In the window that pops up, make
the connection from target to takeURLFrom, and click on
connect. Save everything, and then build, using Build and Run
from the Build menu.

Figure 5 – Click on the interior lines in the box (left) to
turn them into “springs” (right), to allow the WebView

to resize along with the window.

The final refinement is to change all of the menu items
that refer to “NewApplication” to refer to “NoCode Browser”.
A picture of the main window in my finished version is in
FFiigguurree 66.

Figure 6 – The final appearance of the main window, after
adding back, forward, reload, and stop buttons.

Resources and additions
Although this demonstration is impressive, there are a lot of

missing pieces if we were to try to make a complete program.
If you click on a link which should result in opening

another window, nothing happens. The same thing goes for
email links, download links, and anything other than navigation
to another page.

The current version has no error checking, and no error
messages. Probably the worst, obvious omission is that if Web Kit
framework is not loaded, that is, if Safari has not been installed,
the program will not work and will probably crash. Methods for
dealing with this are explained in the tutorial pages at:

http://developer.apple.com/documentation/Cocoa/Conceptual/Displa
yWebContent/index.html

WebKit has a number of hooks to allow changing or
enhancing its behavior. The use of these links is also explained
at the tutorial pages.

Finally, there is a Web Kit discussion list at:

http://lists.apple.com/mailman/listinfo/webkitsdk-dev

In additon to providing impressive functionality that you
can use in your programs, WebKit provides a dramatic
demonstration of the power of the frameworks available
under Mac OS X, allowing you to create a web browser
without writing a single line of code. What other platform
lets you do that?

29 Sampler

David is a lover of Mac OS X, because the rich development environment and
frameworks allow his inherent lazyness to blossom. You can reach him at
dtlinker@mac.com.

About The Author

MT

The Answer to Mac Support

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

THE APPLICATION FORMERLY
KNOWN AS. . .

31 WWW.MACTTEECCHH.COM

HOLDING OUT FOR QUARKXPRESS

It was ten years ago this summer when I helped a client, a
small monthly print magazine, bring their desktop publishing
operation in house. At the time, the operating system (Mac OS
7.1) and the hardware (Quadra 840av) were very different than
today, but two key components of the solution still remain in
place for my client and other publishers: QuarkXpress for the
layout of the publication, and Adobe Type 1 fonts for the
typefaces. The initial project had some typographical obstacles
including body text that borrowed capital letters from other
fonts for use with the main typeface, and some other elements
from disparate fonts, including asterisks and dashes within the
body text. These peculiarities made the cost of laying out the
magazine quite high, since the typographers either had to search
and replace the characters every month, or change the selected
font as they typed the text.

So, while planning the project, I proposed that they edit
their font (Bembo) to accommodate the capital letters from
other fonts, the dashes, and the asterisks so that they would
appear naturally within the body copy while a typesetter was
entering text. At the time, it was also clear which tool was
appropriate for the customizing the typeface: Altsys
Fontographer (now owned by Macromedia, and still available
for purchase but never updated to be a native OS X application).
The client purchased Fontographer; I went ahead and modified
the font for them, and they adopted the Mac for their desktop
publishing (and have been a Mac company ever since),
eventually leaving behind dbase for their circulation database
and moving to FileMaker. The resulting font, called
“SpecialText” proved to be a great solution, as they migrated
from Mac OS 7 to 8, and 9, and even OS X in mid-2003.

With the successful transition of the client to OS X and an
Xserve and Xserve RAID system, the one application that lagged
behind was QuarkXpress 4.1, which they ran in the Classic
environment, but grudgingly. My suggestions to look at Adobe

InDesign as a possible OS X native replacement for
QuarkXpress fell on deaf ears. After all, they publish a relatively
straightforward text-based magazine, and just want to work with
the same familiar application, just not in Classic mode, and even
so, everything worked as they expected, with some additional
complexity brought on by the GUI changes when switching
from Quark to OS X applications such as FileMaker or Microsoft
Word but on the whole without disrupting their work flow.

QUARKXPRESS 6 IS RELEASED - “START
THE PRESSES”

When QuarkXpress 6.0 was released in June 2003, after two
years in the making, the message on Apple's home page
proclaimed, “Start the Presses.” QuarkXpress 6 was the last
major OS X desktop publishing application to be updated for
native OS X operation, and many publications had been waiting
for just that moment to make the move to OS X, or upgrade
from QuarkXpress 4 or 5. Quite naturally, my client was very
interested in upgrading, but based on severe issues with .0
releases of QuarkXpress in the past (versions 3, 4, and 5) I
advised them to wait a while to see what early adopters
experienced. So they waited a few months, then went ahead
and purchased QuarkXpress 6 in January of 2004, with the goal
of putting into production by March 2004.

STOP THE PRESSES
After some initial testing the client decided to put

QuarkXpress 6.0 into production in early February. Evidently,
the initial tests didn't include printing documents, because
immediately upon installing and attempting to use QuarkXpress
6 on their design Macs, I received an emergency call, “Quark is
claiming that our SpecialText font is corrupt and won't print
anything.” After talking them through installing fresh copies,
changing font locations, disabling their Suitcase XI font

By Dean Shavit

THE APPLICATION FORMERLY
KNOWN AS. . .

Sampler

management software, we were still unable to get QuarkXpress
to cough up a printout.

So there it was, with a deadline looming only a two weeks
away, the presses were stopped, the work flow halted and an
emergency dumped squarely in my lap: the fonts I'd edited ten
years earlier were corrupted or “not done right in the first place”
in the opinion of my client. What I'd heard from other
consultants was indeed true: Quark had outsourced their
technical support to India, and “John,” who spoke the King's
English beautifully, was obviously reading from a script, and had
absolutely no Mac OS X experience, or knowledge about the
font issues my client was having that I could discern. Our
discussion yielded nothing except a general disclaimer, “it's not
our fault, there must be something wrong with your font.” That
was quite difficult to swallow on my part, considering that the
SpecialText font had performed flawlessly without a single error
since 1994, with all previous versions of QuarkXpress, all the
Adobe design applications up to the current version, and all
iterations of FileMaker and Microsoft Office. A quick review of
QuarkXpress 6 issues on the Internet yielded many examples of
other adopters experiencing the similar difficulties, including
problems creating PDFs from within QuarkXpress, and even
distilling the Postscript output with another tool such as Acrobat
Distiller or OS X's built-in Preview application.

The temperature kept rising at my client day by day; they began
looking for a “Quark Expert” who could solve their problem, even
though I insisted that the skills necessary for solving the problem
went far beyond the realm of Quark expertise. So, with the clock
ticking, I began to examine the SpecialText font for possible issues
that would offend Quark. The first step was to check the bitmap
fonts for possible corruption—I loaded them on an OS 9 Mac and
ran ATM Deluxe's “verify” feature, which turned up no alerts,
conflicts, or corruption. I then loaded them on an OS X Mac and ran
the Font Doctor program that came bundled with Suitcase XI, but
found no warnings as well, except for one interesting flag, that
mentioned “extra fonts” in the suitcase file that weren't necessary.

THE GREAT OS X FONT DIASPORA

One of the biggest complaints I've heard, and still hear,
about OS X is what I like to call the Font Diaspora. It's almost
as if Apple took our familiar Fonts folder inside the OS 9
System Folder and scattered the contents to the four winds . .
.well, not quite. If you count up the possible font locations,
there's more than just four! I’ve created a small table below
showing where OS X can store fonts.

I've had many questions from clients regarding why Apple
chose to transition from a single repository of fonts in Mac OS
9 to this multi-tiered structure in OS X. The answer lies in the
more complex nature of OS X as a multi-user operating system,
where various rights dictate which parts of the OS are accessible
to standard users, admin users, and users with root access (the
operating system itself). What most Mac admins do in design
studios these days is simply strip out undesired fonts, and let
their font management software handle things for the user.
While Apple's Font Book program has at least given users the
ability to deactivate fonts which reside in areas of the OS to
which they don't have read/write access, it still is a long way
from being the font management solution that designers or
layout operators need or expect in a production environment.

Another significant change that further complicates font
management in OS X v. OS 9 is the addition of several
additional supported font formats to the familiar Postscript
Type 1, Type 3 and TrueType. Here's a list of supported font
formats in OS X:

• OpenType (should work on Mac OS and Windows)
• PostScript Type 1 (Mac OS only)
• PostScript Type 3 (Mac OS only)
• PostScript Multiple Master (Mac OS only)
• TrueType (both Mac OS and Windows formats)
• dFont (data fork TrueType) (Mac OS only)

Font Locations

Path (lookup order) Classic OS X Access for Installation without Font Book
/Network/Fonts (6) No No Server Administrator
/System Folder/Fonts (5) Yes Yes Admins only
/System/Library/Fonts (4) No Yes System (root) account only
/Library/Fonts (3) No Yes Admins only
/Users/user/Library/Fonts (2) No Yes Current User only
/Library/Application
Support/Adobe/Fonts (1) No Adobe Apps only Admins, only accessible to Adobe applications
FontManager
(Suitcase, Font Reserve,
FontManager) Yes Yes Depends on location, /Users/shared folder is often

used for multiple users

32 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM33

The data fork TrueType fonts that come bundled with
OS X are often a source of conflicts, since they are some of
the same standard faces such as Times, for instance, that
make up the common base set of Adobe Type 1 fonts that
are the staple for graphic designers. Data fork TrueType
fonts, or “dfonts” as they're often called, are essentially the
same as the resource-fork-based TrueType fonts that used to
ship with OS 9, but have all of their information in the data
fork, so that they can't be damaged by command-line
functions like cp or mv. These fonts are often removed as a
routine step in preparing an OS X workstation for a designer.

Out of all the formats supported by OS X, it is the
OpenType format that's the most intriguing. OpenType is the
result of an effort by Adobe and others to produce a font
format that works on both Windows and Mac OS 9 and OS
X without having support separate versions. Other benefits
include a single font file (no separate bitmaps), and a larger,
16-bit address space, instead of an 8-bit address space,
allowing for approximately 65,000 “glyphs” rather than the
previous limit of 256. The extra capacity allows type
foundries to embed swash caps, alternate characters, and
more punctuation and dingbats into the typeface, which
previously required the production of “Alt” or “Expert” fonts
just for that specific purpose. A unique problem with
OpenType, however, is that applications must be OpenType-
aware to access the extra character space, or they will not
work as intended. Accessing the complete set of OpenType
characters requires using the Character Palette in OS X, or an
application such as one of the Adobe Creative Suite
applications that has that ability built-in. To access the
Character Palette, open System Preferences, choose the
“International” preference pane, click on the “Input Menu”
tab and make sure that the “Character Palette” is selected. As
an added bonus, you can also select the “Keyboard Viewer”
check box, which replaces the “Key Caps” application in OS
9 and versions of OS X prior to Panther.

One of the necessary font-related features of OS 9 that
has never made it back to OS X, is the ability to move bitmap
fonts between font suitcase files by double-clicking,
dragging and dropping. In OS X 10.3 double-clicking a font
suitcase simply opens the Font Book application, allowing
the user to view the fonts contained within it, but doesn't
allow deleting of individual fonts or dragging them from one
suitcase to another.

Font Suitcase viewed in the OS X Finder

The ability to double-click on Font suitcase files first appeared
in Mac OS 7, supplanting the venerable Font/DA Mover application
for Mac OS 6.0.x. So, wanting to see just what was in the SpecialText
suitcase file, it was time to fire up the WayBack machine and obtain
the last release version of Font/DA Mover 4.1 from the Apple “older”
software repository at: HYPERLINK
"http://www.info.apple.com/support/oldersoftwarelist.html"http://
www.info.apple.com/support/oldersoftwarelist.html.

Font/DA Mover 4.1 Icon

Font/DA Mover Dialog

Sampler

34

Using Font/DA mover, I was able to remove the extra font
from the suitcase, and this allowed QuarkXpress to finally cough
up a printout, but with a bitmap version of the font, and still
with the alert that the font “SpecialText might be corrupt.” I felt
I was getting closer to a solution with my focus on possible
problems with the SpecialText bitmap or the font suitcase which
contained it, but moving the fonts to a new suitcase didn't help
either. Nevertheless, getting re-acquainted with Font/DA Mover
was a real blast from the past, a truly amazing instance of a 14-
year-old program still working perfectly in Classic, still useful
after all these years.

BACK TO THE DRAWING BOARD
So, my client and I began hunting for the original

Fontographer install diskettes, and when we eventually
found them, we discovered that they were unreadable by my
USB floppy drive (they were 800k disks). So, after digging a
PowerMac 9600 out of the closet, I was able to install
Fontographer and re-generate the bitmap fonts for
SpecialText. However, QuarkXpress had the same complaint
about the font. Evidently, the way that particular version of
Fontographer produced bitmap fonts (with the file type of
NFNT, to be exact), wasn't up to snuff. Other Quark users on
the Internet had reported similar printing issues and font
corruption messages with older releases of Type 1 fonts that
hadn't been edited, such as Frutiger.

So, it was up to me to either purchase, or convince my
client to purchase, a newer version of Fontographer (which,
though it might be more up-to-date than the Altsys iteration my
client owned) that wasn't even OS X native, and there still would
be no guarantee that the bitmap fonts it produced would be
Quark-digestible. It was time to look elsewhere. Searches on the
Internet turned up an OS X native application called Font Lab
(http://www.fontlab.com), which cost $549, and which by all
available reviews and the features listed was “the bomb” when
it came to font-editing and conversion. However, as my client
was already unhappy, I felt that asking them to spend the money
for Font Lab would have been a bad idea. Since I am not a
professional font designer, or even a professional graphic
designer, spending $549 to fix one specific font problem seemed
to be too costly. It was time to look for other possibilities.

X MARKS THE SPOT
Up to this point, possible solutions to this sticky issue had

spanned OS X native applications (Quark) utilities from Mac OS
version 6.0.8 (Font/DA Mover), an application from the Mac OS
version 7.1 days (Fontographer) and utilities from OS 9 (ATM
Deluxe). The only free alternative left for me was to search for
an open-source solution.

I am devoted to using open-source software on my Mac. X
Windows on OS X is a great solution for many tools that would cost
hundreds or thousands of dollars for their commercial counterparts.
In May of 2003, I gave a presentation to the Chicago regional chapter

of the Apple Consultants Network on X11.app (Apple's release of X
Windows for OS X) and the Fink Project (HYPERLINK
"http://fink.sourceforge.net/"http://fink.sourceforge.net) which
ports open-source Linux and BSD software for use on OS X. I
specifically remember one consultant's reaction to the presentation
when it was announced. He felt that X Windows on OS X was “too
technical” and would not attend the afternoon presentation, just the
morning business meeting, because he felt it was a technology he
would never use, one that provided no useful solutions to his
clients. Although he was the only consultant who spoke up, I was
pretty sure others had similar opinions: that running Fink and X11
was too techy for the casual user or even most graphic designers,
or maybe even themselves.

However, in this case, my familiarity with Fink, X11, and
Xcode (Apple’s free Developer Tools) provided me with the
ability to solve my client's font problem. So, I'm going to go
out on a limb and say that all Mac consultants should have
Fink and X11 in their bag of tricks. Not having that capability
means paying for commercial software (understandable if a
customer is to use the solution and doesn't have the
time/patience to learn how to work in X11), so why
shouldn't a consultant be prepared, save money, and be able
to service their customers' needs? In this case, the hours of
fiddling with X11 and Fink paid off—I found an open-source
font editor called Fontforge, which goes by the stage name
“the application formerly known as PFAedit.”

GETTING PREPARED FOR FONTFORGE
Getting Fink and X11 going on the Mac today is far easier

than it was in May 2003. The latest Fink installer automatically
configures itself and edits the bash.profile script which resides
in a user's home directory to recognize Fink installations, which
are kept in a separate directory tree under /sw/bin, rather than
in the standard /usr/local directory where most installers place
command-line binaries that aren't part of the standard OS X
package, reducing the possibility of conflicts where packages
wind up overwriting each other. Fink's separate directory tree
also allows easy backup, removal, and even sharing of those
programs over a network, and the ability to use Fink
Commander, an Aqua GUI for users who are command-line shy.
The Fink project has an excellent FAQ area, a helpful document
on Fink usage, and a forum for help with particular issues.

Fink Commander Application.

Sampler WWW.MACTTEECCHH.COM

35

GETTING FINK AND X11

X11 requires Mac OS X 10.3, which ships with an X11
installer on install disc #3. Also needed is the X11 SDK, a
separate installer on the Xcode Tools CD, or on one of the OS
X 10.3 DVDs that ships with new Macs. First items to install:

• X11.app located on install disc #3 or on an installer DVD (also
available as a download from HYPERLINK
"http://www.apple.com/support"http://www.apple.com/support

• X11 SDK included with Apple's Xcode tools (also
downloadable)

• Full install of Apple's Xcode tools (you'll need this to
compile source code to get the latest Fink packages)

• The Fink 0.7.1 Binary Installer from HYPERLINK
"http://fink.sourceforge.net/"http://fink.sourceforge.net, this
package also includes the wonderful Fink Commander
application.

First, install Xcode, X11, and the X11 SDK. Then, download
and install the Fink 0.7.1 installer package. Next, copy the Fink
Commander software from the Fink installer folder to the
Applications folder and launch it. Go to the “Source” menu and
choose “Selfupdate-cvs.” Now Fink will go though and update
its own binaries, as well as get the latest package descriptions.

There are two ways to install Fink software—downloading a
pre-compiled binary version of each package, or letting Xcode
compile the binary from the source code available through CVS
(the concurrent versioning system). Fink also has two “trees” of
software distribution, “stable” and “unstable.” Many applications
that are available in the “unstable” tree aren't available either as
binaries or source code in the “stable” tree. To enable the use of
the “unstable” tree, go to the “FinkCommander” menu and choose
“Preferences. . .” then click on the “Fink” tab, then select the “use
unstable packages” check box, then quit Fink Commander,
relaunch it, and let it update the package descriptions.

Fink Commander Unstable Package Preferences

Now it's time to install Fontforge and any dependencies
required to run it. If there are dependencies a prompt will come up
with choices to make, and generally the first choice will work just
fine. Open up FinkCommander, and type “fontforge” into the search
box in the upper-right-hand corner. When the fontforge package
appears, select it and either choose “install” from the “Source” menu
or “install” from the “Binary” menu. Fontforge and all supporting
programs will be downloaded and installed. If there's a later version
that's not available as a binary, then using the source code is the
only way to go, but the binary install will be considerably faster. If
errors or warnings come up during the installation, consult the
troubleshooting guide within the FAQ section at HYPERLINK
"http://fink.sourceforge.net/"http://fink.sourceforge.net. When
Fontforge is installed, repeat the process for the package “fondu.”

Open up the X11 application which will be in
/Applications/Utilities, and when the xterm window appears
(this is the X11 equivalent to the Terminal), type fontforge and
hit return. This should launch Fontforge. If X11 was already
open during the install of Fontforge, it may be necessary to type
the rehash command in xterm first. To avoid typing the
command in xterm to launch Fontforge, or any other X11
application, customize the X11 “Applications” menu so that
Fontforge points to the command /sw/bin/fontforge.

Fontforge Splash Screen

FONT EDITING/CONVERTING WITH
FONTFORGE

So, I now had all of the necessary tools at my disposal to edit
my client's SpecialText font, but I didn't know much about using
Fontforge, so I needed to find out a few things first. Unfortunately,

Sampler WWW.MACTTEECCHH.COM

36

the first thing I found was that I was unable to open the SpecialText
outline font file, but could open the SpecialText bitmap file. I had
no trouble opening TrueType font outlines, dfont outlines, or
OpenType outlines, but getting to the outlines (necessary to
regenerate the bitmap font) for any Type 1 fonts proved elusive.
Nor was I able to find any “how to” documents that described how
to go about it. The outline files didn't even show up in the “Open
Font” dialog that came up upon launch Fontforge:

Outline Fonts not Showing

I was, however, able to successfully open and edit a bitmap
font, but that didn't get me far enough to generate a fresh copy:

Editing a Bitmap in Fontforge

Then, I remembered that OpenOffice required a command-
line tool, fondu, to convert Mac OS X fonts for use in its X
Windows environment, because it couldn't access fonts with
resource forks. Evidently, Fontforge couldn't open them either.
So, I navigated to the folder with the Special Text fonts in the
Terminal, and issued one simple command:

fondu *

Suddenly, within my SpecialText Folder, I had a bunch of
files with .bdf and .pfb extensions.

Fontforge recognized these as “Postscript Font Binaries.”
The fondu utility had extracted the Postscript outline
information from the resource fork of the outline file and
deposited it in a data fork format that Fontforge could work
with. The .bdf extensions are simply for identifying bitmap
fonts. It is the .pfa (Postscript Font A SCII) extension that
Fontforge, the application formerly known as PfaEdit, was
originally named for.

Outline Editor in Fontforge

Fontforge supports exporting/converting to all known font
formats, including OpenType. So, I thought it might be nice to
remove the bitmap font from the equation altogether. After
generating OpenType fonts for SpecialText, I was disappointed
to find that QuarkXpress 6 was not OpenType-aware; diacritical
marks wouldn't appear, and other essential characters, such as
double curly quotes, wouldn't show up or print properly. So, I
decided to regenerate the bitmap files as a Mac “family”

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM37

suitcase, with a .fam extension, which required opening all of
the SpecialText Type 1 outline fonts (SpecialText,
SpecialTextBold, SpecialTextIta, SpecialTextBoldIta) in
Fontforge simultaneously as in the picture below:

Preparing a Macintosh Font Family

To regenerate the bitmap fonts as a Mac family in a single
suitcase, there's several steps:

First, make sure that all of the open fonts have the same
family information, click on the “Element” Menu and choose
“Font Info. . . “

Next, select the “Encoding” tab and change the encoding
type from “Adobe Standard” to “Macintosh Latin”:

After clicking “OK,” click on the “Element” menu again and
this time select “Bitmaps Available. . .” and enter any number of
point sizes:

Now click on the “File” menu in Fontforge and select
“Generate Mac Family. . .”

Generate Mac Family

Sampler

Fontforge, unlike some open-source equivalents to
commercial software, seems every bit as capable as its
counterpart Font Lab, but having never used the latter,
I can't specifically say how they match up. But just
browsing through the menus in Fontforge is pretty
much a mind-blowing ride, revealing things about
fonts in general like OpenType extended characters,
hinting, kerning, encoding, and other details most of
us who aren't font-designers take for granted. But
more than anything for me, that weeklong font
troubleshooting experience highlighted the wealth and
breadth of solutions available on OS X, which serves
up an eclectic feast of tools, some new and some not-
so-new. So, this article's for all the designers and Mac
admins who need to satisfy their font quirks. I hope it
plays well in Peoria. And in New Delhi, too.

Be sure to select “PS Type 1 (Resource) as the
outline format, and NFNT as the bitmap format. Save
the suitcase file with a .suit or .fam extension, and load
it up with Font Book! There's now a freshly generated
bitmap font suitcase for OS X to use.

SATISFIED QUARK, SATISFIED
CUSTOMER

The new bitmaps worked perfectly with Quark 6,
6.1, and now 6.5. Quark not only digested the new
bitmaps for SpecialText, but seemed to unexpectedly
quit a lot less often than with the old bitmaps.
Although I'm not specifically against Quirk (whoops, I
mean Quark)Xpress 6, I do confess that I'm more than
a little annoyed at the fact that somehow it either has
bugs that report older bitmap fonts as corrupt, or is
missing an essential capability that all other Mac OS X
software has to correctly address a bitmap font in a
slightly outdated, or different NFNT format. My client
is now happily using SpecialText again, and hopefully
for the next ten years before another application
breaks it, or puts me on the hot seat. Needless to say,
I've performed this bitmap regeneration over and over
for customers using Quark 6; at one site I fixed over
twenty fonts, so the presses could get going again.

Dean Shavit is an ACSA (Apple Certified System Administrator)
who leads training sessions and manages consulting projects for MOST (Mac
OS Training & Consulting) in Chicago. If you have questions or feedback you
can contact him at dean@macworkshops.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

40 WWW.MACTTEECCHH.COM

We’ve all had occasion to serve up some web pages, right? Well, then
you know how great Apache is and all of the flexibility and configuration
options available to you, right? What? You’ve always used the default
install? While that may be plenty powerful, we can do plenty more. Apache
is so vast, that we’re really only going to scratch the surface here. The great
thing is that Apple has seen fit to install Apache for us, so we can skip any
talk about retrieving the source, compiling and installing from source,
preparing TCP/IP, and other topics that come along with most Apache
material. As always, get Terminal fired up, and let’s go.

By Edward Marczak

The Web Server
in OS X

What has Apple Done with Apache?

History Lesson
I don’t like handing out history lessons, especially when people

are eager to jump into a topic. However, as a poster-child for the
open source movement (even though there’s no formal association
with GNU or the FSF), Apache really warrants one. Editors Note:
For more on the history of Open Source, look for Dean Shavit’s new
Column “The Source Hound”, beginning next month in MacTech!

The roots of Apache stretch back to the NCSA’s http daemon,
written by Rob McCool. In 1995, it was the most popular web server
on the Internet, despite being an un-maintained project for about a
year. To keep NCSA’s httpd going, several webmasters that had
been using it contacted each other and shared patches that they had

coded themselves. Two of these members, Brian Behlendorf and
Cliff Skolnick took this a step further by providing a mailing list and
shared file storage space for the core developers. Shortly thereafter,
eight people formed the core, and the Apache Group was born.

While the Apache Group still exists with its core developers, the
source code continues to be freely available. With OS X, Apple has
included and integrated many projects that are open source, and
tend to run on many platforms. While this naturally makes certain
things easier for Apple, they really have chosen best-of-breed
applications: Apache, Postfix, PostgreSQL and others. In turn, Apple
has opened up the foundation of OS X, Darwin.

Sampler

You’ll find many reasons why open source developers do
what they do, the fact that Apache is open is very important to
the Internet itself. As the most widely used http server, it serves
as a reference platform. Thanks to the Apache Group, and
others like them, the tools of Internet publishing are available to
everyone. The playing field is leveled, and the protocols of the
World Wide Web remain ‘unowned’ by any one entity. This
allows big business, governments and individuals to run a web
server, understand the means of delivery and speak to the world.

By the way: for historical purposes, you can find the NCSA
httpd page at http://hoohoo.ncsa.uiuc.edu

The Power
To paraphrase the infamous zombo-com, “You can do

anything with Apache. Anything at all. The only limit is
yourself.” Welcome to Apache. Thanks to many factors, such
as the ability to write custom modules, Apache is incredibly
flexible. And with that flexibility comes the power to massage
your web server into doing just about anything you see fit.

If you’re into compiling Apache yourself, you’re probably
way ahead of this article, so feel free skip ahead to, well, the
conclusion. However, since Apple has already done this for us,
and included some of the more popular modules (including PHP
integration), I’m not going to discuss doing so. Also, I’ll be
concentrating on OS X client, as OS X server has a relatively
decent GUI to control Apache.

Up and Running
Before we start, let’s make sure everything is in order.

Open System Preferences, click on ‘Sharing’, and make sure
‘Personal Web Sharing’ is started. If it isn’t, check the box. Your
panel should look similar to ffiigguurree 11.

Figure 1 – OS X telling us that personal
web sharing is enabled.

If, for some reason, you check the box, the machine thinks for
a bit, but then un-checks the box for you, see the
troubleshooting section next.

Once you’ve made sure that’s running, you can connect to
the web server that’s now running on your own machine.
Launch your web browser of choice (Firefox, Opera, Safari, the
old IE-Mac, or other), and type this in the address bar, without
the quotes: ‘http://127.0.0.1’. If you’ve never touched your
Apache installation, you should be looking at a screen like the
one in ffiigguurree 22.

Figure 2 – Welcome to Apache

Again, if something goes horribly awry, we’ll try to help in
the troubleshooting section below.

If, like me, you’re a Terminal person, you can also start and
stop Apache from the command line using the ‘apachectl’
command. ‘apachectl start’ starts the server, ‘apachectl stop’
stops the server. Something you can’t do from the GUI:
‘apachectl restart’ will stop and start all in one fell swoop. This
is great when you make configuration changes and need
Apache to start using them.

Be Careful Out There
I need to preface the rest of this article by stressing the

need to be careful. We’re going to need to work as root to edit
any of the Apache configuration files. This means two things:
a) you have a good chance of mucking up your Apache
installation and b) you can muck up your entire system. Until
you’re comfortable working as root, and with the changes that
we make to Apache, do not work on a system currently in
production. Please perform all of these changes on a test
system and, well, test them. Sure, the world won’t come
crashing down if you muck up a web server. But if that server
represents someone else’s work, or livelihood, someone’s world
will come crashing down.

All the Files
When you’re setting up a web server, there are basically

two sets of files that you’re concerned with: files that tell the
web server how to do its job (config files) and files that you’re
trying to serve to the public (html, mainly). It’s important that
these files have appropriate permissions (remember those
things?), as random people on the system should not be able to
alter the server config or the files being served.

41 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM42

Nicely enough, Apple pre-configures our systems with a
user named ‘www’ and a group named ‘www’. The server
starts as ‘root’, but then creates child processes that run as
‘www’. The root process does not service requests for files
at all. It simply manages all of the children. This is good
from a security perspective.

Once running, the ‘www’ user needs to be able to read the
files it is to serve to the world. So, once again, permissions must
be right. So, I’ll mention file permissions at the end of each
section that talks about files.

CCoonnffiigguurraattiioonn FFiilleess
It’s fine to simply make your sever run. But how can we

really make it do what we want? We need to alter the
configuration file that Apache reads at its startup. Apple has
chosen to remain with the de facto ‘standard’ of keeping the
config files in a sub-directory of /etc, called httpd. Get into
Terminal (10 points for everyone already in Terminal), and
become root. Do this either through the command “su –“,
which will ask for your root password, or the command “sudo
bash”, which will ask for your password. Once you have the
root prompt (should end in a number sign ‘#’), you’re ready.
Change directory to /etc/httpd and list the contents (‘ls –l’).
You’ll see something like this:

There will be some files in this listing that you do not have.
Don’t worry, you will after this article. The file we’re after is
‘httpd.conf’. In the early days of Apache, the configuration files
were broken into three files: httpd.conf, srm.conf and
access.conf – a holdover from its NCSA roots. Apache can still
work this way, and I still maintain one or two servers like this
(aside from upgrades to Apache itself, they’ve been running
with virtually no changes to the structure since 1997).

Apache reads httpd.conf first, then srm.conf and finally
access.conf. After a while, most people would forget which
directives were supposed to go in which config file. Use of
srm.conf and access.conf are now depreciated, and it is
recommended that all directives be put into httpd.conf. So now,
not only can you simply ignore the two extra files, that behavior
can be completely overridden. Sometimes, though, it may be
nice to break up a large configuration file into more manageable
chunks (perhaps you really only want to give certain people the
ability to change certain parts of the config, but not
others…remember permissions?). While it’s truly wonderful to

have everything that affects your server in one place, it also
makes for one big file to trudge through when you’re new to it.
Apple maintains the current recommendations and simply gives
us one httpd.conf file.

Use your favorite editor (vi) and open up httpd.conf. You’ll
be greeted with a fair amount comments at the top of the file.
Hey, look, “Based upon the NCSA server configuration files
originally by Rob McCool.” History! “This is the main Apache
server configuration file.” Yup, that’s what we’re after. “Do
NOT simply read the instructions in here without understanding
what they do. They’re here only as hints or reminders. If you
are unsure consult the online docs. You have been warned.”
Gulp. That doesn’t sound too friendly.

Well, in all actuality, the default httpd.conf is extremely
friendly. In fact, the default values have been chosen very
wisely. Between the core team, and input from real, everyday
Apache users, the httpd.conf file contains good, real world
defaults. Now, the real world according to a web server is very
different if you are “Mike’s home page” or if you are
amazon.com. But for people downloading the source, one can
unpack, build and go in a short amount of time. Apple has
basically kept all of the defaults, with some Apple-specific
changes that I’ll point out further on.

Scroll down a bit in the file and you’ll come to “Section
1: Global Configuration”. This ‘section’ (it’s
really only delimited by comments) and it’s
settings apply to the way the overall server
runs. While I can’t touch on every single
parameter, I will touch on the ones
important to our discussion. Anything that
doesn’t get mentioned should be left
untouched. Let’s see what these entries do:

ServerType: Can be either ‘inetd’ or
‘standalone’. ‘inetd’ would apply if you’re
running Apache through TCP wrappers (to
be addressed in a future column). Short

story is this: while many, many applications do run through tcp
wrappers, I’ve never personally seen an Apache installation that
does so. Leaving this set at ‘standalone’ lets Apache handle all
of its own requests by itself. Leave this set at ‘standalone’.

ServerRoot: Here’s one where Apple confounds me.
‘ServerRoot’ is typically where you put all of your stuff: html
files, includes, and more. Apple chose ‘/usr’ for this. Odd. In
the httpd.conf that accompanies OS X Server, there’s actually a
note preceding this choice: “For Mac OS X Server: Changing this
is OK.” Now, we’re safe because this gets over-ridden
everywhere else by specifying absolute paths (ones that start
with ‘/’). But ‘/usr’ really is an odd choice, as relative paths are
relative to the directory specified here.

A little further down, you’ll see that the directives that
would normally load srm.conf and access.conf (AccessConfig
and ResourceConfig) have been commented out. Apple wants
everything in one big file.

Next up is ‘Server-pool Management’. Apache can be pretty
intelligent about using resources. It’s important that you feed it

$ ls -l
total 600
-rw-r--r-- 1 root wheel 39884 16 Nov 23:29 httpd.conf
-rw-r--r-- 1 root wheel 37306 18 Nov 2003 httpd.conf.applesaved
-rw-r--r-- 1 root wheel 37047 4 Feb 2004 httpd.conf.bak
-rw-r--r-- 1 root wheel 38008 4 Feb 2004 httpd.conf.default
-rw-r--r-- 1 root wheel 33725 15 Dec 2003 httpd.conf.defaultserver
-rw-r--r-- 1 root wheel 37306 18 Nov 2003 httpd.conf.erm
-rw-r--r-- 1 root wheel 12965 15 Dec 2003 magic
-rw-r--r-- 1 root wheel 12965 15 Dec 2003 magic.default
-rw-r--r-- 1 root wheel 15150 15 Dec 2003 mime.types
-rw-r--r-- 1 root wheel 15150 15 Dec 2003 mime.types.default
drwxr-xr-x 10 root wheel 340 18 Nov 2003 old

Sampler

good information, though, to base its decisions on. It can
dynamically adapt to the incoming request load, and then back off
when the load lightens up. There are three directives that are
important here: MinSpareServers, MaxSpareServers and StartServers.
‘StartServers’ tells the master Apache process how many child servers
to start up immediately. If you have a heavily hit site, you should
crank this up a bit. ‘MinSpareServers’ tells Apache how many spare
httpd processes it should keep hanging around for that big burst of
traffic. If you’re a major site, you’d load this up. On the other hand,
if you’re setting up a server for a small intranet, you can leave this
alone and let Apache dynamically allocate new servers as needed.
‘MaxSpareServers’ gives Apache the ceiling on how many child
processes will be left hanging around, unused.

Anyone who has set up Apache on their own will notice that
Apple has made the defaults a little lower that usual. In the
httpd.conf we receive, we start 1 server, have 1 minimum spare,
and 5 spare. The config file from the Apache Group sets these
values to 5, 5 and 10, respectively. I’ll venture a guess as to why
Apple does this: each server process that runs sucks up resources.
These resources come in the form of RAM and open files (which,
have hard limits in the system). So, how many people out there
installed Panther, got to the Sharing Pref Pane, saw ‘Personal Web
Sharing’ and said, “Cool!” They then proceeded to start up
Apache, only to never use it again. Apple is trying to help this
person not have resources spirited away to some unknown place.
I’d like to say that they also did this to keep the config that runs
on OS X client nice and small, but OS X Server has the same
defaults. A little low in my opinion, but at least these values can
be altered through the Server Admin GUI.

MaxClients: Says what it does, does what it says. Basically,
this is how many clients can access your server at once. Anyone
who’s been surfing the ‘net for a while probably remembers
trying to access a moderately popular web page, only to be
greeted with, “Service Unavailable.” Not having this parameter
set high enough is one of the reasons you see this.

The last 4 parameters discussed are really what make a web
server individual – from the configuration side, at least. You
need to monitor your system, tweak, monitor some more and
tweak again. At the very least, if people are getting shut out of
your site, you now know one place to look.

The ‘Listen’ directive: Which IP address and port should the
server be listening on? Apple has commented this out, which
simply has Apache listen to the default of all IP addresses on the
system, and port 80. You can issue several ‘Listen’ directives,
and Apache will add the address or port to its list. A similar
directive, also commented out by Apple, is ‘BindAddress’. One
main difference is that only one BindAddress directive is
permitted. Honestly, I never use BindAddress, as you get the
same functionality out of ‘Listen’, ‘Port’ and ‘<VirtualHost>’.

Next, you should see a grouping of ‘LoadModule’ and
‘AddModule’ directives. It would be way too much to into each one
of these individually. Of course, an overview is in order. When
Apache is compiled, you have the option of including support for
modules that are dynamically loaded at runtime, rather than
compiled in (statically). The module responsible for this is mod_so

(shared object). ‘LoadModule’ links an object file into an Apache
process at launch. ‘AddModule’ enables a module’s use, as a
module may be compiled in , but inactive. Simple rule: you need
the module, you load it and you add it. Interestingly, the order that
modules are added is important. Modules added later on can
override the behavior of ones earlier in the list.

One last comment about the modules: As of Panther, Apple
enables PHP by default. Three cheers for Apple! Prior to
Panther, you had uncomment the appropriate lines from the
httpd.conf file to make PHP load. Thank you Apple. I want my
PHP! They even made the appropriate change to allow an
index file to be ‘index.php’. Nice.

On to section 2! This is often called the ‘Main Server
Configuration’. If you plan to serve up a single site, this is all
you will need. Important stuff here:

‘Port’. Which port number your server listens to. Easy.
‘user’ and ‘group’. Important ones, for certain! As

mentioned earlier, we give Apache a non-root user to run as.
Many Unix systems use the user and group ‘nobody’, but I
like ‘www’ even better. Many services run as ‘nobody’, and
I want permissions as granular as possible. When we set up
permissions, the user and/or group ‘www’ will need to have
access to the files we’re going to serve up.

‘ServerAdmin’: Is this a critical value? Well, sure, the server
will run without you setting it. But the default value is
‘you@your.address’. The ServerAdmin value sometimes shows
up in server-generated error messages. So don’t look like you
haven’t done your homework. This is an easy one. Set it to an
appropriate e-mail address that people can send mail to if
they’re having problems.

‘ServerName’: Either change this to your machine’s Fully
Qualified Domain Name (FQDN), or, if this is a development
machine, laptop or otherwise, leave Apple’s default of ‘127.0.0.1’.
If you’re serving pages out to the Internet, you pretty much must
have working DNS pointing to your box, with the appropriate
FQDN in the ServerName directive, otherwise, relative links are
going to fail. Heed the warning in the comments: “You cannot just
invent host names and hope they work.” Yes, you could do
everything by IP address, but, do you really want to?

‘DocumentRoot’ is where your html files live! Apple sets
this to “/Library/WebServer/Documents”. Now, sure, this can
really be anywhere, but as a long time Apache person, this has
always felt a little odd. I actually comment this out altogether.
More on that in the ‘Virtual Hosts’ section below.

Now, you should be up to a line that says “<Directory />”.
What’s going on here? This is one location that we get to showcase
Apache’s flexibility. The brackets around the directive give it the
look of HTML. If you look further down, you’ll see a matching
“</Directory>” tag. The httpd.conf file uses markup in just this way.
There will be an opening tag, some directives that apply only to that
tag, and then a closing tag. <Directory> can apply to either a URL,
or, a path on the file system. In the line were examining, we ‘re
applying some permissions to the entire site, by specifying the URL
“/”. For the root path “/”, the options “FollowSymLinks” is on, and
‘AllowOverride’ is set to ‘None’. These are fairly restrictive

43 Sampler WWW.MACTTEECCHH.COM

44

being authorized – especially by a rogue program. Plus, you
may have no choice: running DiskUtility’s ‘Repair Permissions’
will reset these permissions as just described.

Additionally, make sure you backup your httpd.conf file!
Two big reasons for this. Once you have a working version,
back it up before you make any major changes. This way, you
can roll back to your copy when things don’t work the way you
expect (or perhaps, at all). Also, Apple likes to step on
httpd.conf when they update Apache through Software Update,
either because of a security update or other bug fix. While they
have started creating an ‘httpd.conf.applesaved’ file when they
muck with it, I personally would trust my own backup much
more. So, save early, safe often.

Files to Serve
If you’re a visual person, and want to see some content, now

is the time! The files that are in your DocumentRoot are meant to
be served to the public. What you place here is up to you. Straight
html, PHP files that access databases, javascript, text files, have fun.
Of course, there are a few things you should know.

If you haven’t touched the default web server directory yet,
take a look in there (“/Library/WebServer/Documents”). There’s
a whole load of files. Instead of the familiar “.html” extension,
we see files that have extensions such as “.cz”, “.fr” and “.po.iso-
pl”. You’ve probably guessed that this allows Apache to serve
files based on one’s language preference. But how does it
know? Apache calls this ‘content negotiation’, and is handled by
the ‘AddLanguage’ statement in httpd.conf. You don’t have to
understand every facet of how this takes place to make it work
nicely on your server. To find more about this feature than I can
present here, see the Apache documentation on the subject at
http://httpd.apache.org/docs/content-negotiation.html.

If you’d like, you can backup, move or just delete the contents
of this directory (provided that you’re working on your own
machine and are sure you’re not meddling with files someone is
relying on). If you have some html docs, great. Otherwise, we’ll
make a simple one. Launch BBEdit, SubEthaEdit, vi, Pico, emacs –
your choice of text editor. Despite the name, do not use Apple’s
“TextEdit”. It does not save files in plain text format. C’mon, Apple!
In your editor, simply type, “This is a test.” If you’re in the GUI, you
need to be using an admin-level account to save it in the proper
directory. If you’re in Terminal, I’ll assume you’re still running as
root. Save your file as “/Library/WebServer/Documents/test.html”.
In your web browser, type the URL http://127.0.0.1/test.html. You
should see the equivalent of ffiigguurree 33.

permissions (I would even ditch the ability to FollowSymLinks, but
more on that later) that save you from yourself if you forget to
explicitly set permissions on a directory. Obviously, it would be a
chore, especially on a very large site, to have to set the permissions
and options on each directory. So the permissions are hierarchical,
and get inherited down the tree. So, while we have restrictive
permissions at the root, we can override that for a single directory
if we like. Let’s say we are experimenting, and have a directory
called “/Library/WebServer/Documents/experiment”. We could
open this up a bit with a new Directory block like this:

<Directory /experiment>
Options All
AllowOverride All

</Directory>

This lets us do all sorts of nasty things at
http://127.0.0.1/experiment, but would still keep
http://127.0.0.1/testlab with the restrictive permissions we set on “/”.

Immediately following the short Directory directive, we
find a larger one that applies to where our web documents
live. This block creates restrictions that are a little looser
than the previous block.

What has been covered so far is all you really need to get
the server running, modify where it puts its files and serve some
custom content like a main site (as opposed to one that lives in
~user/Sites – bah!). However, you’ll notice that the httpd.conf
file continues on for quite a bit! For now, I’m only going to
cover three more directives. Some of which I’m going to save
the detailed explanation for a later section.

Move down through the file a page or two until you see
‘AccessFileName’. The default, and de-facto standard, is
“.htaccess”. This is an important directive that needs further
explanation, and I’ll get to such an explanation in its own section.
Following this, you’ll see ‘HostNameLookups’. This directive has
Apache resolve the incoming request’s IP address to a name. This
defaults to ‘off’ and should stay that way. Of course, while only
you can determine what is right for your site, turning this on can
cause a huge strain on both your web and DNS servers. Then
again, if you’re, say, a bank, and have the infrastructure, you may
really have good reason to have this on. Next up are the logging
directives. Toward the end of these, you’ll see a line that says
“CustomLog “/private/var/log/httpd/access_log” combined”.
Apache actually keeps two logs, a standard log and an error log.
The ‘CustomLog’ directive tells the standard log where to store itself
and in what format. For now, just be aware that it exists, and read
further on to understand logging.

To edit the httpd.conf file, you’ve needed to be root, or
some root-equivalent. If you harken back to last month’s
discussion of permissions, you’ll see that Apple has marked the
Apache configuration files as owned by root and wheel, with
rights of 755. All of the files inside httpd are marked 644, also
owned by root and wheel. This is exactly where you should
leave these permissions set. It should be difficult to edit these
files. You should have to be really conscious of what’s going
on in this directory. No changes should be possible with out

Sampler WWW.MACTTEECCHH.COM

Figure 3 – the working server and web page

Not the prettiest page we’ve ever seen, but it shows that
everything is working as expected. From there, navigate to
“/Library/WebServer/Documents” and create a directory called
“test”. Shift back to your editor, and alter your html file to say,
“This is a subdirectory test” and save it as
“/Library/WebServer/Documents/test/index.html”. Now, in your
web browser, go to the URL http://127.0.0.1/test. You’ll see the
equivalent of ffiigguurree 44..

..

Figure 4 – Working with subdirectories

What exactly happened here? You’ve probably noticed that at
most websites you visit, you haven’t had to explicitly mention the
file you’re looking for. When you visit http://www.apple.com,
you’re not asking for any file in particular, are you? You’re just
saying, “Hey, web server! Gimme what you’ve got!” As mentioned
earlier, Apple has set both “index.html” and “index.php” to be
‘index files’: if present in a directory, that file will be served up if
the directory itself is asked for. So, by naming our file ‘index.html’
and putting it in its own directory, it will be served to the browser
when that directory is asked for without asking for a specific file.

What kind of permissions do we want to have on these files?
We know that the configuration files need to be locked down.
However, the files we’re putting in this directory are going to get
served to the world via the web server. By their very definition,
they’re public. You’ll see that Apple has them owned, again, by root
and wheel, and restricted to 654. However, this is a directory that
repair permissions does not touch. There is really only one absolute
here, and that is that the web server must be able to read these files
to serve them! That means that the user, or group, ‘www’ must have
access. Since these files are already owned by root and wheel, you’ll
see that the web server is accessing them through the read attribute
given to ‘others’. If you had a large web development team, you
could create a new group called ‘webdev’ and make them the group
owner of the files in your DocumentRoot. This way, the people in
that group could alter the contents of the web server without having
a root account. What I’m saying here is that there is no hard and
fast ‘right-way’ to set up the permissions of this directory. There is

a wrong way, though, and that’s to mark everything 777. I know
you’re tempted, but don’t do it. Practice safe computing. The right
way restricts things down as far as possible, while allowing
everyone to do their job, including Apache itself! Do note this,
though: you rarely, if ever, want anything actually owned and
writable by ‘www’! This way, programs that the web server
executes, like cgi scripts, can’t damage files they wouldn’t normally
be able to damage or alter otherwise.

Logging
How do you know if anyone is using your web server? How

can you tell of there are any problems with content that is being
served (or, not served)? How can we tell how often people are
visiting, and how much bandwidth they are using? The answers to
all of these questions lie in logging. After any transaction performed
by Apache, it will write an entry to one of two logs: the access log
(success!), or the error log (problems!).

Earlier, I pointed out the ‘CustomLog’ directive. In Apple’s
httpd.conf file, it looks like this:

CustomLog “/private/var/log/httpd/access_log” combined

We tell Apache where we want to store our log file, and in
what format. Just above this, you’ll see some lines that begin
with ‘LogFormat’. These directives describe the layout of what
gets logged, plus a nickname for that format. I recommend you
stick with the ‘combined’ format, that looks like this:

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\”
\”%{User-Agent}i\”” combined

Whenever a transaction takes places, this line directs Apache
to log the:

• %h Host. The host’s IP address, or, if HostNameLookups is on,
the resolved DNS name.

• %l – Remote identification. Supplied from the remote identd.
You’ll rarely get a name with this, and more often just see “-“.

• %u – User.
• %t - Time. The time and date that the transfer completed.
• %r – What the browser asked for. Will be a string like

“http://www.example.com/webpage.php”.
• %>s – Success Code. Otherwise it’d be in the error log, right?
• %b – Size of the transfer in bytes.
• %{Referer}i – How was this user referred? This will either be

“-“ (for no referrer), or a URL, like
“http://www.example.com/somepage.html”. You may also
have noticed this is mis-spelt by the Apache team…oops.
Yes, you have to type it incorrectly to have it recognized.

• %{User-Agent}i - The User Agent – What the browser tells us it
is. Safari will show “Mozilla/5.0 (Macintosh; U; PPC Mac OS X;
en) AppleWebKit/125.5.5 (KHTML, like Gecko) Safari/125.11”

Why use the combined format? The default on most
distributions is “common”, which logs everything that

45 Sampler WWW.MACTTEECCHH.COM

46

“combined” does, minus the referrer and user agent. Frankly,
those are nice statistics to have. You are free to come up with
whatever log format you’d like. See the Apache documentation
on the subject at http://httpd.apache.org/docs/logs.html, where
you’ll also find some other cool logging tips and tricks.
However, “combined” has become a recognized logging format
and many off-the-shelf log analyzers recognize it. Basically, I’m
telling you to stick with combined and not change a thing.

Once Apache is running, you’ll find this log in the place
specified by the ‘CustomLog’ directive. According to Apple, that
place is “/private/var/log/httpd with a name of access_log. Looks
like a good place to me. You can view this log with Console.App
(as found in /Applications/Utilities), or with the command line
utility ‘tail’, or ‘less’. I prefer ‘tail’ with the ‘-f’ switch over
Console.App, as it spits out new lines in close to real-time.

The next log to be concerned with is ‘ErrorLog’. This name
of this log is a bit of a misnomer. While the access log is just that,
a clean list of what was accessed, good for log analyzers, the ‘error’
log consists of errors and general notices. For example, next is an
entry from my error_log that shows Apache starting up.

[Fri Dec 3 18:38:09 2004] [notice] Apache/1.3.29 (Darwin)
PHP/4.3.2 DAV/1.0.3 configured — resuming normal operations

That’s not an error! In fact, it’s even marked at a level of ‘notice’,
a.k.a. ‘No worries.’ The lines that are marked ‘error’, however,
need to be paid attention to. Let’s sample an error_log from a
production site (aspects changed to shield the innocent):

[Thu Oct 28 05:03:05 2004] [error] [client 231.50.143.44]
script not found or unable to stat: /www/httpd/cgi-
bin/formmail.pl
[Thu Oct 28 14:27:17 2004] [error] mod_ssl: SSL
handshake interrupted by system [Hint: Stop button
pressed in browser?!] (System error follows)
[Thu Oct 28 14:27:17 2004] [error] System: Connection
reset by peer (errno: 104)
[Fri Oct 29 12:17:38 2004] [error] PHP Warning:
mysql_connect(): Can’t connect to local MySQL server
through socket ‘/www/tmp/mysql-client.sock’ (2) in
/www/httpd/includes/functions.php on line 180

The first error is a simple file-not-found message. In fact, it’s
someone searching for the old formmail perl script, which was easy
to exploit. The next two errors turned out to be just what the error
writer guessed – a browser quit before the SSL handshake
completed. The final line is what happens when PHP tries to
access a MySQL database that doesn’t exist – it had crashed.

Watch your logs closely. Time done so will pay off in buckets.

Virtual Hosts
Apache’s virtual hosts, along with the http 1.1

specification, may be the single most important change to
web serving, allowing consolidation, easier provisioning and
the conservation of IP address space. Unfortunately, I talk
to a lot of people who are confused by virtual hosts. If you
don’t think about it too much, it comes pretty easy.

The hyper-text transfer protocol version 1 specified the request
and reply messages that travel between a browser and server to

exchange a web page. However, once the client resolves the server
name (such as www.example.com) and turns it into an IP address,
the browser would simply send a GET request to that IP address.
The server would then serve up the web page that was requested
on that IP address. If your server had multiple IP addresses, you
could run multiple versions of Apache, each bound to one of the IP
addresses, that would serve up a completely separate web site
(they’d have different ‘DocumentRoot’s).

The http 1.1 spec came along and added the fact that the
browser must now pass the name of the site it’s looking for in the
request. Now, you could actually run one single copy of Apache
with just as single IP address. Apache could serve up the correct
site based on the site name in the request passed in by the browser.
Let’s see how this works.

Back in the httpd.conf file, toward the bottom of the file,
you’ll find “Section 3: Virtual Hosts”. All of it is commented out.
Let’s change that.

Uncomment the line that says “NameVirtualHost *” (just get
rid of the “#”). This turns on virtual serving for all IP addresses
that Apache listens to. If you have multiple IP addresses, you
could specify only one of them here if you’d like.

Next, we need to come up with a web site, separate from our
main site. Create a new directory to hold this site. I like “/www”,
and that’s what my examples will use. After you create “/www”,
create another subdirectory called “virt1”. Inside of that directory,
we’re going to create two more: “htdocs” and “logs”. These last two
directories should sit at the same level in the hierarchy. Once that’s
done, create an html index file to sit in ‘htdocs’ directory. One line
will suffice (“This is a virtual site”). Now, back to the httpd.conf file.

We tell Apache about a virtual site by using the
“VirtualHost” opening and closing directives. Here’s one for our
test site, that I’ll comment on after we add it to httpd.conf, right
after the “NameVirtualHost” line that we just uncommented:

<VirtualHost *>
ServerAdmin webmaster@virt1
DocumentRoot /www/virt1/htdocs
ServerName virt1
ErrorLog /www/virt1/logs/errorlog
CustomLog /www/virt1/logs/access_log combined

</VirtualHost>

You should recognize everything that went in between the
opening and closing VirtualHost tags. The “ServerName” line is
what Apache uses to match the request. If you were setting up a
real host for use on the Internet, you’d place the server’s FQDN here
(such as “www.example.com”). The cool thing about a virtual host
is that almost anything you can put in the main server config, you
can put in a virtual host. The values you supply in the virtual host
block override the main site config and apply only to that virtual
host. It truly becomes it own, separately functioning site.

There are two more things we need to do to get this to
work for us. First, since we’re set up for name based virtual
hosting (and not IP based hosting), we need to access the server
by name. This can be achieved through DNS, or more easily on
our local workstation, through altering NetInfo (which OS X
consults when trying to resolve a name). DNS and name
lookups will be covered in a future column. If you’re not

Sampler WWW.MACTTEECCHH.COM

47

familiar with editing NetInfo or how name lookups work, just
follow along.

Open up NetInfo Manager, which is found in
/Applications/Utilities. Click on the lock to authenticate, and be
able to make changes. Navigate down to /machines/localhost
as shown in ffiigguurree 66.

Figure 6 – NetInfo Manager with /machines/localhost
selected, and its properties in the lower pane.

With localhost selected, click the duplicate icon in the toolbar,
confirm your choice, and then click on the ‘localhost copy’ that you
just created. In the lower pane, double-click on the ‘name’
property, and change the value to ‘virt1’. This way, when we ask
OS X to resolve the name ‘virt1’, it’ll find the name first in NetInfo,
and hand us back the IP address of ‘127.0.0.1’, which is our own
machine. Our browser, conforming to the http 1.1 specs, passes off
the name of the site we’re looking for to the web server.

Second, we need to restart Apache to have it read our new
additions to httpd.conf. In the terminal, issue an ‘apachectl
restart’ command, and you’re ready to go. Of course, you can
always restart Apache via the Sharing pref pane also.

OK – ready to test. In your web browser, enter the URL
“http://virt1” and go! You’ll see something like the display
in ffiigguurree 77.

Figure 7 – The Completed Virtual Site.

To ‘prove’ that this is a virtual site, enter the URL
“http://127.0.0.1” in your browser. You should be looking at the
index file from /Library/WebServer/Documents again. Also, if
you look in /www/virt1/logs, you’ll see that two log files were
created for this site. Again, they’re completely separate from the
logs stored for the main site. Bliss.

That’s really it. That’s not complicated, right? You can
continue to add VirtualHost blocks to the httpd.conf file that

serves up separate sites. Brilliant, huh? Just be aware that,
before you do this, virtual hosts is another area that allows
Apache to use up more resources. On a site that has many,
many virtual hosts, a webmaster may choose to keep one
master log file, and separate out the individual entries later on.
This saves on file handles. There are more tweaks like this that
can make Apache behave in a certain way. Or, you can tune
your OS to raise the limits that are allowed. Either way, it’s
something you must be aware of.

There’s a big benefit to anyone doing web development here:
you can set up a virtual host for each site that you develop for that
exactly matches the environment of the server you develop for. I
use this on a daily basis. I develop for both Internet facing sites on
ISP hosted servers, and Intranet sites that are hosted in-house and
are only reached via a local LAN. But I do all of the prototyping
and testing on my PowerBook. Each site that I work for has a
VirtualHost block in my Apache config. This way, I can code and
test before I upload the file to the real server. More often than not,
the target server is running Apache on Solaris or Linux, but I can
have the equivalent server on my Mac.

For more info on virtual hosts, see the Apache
documentation at http://httpd.apache.org/docs/vhosts/.

htaccess
The .htaccess mechanism is very interesting. It has both its

pros and cons, but lets you do things that couldn’t be done
without it. The filename “.htaccess” can be customized, as set
by the “AccessFileName” directive. In all honesty, most of the
time there is very little reason to change this. If you do change
it, you need to change some other areas of your httpd.conf file
to make sure you don’t unwittingly serve the access file up to a
client. For this discussion, I’m simply going to refer to this
whole mechanism as ‘htaccess’.

What is htaccess? The htaccess file is simply a text file, in
which you can place Apache directives, just like a mini httpd.conf
file. You can place this htaccess file in any directory or
subdirectory of your site, and those directives will apply to just
that directory. Now, not every directive that works in httpd.conf
will be available in an htaccess file. The difference is that, unlike
httpd.conf, which is read only at startup time, the file named in
the AccessFileName directive is consulted each time that directory
is accessed. In actuality, it’s a little more complex than that.

Apache, by default, searches all directories above the one
being accessed to see if an htaccess file applies. If, for example,
someone requests http://virt1/testfiles/file.html that is located on the
file system at /www/virt1/htdocs/testfiles, Apache will search:

/.htaccess
/www/.htaccess
/www/virt1/.htaccess
/www/virt1/htdocs/.htaccess
/www/virt1/htdocs/testfiles/.htaccess

This searching takes Apache some time. Of course, you
can turn this change this functionality with an AllowOverride
directive. Try this in httpd.conf:

Sampler WWW.MACTTEECCHH.COM

48 WWW.MACTTEECCHH.COM

<Directory />
AllowOverride none

</Directory>

You can certainly be more selective about applying this.
What then, in reality would anyone use htaccess for? It comes

in exceptionally handy when combined with virtual hosts, or
anytime you have multiple people responsible for different content
served by a single web server (like individual user pages). Speaking
from experience, I once needed to set up two sites for a single
company. Each site showcased a different side of the company.
One of the sites was a more conservative than the other. While both
sites were different, they both shared some common elements (like
large QuickTime files). The goal became having two separate sites
that could share this content. However, we didn’t want users of one
site to ‘discover’ the other site. The solution? Virtual hosts with the
same DirectoryRoot directives. Each virtual host used a different
index file. Additionally, we used .htaccess files to limit access to
what each site had access to from the other site.

Also, many people simply associate htaccess with the ability to
password protect directories and files. Sure, it has the ability to do
that, but you can do that from httpd.conf also. Just be aware that
it’s not a unique property of htaccess to do this.

If you inherited some content that needed to be integrated with
your site, but it perhaps came from a Windows environment where
the extension ‘.htm’ is popular, you could copy the site as is and
drop it in a subdirectory of your site. We’ll further pretend that other
files have ‘index.htm’ hardcoded into them, and it would be too
time-consuming to change them all before your deadline hits. Add
an .htaccess file with the single line DirectoryIndex index.htm into
that directory. This way, for this directory only, your web server will
find index.htm as a valid index file, and hand it to a browser when
the directory itself is requested.

There are also Apache directives that rewrite or redirect the
requested URL. If you move a subdirectory, but still would like a
reference to it (perhaps pages out of your control point there), you
could drop a line like this in an htaccess file:

Redirect permanent /originaldirectory
http://virt1/newdirectory

Use of the ‘permanent’ keyword also returns an http 301
permanently moved code. You can also rewrite incoming URLs to
add or subtract all or part of the URL. If you have a subdirectory
that should always be accessed over https, you can rewrite the URL.
If the directory is on our virt1 site as http://virt1/protected, drop this
in the directory as an htaccess file:

RewriteEngine on
RewriteCondition %{SERVER_PORT} !^443$
RewriteRule ^(.*)$ https://virt1/protected/$1 [R=301,L]

If a browser makes a request on a port other than 443, we’re
going to catch that and rewrite the URL as an https:// URL.

There are many, many other possibilities. htaccess just adds to
the immense flexibility of Apache.

PHP
PHP is not Apache, nor part of the distribution, but I

mention it here for two reasons: one, with OS X Panther, it’s
included and turned on by default and, two, almost everything I
touch web-wise has some PHP component so for me, the two
have become inextricably linked. Of course, there are other
ways to serve up dynamic content, and OS X has all the goodies
you want, including perl and mod_perl (but unlike PHP, this one
still has to be activated by you).

If you never plan to do anything with PHP, but want to run
several virtual hosts and expect a fair amount of traffic, unload it.
Just comment out the “LoadModule php4_module
libexec/httpd/libphp4.so” and “AddModule mod_php4.c” lines
(these are two separate lines in two different places). This will
save a fair amount of memory per httpd instance.

The ability to run PHP opens up incredible new possibilities
to run many of the free and open source programs that are
available. Just be aware of this, though: Using the guidelines in this
article and from other official sources like the Apache web site,
understand how your security is impacted by these applications.
Oh, I know how it starts. You set up a test web server on the
network. You’re testing a new open source app you’ve found, and
it meet 90% of your needs. However, when you installed it, it
asked you to make some changes to your httpd.conf and php.ini
files. Perhaps even some changes to the permissions of files on
disk. You think, “this is a test machine, I can make these changes
without repercussion.” Then it happens. You show someone at
work the web app. They say it’s great, and tell someone else.
Before you know it, you’re being asked to open up the application
for use in a small department. Or the entire company. And you
have a deadline. Do you go back and investigate the security of
the site, or do you just get it into production?

New to PHP? See Dave Mark’s Getting Started column. His
current focus just happens to be PHP.

Troubleshooting
What do you do when Apache won’t run? Or isn’t giving

you the results you’re expecting? Never panic. There are a few
tools we can use to investigate the problem.

First and foremost are the logs. In most cases, they are the
best source to figure our what’s happening. If you’re receiving
a message that Apache “can’t bind to port…”, make sure you’re
not trying to run two separate copies of Apache that bind to the
same port. Failing that, make sure nothing else is running on
that port. Use the netstat command in terminal to find out
(netstat –an | grep LISTEN).

Is it plugged in? I’ve dealt with issues where people thought
Apache was running, but it wasn’t. The complaint was usually,
“Apache isn’t listening on the right port!” Or, “something is blocking
me from getting to the web server.” In many cases, people didn’t
realize that a syntax or other small error stopped Apache from
running in the first place. Make sure it’s running: use ‘ps ax | grep
httpd’ in Terminal, or fire up Activity Monitor (make sure you select
‘All Processes’ from the drop down, though).

Sampler

Data BanksData Banks
Communications IncCommunications Inc

www.databanksglobal.com

HOME OF THE FREE COMPUTER
THAT'S RIGHT FREE COMPUTER!

GET A MAC MINI OR DELL
COMPUTER FREE JUST SIGN UP

FOR VOIP DSL BUNDLE

INFOSPEED 768K/128K $ 69.95
INFOSPEED 1.5M/128K $ 69.95
INFOSPEED 1.5M/384K $ 69.95
INFOSPEED 7.1M/768K $ 199.95
INFOSPEED 384K/384K $ 69.95
INFOSPEED 768K/768K $149.95

TeleSoho 1.5M/128 $69.95
TeleSurfer Plus 608K/128K $69.95
Residential 768K/128K $69.95

SOHO1.5M/768K $79.95
SOHO3.0M/384K $79.95
SOHO3.0M/768K $79.95
SOHO6.0M/768K $139.95

TeleSpeed 144K/144K $125.95
TeleSpeed 192K/192K $125.95
TeleSpeed 384K/384K $149.95
TeleSpeed 768K/768K $159.95
TeleSpeed 1.1M/1.1M $199.95
TeleSpeed 1.5M/1.5M $249.95

For questions regarding sales or service, please call
us 24 hours a day at 1-866-624-6114

Ask for business line special!

Conclusion
I hope that this article has made you want to dig into Apache

a little deeper. No installation is necessary, and you already own
the tools to modify it to your liking. There’s also a lot more to
explore, as space only permits us to cover the basics here.

If you’re serious about maintaining a web server that talks to
the world, this article is a good starting point. Past this, you owe
it to yourself to do three things: 1) Read the Apache documentation
at http://httpd.apache.org/docs/ (yes, there’s a lot there), 2) Buy
the O’Reilly ‘horse’ book (Apache), now up to its 3rd edition and,
most importantly, 3) set up a server a fiddle with it. Nothing is
more important than hands on experience. Even if you have to
use a cast-off G3, just get your feet wet. You’ll soon be swimming.

There’s a reason Apache is the number one web server on the
planet: it’s stable, secure, fast and flexible. Nicest of all? It’s built
into your Mac. Go press it into service.

Any time you make a change to your httpd.conf file, but before
restarting Apache to honor the change, you can syntax check your
config file. In terminal, try ‘httpd –t’. This will syntax check the
configuration files. It’s a nice way to catch silly errors.

Virtual hosts not doing what you expect? Try ‘httpd –S’ (S must
be capitalized). This shows the configuration as seen by Apache.
You get a listing like this:

VirtualHost configuration:
wildcard NameVirtualHosts and _default_ servers:
*:80 is a NameVirtualHost
default server virt1 (/etc/httpd/httpd.conf:1056)
port 80 namevhost virt1 (/etc/httpd/httpd.conf:1056)
port 80 namevhost 127.0.0.1 (/etc/httpd/httpd.conf:1066)
port 80 namevhost radiotope (/etc/httpd/httpd.conf:1098)
port 80 namevhost p2 (/etc/httpd/httpd.conf:1166)
port 80 namevhost mw (/etc/httpd/httpd.conf:1177)

We’re given the default server plus each of the virtual servers that
Apache is parsing. You’re also told which file and line number that
Apache is finding that information from.

In the rare instance you’re experiencing a hard crash, strip
your httpd.conf file back down to the basics, and add your
modifications in one line (or at least a small chunk) at a time. The
only time I’ve ever seen Apache die a hard death was due to a ‘third
party’ module being compiled or linked in. You might get some
indication in the log as to what’s happening before Apache dies.

Ed Marczak has been involved with technology since his Atari 2600
broke and decided to make the repairs himself. He finds the ‘about the author’
box the hardest part of the article to write. His technology time is often spent
at http://www.radiotope.com

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

52

APPLESCRIPT ESSENTIALS • by Benjamin S. Waldie

WWW.MACTTEECCHH.COM

In AppleScript, a script can be written
to logically determine a specific course of
action, based on criteria that you define.
For example, a backup script might be
written to perform a specific backup
process, based on the user that triggers the
script, or based on the day of the week.
While this is a fairly simple example, the
point is, by adding logic to a script, the
script can actually make decisions about
which tasks should be performed.

If/Then Statements
Adding logic to a script is done with

the addition of an if/then statement. If/then
statements can range from the simple to the
extremely complex.

When you write a script, you write a series of
instructions for AppleScript to perform when
the script is run. Each of these instructions is
considered to be a statement. Simple
statements are written as single lines of code.
Compound statements are AppleScript
statements that are written as more than one
line of code. Compound statements contain
other AppleScript statements, and always end
with an end clause. Tell statements, repeat
statements, and if/then statements would be
considered compound statements.

Basic If/Then Statements
The most basic form of the if/then statement appears as

follows:

if boolean expression then
do something

end if

You can see from the example above, that a boolean
expression is used as the basis for the if/then statement. In
if/then statements, a boolean expression must evaluate to a
value of true in order for the desired code, specified above as
do something, to be executed.

In AppleScript, an expression is defined as a series of terms that
evaluates to a value. For example, the following code would be
considered an expression in AppleScript, and evaluates to a value of 2:

1 + 1

A boolean expression is considered to be any expression that
evaluates to a true or false value.

Below is a functional example of a basic if/then statement:

set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Folder”
tell application “Finder”

if (exists folder (theOutputFolderPath & theNewFolderName
as string)) = false then

make new folder at desktop with properties
{name:theNewFolderName}

end if
end tell

THINKING
LOGICALLY

Sampler

In the example above, the first two lines set up variables
containing an output folder path and a folder name. Next, the
if/then statement determines whether the folder already exists,
and it triggers code to create the folder if it does not already exist.

As I said above, a boolean expression in an if/then
statement must evaluate to a true value. To fully understand this,
let’s look at the boolean expression from our example in a little
more detail. The complete boolean expression to be evaluated
is the following:

(exists folder (theOutputFolderPath & theNewFolderName as
string)) = false

We can break down this boolean expression into two
separate parts. In the first part, the Finder’s exists command is
used in order to determine whether the folder already exists, and
is represented by the following code:

(exists folder (theOutputFolderPath & theNewFolderName as
string))

The second part of the boolean expression determines
whether the result of the first part is equal to a value of false,
and is represented by the following code:

= false

Looking at both parts of the boolean expression together
again as a whole, if the result of the exists command is equal to
false, then the second part of the boolean expression confirms
that the first part is equal to false. Therefore, the boolean
expression as a whole has been determined to be true, and the
next part of the code will be executed, thus creating the folder.

Initiating a Second Course of Action
It is also possible to initiate a second course of action,

should the boolean expression evaluate to a value of false. This
is done through the addition of an else clause to the if/then
statement. For example:

if boolean expression then
do something 1

else
do something 2

end if

Let’s add an else clause to our example from above that
creates a folder. In the following example, if the folder does not
already exist, then it will be created. However, if the folder
does already exist, then the user will be presented with a dialog
indicating that a new folder was not created because one
already exists.

set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Folder”
tell application “Finder”

if (exists folder (theOutputFolderPath & theNewFolderName
as string)) = false then

make new folder at desktop with properties
{name:theNewFolderName}

else
display dialog “Did not create a folder because one

already exists.”
end if

end tell

Even with the use of basic if/then statements, you can
already begin to see that if/then statements can provide a lot of
flexibility with regard to the behavior of a script.

53

ast month, we explored adding different types of repeat loops to
scripts, which is a very important and useful aspect of AppleScript
development. As we discussed, by allowing you to perform a series

of repetitive tasks without the need to duplicate code, repeat loops help to
make your code less verbose, more efficient, and easier to change in the
future. This month, we will focus on adding logic to your scripts, which
is another important part of AppleScript development.

LL

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM54

Combining Boolean Expressions
In certain instances, you may need to combine more than

one boolean expression together in order to create a new, more
complex boolean expression. This can be done with the use of
the and or the or AppleScript operator. For example:

boolean expression and boolean expression

boolean expression or boolean expression

In either of the above cases, the entire expression will
evaluate to a true or false value. In the first instance, each
boolean expression must evaluate to a value of true in order for
the entire expression to evaluate to a value of true. In the
second instance, if either of the boolean expressions evaluates
to a value of true, then the entire expression will evaluate to a
value of true.

The following example uses a combination of two boolean
expressions in order to determine whether to create a folder
called My Tuesday Folder. One boolean expression determines
whether the folder already exists. The other determines if the
current date is a Tuesday. In this example, each of these
boolean expressions must evaluate to a value of true, making the
entire expression evaluate to a value of true, in order for the
folder to be created.

set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Tuesday Folder”
tell application “Finder”

if (exists folder (theOutputFolderPath & theNewFolderName
as string)) = false and (weekday of (current date)) = Tuesday
then

make new folder at desktop with properties
{name:theNewFolderName}

end if
end tell

Complex If/Then Statements
As we have seen so far, the most basic form of the if/then

statement evaluates a boolean expression in order to determine
whether a specific course of action should occur. An if/then
statement of this nature also allows you to take an alternate
course of action, if desired. However, in some cases, you may
need to evaluate a boolean expression against multiple criteria,
taking multiple courses of action depending on the results. This
can be done by extending the else clause in the if/then
statement to an else if clause. For example:

if boolean expression then
do something 1

else if boolean expression then
do something 2

end if

In the following example, the user is prompted, with a
displayed dialog, to click a button indicating whether a folder
should be created. In the dialog, the user is presented with 3
buttons – Yes, No, and Maybe Later. With the use of a more

complex if/then statement, the script performs a different action,
based on the button clicked by the user. If the user clicks the
Yes button, then the folder is created on the desktop. If the user
clicks the No button, then the folder is not created. If the user
clicks the Maybe Later button, then the user is prompted to
trigger the script again when ready to create the folder.

set theButton to button returned of (display dialog “Would
you like to create a new folder on the desktop?” buttons
{“Yes”, “No”, “Maybe Later”})
set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Folder”
if theButton = “Yes” then

tell application “Finder”
make new folder at desktop with properties

{name:theNewFolderName}
end tell

else if theButton = “Maybe Later” then
display dialog “Trigger the script again when you are

ready to build a folder.”
end if

Optionally, you may still choose to include an else clause
in this type of if/then statement, if desired. For example, we
could add an else clause to our code above in order to display
a notice to the user if the No button is clicked.

set theButton to button returned of (display dialog “Would
you like to create a new folder on the desktop?” buttons
{“Yes”, “No”, “Maybe Later”})
set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Folder”
if theButton = “Yes” then

tell application “Finder”
make new folder at desktop with properties

{name:theNewFolderName}
end tell

else if theButton = “Maybe Later” then
display dialog “Trigger the script again when you are

ready to build a folder.”
else

display dialog “A folder has not been created.”
end if

Nested If/Then Statements
Another effective way to create complex if/then statements

is through the nesting of if/then statements.
If you are not new to scripting, then you may be familiar

with nesting already. Nesting refers to the placement of one
type of AppleScript statement within another statement of the
same type.

An example of a nested if/then statement’s syntax would be
the following:

if boolean expression then
if boolean expression then

do something 1
end if

else if boolean expression then
do something 2

end if

Looking back again to our folder creation example, the
following code has been modified to include a nested if/then
statement. Should the user choose to click the Yes button to
create a new folder, a second if/then statement will be executed.

Sampler

This will determine whether the folder exists before creating it,
taking a different course of action if it does already exist.

set theButton to button returned of (display dialog “Would
you like to create a new folder on the desktop?” buttons
{“Yes”, “No”, “Maybe Later”})
set theOutputFolderPath to path to desktop folder
set theNewFolderName to “My Folder”
if theButton = “Yes” then

tell application “Finder”
if (exists folder (theOutputFolderPath &

theNewFolderName as string)) = false then
make new folder at desktop with properties

{name:theNewFolderName}
else

display dialog “Did not create a folder because one
already exists.”

end if
end tell

else if theButton = “Maybe Later” then
display dialog “Trigger the script again when you are

ready to build a folder.”
else

display dialog “A folder has not been created.”
end if

In Closing
As you can see, if/then statements can be tremendously

useful when scripting. With the use of simple and complex
if/then statements, your scripts can become infinitely flexible,
allowing them to take specific action based on virtually any
situation that might occur during processing. In fact, without the

use of if/then statements and other powerful scripting
techniques, such as repeat loops, certain types of workflows
could just not be automated. Imagine trying to create a complex
asset management system that uses AppleScript to move files
around, without the use of if/then statements or repeat loops. It
would be extremely difficult, to say the least, if not impossible.
So, I encourage you to begin incorporating if/then statements
into your scripts in order to automate more complex workflows,
and make your scripts more robust.

Until next time, keep scripting!

Benjamin Waldie is president of Automated
Workflows, LLC, a firm specializing in
AppleScript and workflow automation
consulting. In addition to his role as a

consultant, Benjamin is an evangelist of
AppleScript, and can frequently be seen

presenting at Macintosh User Groups, Seybold Seminars, and
MacWorld. For additional information about Benjamin, please visit

http://www.automatedworkflows.com, or email Benjamin at
applescriptguru@mac.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

Using Entourage
and Mail with

an Exchange Server

58 WWW.MACTTEECCHH.COM

INTRODUCTION
While most people think that the best thing for the Mac was

the return of Mr. Jobs, quite a bit of the people in the Corporate IT
departments feel it was Microsoft’s introduction of Exchange Server
support in Office X and 2004. Not only did it mean conventional
corporate users could access their email, shared calendars, Public
folders directly from the server…it also meant they would be
frowned upon less by their support gurus! In this article, we’ll give
the detailed instructions for those users and support staffers who
want to get or provide direct Exchange services for Mac OS X.

VERSIONS, HISTORY, REQUIREMENTS
AND CAVEATS

First off, remember that this integration process is a moving
target for two reasons – both of them in Redmond. Microsoft is
always improving on the abilities of their Exchange Server
(we’re now at Exchange Server 2003) and Office (Window’s
version is 2003 and Mac’s version is 2004). While the protocols
behind how an Exchange server talks to the clients that can use
it hasn't changed much in the last four years, Microsoft only
started this integration on the Mac side in the last two versions.

By Mark Underwood

Making lots of headway in the “mixed” IT world

Using Entourage
and Mail with

an Exchange Server

Sampler

In this article, we’ll refer to the three Microsoft-supported
versions of Office for Mac as follows:

• 2001 – Office 2001 for Macintosh, which only runs under Mac
OS 9 (not classic), and is the equivalent of Office 2000 for
Windows

• X – Office X for Macintosh, which is the equivalent of Office
2002/XP for Windows

• 2004 – Office 2004 for Macintosh , which is the equivalent of
Office 2003 for Windows

By “equivalent”, we mean that not only are the file formats
the same between sides, but with some very minor exceptions,
the same named programs are functionally equivalent. Word is
Word, Excel is Excel, and PowerPoint is PowerPoint. The
“minor” exceptions in these named programs mean that Mac-
specific nifties were added above and beyond (not instead of or
replacing) the Windows-side program. Mostly this is in
QuickTime, as you might guess.

Before 2001 was released, Microsoft had created a stab at a
Mac-based Office quite that had Word, Excel, and PowerPoint
only. They also created a reasonable Exchange client that, oddly
enough, was named “Outlook”. This program could fetch mail
from an Exchange server and see some of the shared folders –
but only if extensions to the Exchange server was configured –
things not turned on by default when the server is installed.
There was another stab at the Outlook equivalent, named
(again, oddly enough) Outlook 2001 that was more stable, yet
still not quite the Windows-side. If the IMAP or Outlook Web
Access service is installed, then just about any email client can
access mail – so other than it “looked” more like the windows
Outlook, it didn’t get any closer to being functionally equivalent.

With 2001, Microsoft dropped Outlook Express support on
the Mac and introduced Entourage. Very Mac-like, very
useful…but not Outlook. Two years later, just after Mac OS X
started hitting the streets, X comes out. Still Mac-like, still
useful…and some better Exchange support is integrated – but
the IMAP gateway is still required on the server-end. Now we
have 2004, and at last, it’s useful.

But Apple wasn’t asleep, either. The original Mail program
in 10.0 was pretty much just sendmail on GUI steroids. No
Exchange access except with the Outlook Web Access (OWA)
gateway. Cheetah spiffed it slightly – still nothing but OWA.
Jaguar added the heavy-duty filters and rules…still nothing but
OWA. It took until the Panther entered the IT jungle for apple
to add basic Exchange service support to their Mail program.
We can expect that support to improve with both vendors’
products in their next iteration.

Here’s what you need to get this working properly:

MMiiccrroossoofftt EExxcchhaannggee SSeerrvveerr 22000033 oorr llaatteerr
Like all things It, the more up to date, the better.

Exchange 5.5, even with the POP gateway, can only provide the
mail to any Mac-based client. Exchange 2000 with SP 2 or later
can provide mail, public folders, and calendaring – the basics of

dealing with Exchange from the windows-user perspective. The
latest version of server even allows full Active Directory
integration for Exchange (as well as Mail), so that a client Mac
isn’t any different in usage from a Windows box.

AAppppllee MMaacc OOSS XX 1100..33
Panther is best for this, on a lot of little levels and one

big one. The Windows-integration inside this version is very
clean and works without flinching. We’ll give you the details of
how to get that properly set up (as you don’t usually think to
do it, even in a “mixed” network). It can be done under
Jaguar…but you haven’t upgraded yet? Shame on you!

MMiiccrroossoofftt OOffffiiccee 22000044 ffoorr MMaacciinnttoosshh
To get the best of Exchange, we highly recommend

Entourage 2004, as Apple didn’t get the iCal program to work
with Exchange (yet). While Address Book can work with
Exchange (through the LDAP gateway) and Mail with Exchange,
if you must use, delegate, and share calendaring, Entourage
2004 is it. We’ll show you how to use Mail and Address book,
but seriously consider Entourage,

TThhee CCaavveeaattss
As with everything Microsoft-related, your mileage may

vary. A full list of what does and doesn’t work of the Exchange
services and the Mac-based clients can be found on their
Mactopia site at:

http://www.microsoft.com/mac/support.aspx?pid=exchange

SERVER CONFIGURATION
This isn’t a copy of WinTech magazine, so we won’t bore

you with the Exchange Server installation and configuration
verbosity. However, we can tell you (and should, as Microsoft’s
support site doesn’t have all of this together) what services
should be activated to make this approach work for any Mac-
based, Exchange compatible client.

Outlook Web Access (or HTTP DAV as it is now know)
should be already on, since that’s the default in order to get
Exchange email through a web browser. But double-check, and
if it uses a different port than 80, note that down.

IMAP should be turned on, as this is what Apple’s Mail
program accesses the Exchange server with. IMAP is a normal
method, too…but isn’t on by default in some Exchange versions.

LDAP should be turned on. It will be on if you are using
2003, or have your 2000 server integrated with Active Directory,
but again, double-check, and note the port if different than 389.

CONFIGURING MAC OS X
With the server ready to go, let’s turn our attentions to the

Mac. And yes, before we configure the Exchange client, we first
configure the Mac to act more like it’s a PC, with respect to
Windows-based services.

59 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM60

On a Mac, windows-based services are known under the
UNIX parlance name of SMB. Go into your Applications folder,
then down to the Utilities folder, and start up Directory Access.

Figure 1 – Directory Access Dialog

FFiigguurree 11 shows up. You may need to unlock access to the
settings by authenticating – cick the lock in the lower left if
needed. Once it’s available, check the SMB box, select it once,
and click on the Configure button.

Figure 2 – SMB WINS Settings

Windows environments have two major types of
authentication: WINS and Active Directory. What you want to do
is to ensure reference from the Exchange server through its
background authentication, as well as how the Mac will (in turn)
reference to the server. If you’re not the IT staffer, consult one to
find out which applies…using the simple question of “are we using

Active Directory?” Be warned; if you’re not the IT staffer, for you
to ask such a “geeky” question will astound them – since it’s
Microsoft-speak. But if answered “no”, you use WINS. If answered
“yes”, you can use WINS and Active Directory…or just Active
Directory, if the WINS protocol isn’t used at your location.

In either case, you can (and should) specify the Workgroup the
Mac is living in, with respect to the other windows machines in your
local area. In our example, we have one named “KAUi”. But Mac
OS X is also savvy enough to help you see which one you’re
in…pull down the menu at the end of the Workgroup field and
you’ll see all of the workgroups within your LAN or IP sub-domain.
Usually the name of the workgroup is known and called something
like your department or company’s name. If WINS is being used, it
normally means you’re using Windows NT Server and Exchange
5.5. Look at FFiigguurree 22, which is what you’ll get when you clicked
on “Configure” for SMB. Put the WINS Server’s name in the next
field. If you’re not using WINS, leave it blank. Click “OK” to take
these settings, and we’ll move on.

Figure 3 – Active Directory Configuration

If you got back “yes” from your question on Active
Directory, check it in the Directory Access dialog, then select it
and click “Configure”. You’ll see a shorter version of FFiigguurree
33…extend it by clicking on the triangle next to Show Advanced
Options. What to fill in here depends on the way your
location’s Active Directory was set up, so you can safely take
these names to your IT staffers and get what to put in them.
Usually only the top three are needed, unless there are more
than one AD in the place.

Once you have those answers to fill in, you will need to
click on “Bind…” to add the Mac to the Active Directory list of
clients. This will throw up a prompt to log in with as an
administrator, so you’d better have one handy.

Restart the Mac once both of these are configured to re-
register the computer in everything that matters for the rest
of the steps.

Sampler

Now we turn to creating the Exchange accounts in the two
mail programs. We’ll do Entourage first

CONFIGURING ENTOURAGE 2004
Open Entourage 2004, select Accounts from the Tools

menu, and then pull down the “New” menu in the dialog and
pick “Exchange…” This starts the Account Setup Assistant,
which will try and automatically detect your Exchange server
settings if you provide the basics: User ID, Domain, and
Password. If they’re all correct…and you don’t have oddities on
the Exchange server with respect to security and such, it will
breeze on through and set up your account.

Due to the known and unknown security errors and
problems with Exchange, however, most servers will not be so
easy. Let’s switch instead to the “Configure account manually”
button back at the start (if the auto-assistant failed in any way to
set the account up) and review the settings.

Figure 4 – Entourage Exchange Account Settings Tab

On this tab, give your account a name, and put in the
basics of the server and network. In our example, we used
a domain name of “KAUi” to match the Workgroup name for
a 5.5/2000 Exchange server without Active Directory. If you
use Active Directory, you would put in the fully qualified
domain name of the Exchange server. For the name of the
server itself, we’ve used the IP address instead of the short
local name for two reasons: speed and speed. Using the
short name means an address lookup to get the IP address.
Multiply that times the number of end users, and you might
get a delay long enough to match the timeout value and get
nothing. If the Exchange server speaks to the outside world
(which it should), then it has a fixed IP address and you
should use that. Name and E-mail address are what you
want Entourage to show to the outside world through your
sent messages.

Now let’s look at the Mail tab.

Figure 5 – Entourage Exchange Account Mail Tab

WWW.MACTTEECCHH.COM62

Critical setting here is how to fetch the messages
from the server. We chose “Receive complete messages”
to make sure we can go offline and still read them.
Exchange is similar to a standard IMAP server that leaves
messages on itself to retrieve and read. But most folks
deal with how POP servers work…messages get
transferred down to the client and not left on the server.
So if you saw the message headers on the Exchange
server and then left work, you wouldn’t be able to select
and read them without going on-line to complete the
process. If you have a slow dial-up situation, you can
check the “Partially receive…” option to cut down on
the traffic and set a limit as to the size fetched. Message
Options for signature and header information go here
on this tab. Let’s move on to the Directory tab.

Part of the beauty of the Exchange server is
centralized services, such as a single corporate address
book, shared folders, and shared calendaring. On this
tab, we deal with the Address Book part. If your IT
staffers have set up the Exchange server with the LDAP
extension, put either the name or IP address of it into
this field. Name’s okay here, as the lookup’s different.
With LDAP, there was also a search base established for
how broad of a group is examined when
accessed…normally “dc=local” will do, but check your
settings. Trimming the number of returned names
speeds things up, and I’m sure you don’t have 100 John
Smiths in your company, anyway. FFiigguurree 66 shows our
example for you.

Figure 6 – Entourage Exchange
Directory Services Tab

Next is the Advanced tab, where the spiffy Exchange
services get set.

Figure 7 – Entourage Exchange Advanced Tab

Normally, the same Exchange server is mail,
calendar, public folders, and directory. We again
used the fixed IP here to cut down on response time.
Synchronization is best done always, hence that as
the default setting. You have the option to pick a
specific category within Entourage to synch, or to
synch all but a specific category (such as a person
category), or not to synch at all. This synch applies
to everything – calendar, address book, tasks, etc. If
you don’t want your private life spilling into the
corporate Exchange server, you don’t use the same
account in Entourage to do both types of mail –
simply said. On to the next tab.

Delegate is an option within Exchange to allow
others of your choosing to act as a ‘delegate’ with
respect to your calendar and tasks information.
Administrative assistants, for example, or co-workers
on a project. You normally delegate with settings back
at the server-end for starters, but within Entourage,
you can refine the settings to specific individuals and
responsibilities.

Sampler

Figure 8 – Entourage Exchange Delegate Tab

Listed here will be the ones your Exchange server
has listed for you already, and you can add others
within the guidelines and roles set up there. In our
example, we didn’t do any delegation, as its best to
test that later. On to the Security tab.

Figure 9 – Entourage Exchange Security Tab

Digital certificates are often allowed in Exchange
servers, as Windows server have the option to generating
them for use by clients. Here is where you indicate
which one(s) to use for both signing and encryption.

This completes the configuration for Entourage
2004…now you can close the edit by clicking the “OK”.
Entourage will find the Exchange server, and voila! You
should see your left column look something like this:

Figure 10 – Exchange Server Folders in Entourage

CONFIGURING APPLE MAIL
If you use – or what to use – Apple’s Mail program

to access the Exchange server, the steps are a little
easier due to the fact that Apple’s Mail program relies
on the IMAP, LDAP, and WebDAV extensions to the
server, instead of the Windows-based default services.

Open Mail, bring up the Preferences, click on Accounts,
and create a new mail account to start the process with.

Figure 11 – Setting up an Exchange
account in Apple Mail

63 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM64

Pick “Exchange” from account type, provide a
description for the account, then put the email address
and name you want associated with the account from
the outside world’s perspective. Incoming server is
the Exchange server – notice that we again used the
fixed IP to save speed – and user name/password are
those of the server’s.

Our outgoing server relies back on the ISP’s, since
we’re not really using the full Exchange suite here.
Recall that many ISPs prevent you from relaying
messages, so you normally use the same as any
outbound POP account(s) you may have.

The last entry here is the Outlook Web Access
Server, should your Exchange server be a pre-2003
version. Mail will switch to using its gateway, rather
than the IMAP.

Done! Apple’s Mail has been configured for
Exchange. Now we turn to the Address Book approach
for getting that shared resource to work with Mail.

CCOONNFFIIGGUURRIINNGG AAPPPPLLEE ‘‘SS AADDDDRREESSSS BBOOOOKK
Since Address Book is used for many programs

under Apple’s default suite, it may be nice to add it
anyway – even if you use Entourage. Open Address
Book, go under its Preferences, click on the LDAP tab,
and then the plus sign at the bottom to add a new
directory server.

Figure 12 – Exchange through
LDAP in Address Book

As we did in Entourage, LDAP settings are the
same for Address Book. Server name or fixed IP
address, search base, etc. are all the same. Add it,
then click on “Save” to save it.

To use the LDAP, exit the Preferences, go to the
top of the first list on the lft and click on the icon
labeled “Directories”. Next to it should now show up
your Exchange server via LDAP. Click on it to restrict
searches to it, and then type in a name or location in
the search field at the top right of the dialog, then
press return. Any results will be listed in the bottom
pane. Voila!

CONCLUSIONS
<Whew!> Well, whether you went the all-Apple or

all-Microsoft approach to adding Exchange services to
your Mac – or to the Macs you support if you’re an IT
staffer – you see that it’s much easier than it was just
a couple of years ago…and it can only get better as
time goes on. We hear rumors of abilities being added
to Tiger’s versions of Mail and Address Book, as well
as more surprises from Redmond in the next wave of
Exchange. But this advancement makes it a lot easier
for the “mixed” world to let both cats and dogs eat at
the same diner indefinitely. ?

While it’s not a perfect fit – there are some
Exchange services still only for Windows-based
clients, but they are nominally not the day-to-day
sorts of things – the benefits of migration in either
direction by introducing this compatible approach far
outweigh the ‘single platform’ mantra folks have had
to hear for decades. Let’s all hope the tide has indeed
turned, and the folks at both locations keep this alive
and flourishing.

Mark Underwood was born in Lexington, Kentucky and started writing not too
long after that event, cutting his first set of teeth on Robert Heinlein and
J.R.R. Tolkien. He currently lives near the Atlanta area with his family, three
cats, and close to two dozen computers that are currently combined in solving
the children's homework and the amazing mysteries of the IT industry.

About The Author

MT

Sampler

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

WWW.MACTTEECCHH.COM66

BACKUP!
BACKUP!

BACKUP!

Sampler

Welcome
It’s similar to earthquake, fire, or (where I’m from)

tornado drills. You hope you never have to use it, but
you do it in case of emergencies. Such is the case with
data backups. A major problem with backing up data is
that it changes so frequently. A backup is only as good
as it is current. Applying Murphy’s Law to a backup
situation means that disaster is going to strike when you
haven’t ran a backup for some time. When is that last
time you’ve backed up your data?

Why Should I Backup?
Hopefully you’ve never had to deal with data loss,

but if you have I’m sure that you understand the necessity
of backing up your data. In my experience, most
businesses are so dependent on computer data that they
would go out of business if they lost it all overnight.
Imagine working on a programming project for work or
school over the last several months and then losing it all
and starting over. To make modern an old adage, “A
Megabyte in time, saves nine.”

Here are the most common reasons you should keep
a current backup:

• The most overlooked reason why you should
frequently backup, is accidental deletion or
corruption. What if you’re working hard on a file
and your Mac shuts off, and you reboot only to find
that the file you were working with will no longer
open because it is corrupted. You or someone else
using your machine could accidentally delete the file
or make changes to it that you want to undo. There
are numerous scenarios that could effect the security
of your data.

• Hard drives crash! This is something we all have to
live with. Hard drives are basically read/write heads
hovering a fraction of an inch over the top of platters
that are spinning 7,200 times/minute all inside an
airtight seal. A small speck of dust would be
detrimental! Having professionally serviced Macintosh
computers for years, I know that hard drives are one
of the most common components to fail.

• If you’re a notebook user, your Mac is a prime target
for theft. Mac iBooks and PowerBooks have a high
resell value. If you like to carry yours around, you
should make sure you have critical files backed up in
a safe place.

DATA SECURITY FOR THE
EXTREMELY PARANOID

BY BRAD BELYEU, OKLAHOMA CITY, OK

67 WWW.MACTTEECCHH.COMSampler

• Natural disaster/fire seems rather unlikely, but it does
happen. Insurance might pay for you to get a new
computer, but they can’t recreate your data for you if
you didn’t backup. In this case, not only do you need
to backup, but also you need to backup your data to
a different physical location.

• Viruses aren’t currently a problem for OS X users but
could be in the future. Viruses have been known to
delete files or corrupt entire drives. This shouldn’t be
overlooked as a good reason to have a recent backup.

Media & Software
With current technologies, there are a variety of ways

to backup your data. Not all backup options are created
equal though. I’ll rate each option on capacity,
dependability, speed, & price.

• Zip disks are slowly fading into antiquity. I say slowly
because there are a lot of die-hard zip users out there,
and in its day a zip disk was one of the best backup
options you had. Today there are options that offer
more space for less money. Internal zip drives aren’t
sold in many retail stores, but a 750mb zip drive can
be purchased from Iomega online for $149.99. The
disks are around $15 each when purchased
individually. Assuming you already have the drive
that’s around two cents per megabyte. The 250mb zip
drives are much more common and can be purchased
for $100 online. The disks can be found for less than
$15 per disk. The rate at which data can be stored to
or retrieved from the disk is average. Zip disks can be
overwritten and reused, but they are not permanent.
Zip disks will go bad eventually, just ask anyone
who’s used them much. Zips can be stored off-site,
but as with any magnetic disk, you don’t want to store
your disk next to any kind of a magnetic device.
Overall, zip disk backups are better than no backups
at all; but there are better options.

• CD burner drives are a better option than zip drives in
my opinion. Creating CD backups is definitely the
cheapest option available for users with moderate
backup needs, and any new computer purchased will
come with a recordable CD drive. 700mb CD-R discs
can be purchased for a fraction of a dollar each.
When a CD-R is full, you can’t write over any of the
files. If you use an application like Toast, multiple
sessions can be written to a CD-R until the disc is full
though. Normally when backing up to CDs, you’ll just
through away your older backups. CD-RW discs are

more expensive but allow you to erase and rewrite
the disc. The problem with CD-RWs is that the
process of erasing and reusing them is time
consuming, and there are a limited number of times a
disc can be erased and reused. The speed of writing
to a CD with current technology is pretty fast and
retrieving data from a CD is quicker than most data
backup options. CDs are a dependable backup as
long as you have a good case to store them in. If
you’re just throwing them in your desk drawer, they
scratch easily making the data on them hard to
retrieve. CDs are a good option for people needing
a modest backup option for specific files or folders.
But someone who wants to backup an entire drive or
large folders will face the inconveniences of using
multiple CDs to store the data. There are better
options for those looking for large-scale backups.

• DVD burner drives offer many of the same benefits as
a CD backup, but they will hold over six times the
amount of data that a CD will hold. A single layer
DVD will store over 4GB while a dual layer will store
8GB! As of this writing, dual layer drives are available
for purchase, but I haven’t been able to find dual
layer disks anywhere. The cost on backing up to
DVD is more per disk; but considering that you can
fit so much more data on a disc, it evens out to about
the same per megabyte. With the costs of DVD discs
falling and the speed of DVD drives improving, DVD
backups are the way of the future.

• USB Thumb drives (a.k.a. flash drives, jump drives)
have become a recent addition to the backup arsenal.
While most people use these devices for transporting
data, they can also be used for data backup. These
drives are very diverse in both size and price. A
512mb drive can be purchased online for around $50.
Considering you don’t have to purchase disks and
data can be rewritten indefinitely, thumb drives are
bargain option for small-scale backups. Also because
there are no moving parts the drives have a very long
lifespan. The only problem with them is that because
they are so small they can be easily lost or stolen.
With most of the new thumb drives coming with USB
2.0 speeds, they offer a decent speed at which files
can be stored and retrieved. I have a thumb drive
that I use specifically to backup my QuickBooks data
file. This is, of course, in addition to my other
methods of backup. Every fourth time you exit
QuickBooks it will ask you if you’d like to back up
your data. At that point I plug in my thumb drive,
click ‘Yes’, and navigate the menus to the mounted
drive. After saving the file, I dismount the drive and

WWW.MACTTEECCHH.COM68 Sampler

put it away until next time. Thumb drives make for
stylish, easy, and cheap backups. There are only two
drawbacks to using thumb drives that I can see. First,
the drives aren’t (yet) large enough for me to backup
my entire system. Secondly, it would be an easy item
for someone to steal which puts my important data at
high-risk.

• The best option for backing up large amounts of data
is to another hard disk. If you need a large-scale
backup, a secondary drive is the most affordable and
time effective way to backup your data. There are
several ways to do this. The drive could be setup
with a similar drive to create a RAID (redundant array
of indexed disks). I strongly suggest that people
create a mirrored RAID instead of a striped RAID
because your data is much safer. In a mirrored RAID,
data is mirrored on each drive. The drives end up
being an exact copy of one another. Inside your
operating system they appear to function as one drive.
But if one of your drives ever fails, your data is
completely safe on the second drive (assuming that
both your drives didn’t fail simultaneously, which is
highly unlikely). The trick to setting this RAID up is
that the drives must be setup before you can save data
or install an OS on them. If you create a RAID with
a disk that already has data on it, you will lose all the
data on the drive because the drive must be
repartitioned. To create a RAID disk with Disk Utility
you must boot to another volume, and then start up
Disk Utility (normally found in the
Applications/Utilities folder). With one of the disks
(not partitions) selected in the left panel, you can click
on the RAID tab in the right panel. From there you
drag the disks you want to use to create the RAID into
the appropriate fields. After the RAID is setup, the
two separate disks will appear as one in both Disk
Utility and in the Finder. If one of your hard disks
ever fails, you’ll get a message with a chance to
rebuild the RAID from the remaining disk. This saves
your data in the case of a hard drive failure. Some
people have a second internal drive that they backup
to that is not setup as a RAID. Even though I
recommend RAID, there are times when running the
second drive independent from the first will work.
More often an external hard drive is used to backup
data from the primary drive. External hard drives are
somewhat delicate pieces of equipment and shouldn’t
be transported more than necessary. If the drive falls
several feet or gets slammed around at all, its likely to
fail. But if handled with care, external drives can be
a very dependable backup option.

• Another excellent way to backup your data is to a
remote computer. Backing up to a remote computer
presents its own set of challenges, such as bandwidth
and security, but generally allows data to be stored in
a secure environment away from your physical
location. You can also backup to another
server/computer on your LAN. If you’re working in
an environment with many users on multiple
computers, setting up a central server for data
backups is a very smart solution saving both time and
money. When left up to end users, people usually
neglect to backup their data. But with a server, the
process can be automated with a variety of software
packages and protocols, and a centralized
administrator can make sure everyone is backing up
on a regular basis.

Software Solutions
Of course you could just use the finder to drag and

drop necessary items on a daily basis to your backup
volume. But how boring is that. As programmers we
believe that anything capable of being automated should
be! Plus backups are far more likely to happen if we
don’t leave it up to people to remember daily.

• One very simple and affordable option for reliable
and secure backups is a .Mac account. iBackup is a
software package developed by Apple specifically for
.Mac users. It can be used to backup to your iDisk
which Apple recently expanded to 250mb. Apple’s
iDisk isn’t large for a comprehensive backup, but
some major items from your home folder can be
backed up. I use some of the default suggestions and
then added my mailboxes to the backup list. My
contacts, stickies, calendars, passwords, mailboxes,
some business documents all fit easily inside my
allotted space. iBackup can also be used to backup
to a CD, DVD, or another hard drive making it a
flexible utility. Because it allows the capability to
backup to another hard drive, you can actually
backup to any volume mounted on your computer
including network mounts. iBackup allows for you to
schedule a time to perform regular backups; and as
long as your computer is turned on, it will automate
the entire process for you. iBackup is an excellent
utility with one minor drawback- you must have a
.Mac account for the software to work. The software
checks in system preferences when you start it up for
a valid username and password to .Mac. I believe my
.Mac account is well worth the $99/year that I pay for
it simply for the backup utility alone!

• There are many free options for backup software; but
if you’re in a business environment, you’ll probably
want the power and flexibility of a commercial
product. The great news is there are many great off-
site backup packages that work with Mac OS X.
These companies normally provide you with software
and server space to backup. If you have large
backups, this can get rather expensive, so in a small
business environment, you might consider doing an
off-site backup for your most critical data along with
entire system backups daily in-house. One great
application that can be used for remote or local
backup is Retrospect. I’ve only used Retrospect
Express, but it is a very powerful way to backup a lot
of data to any type of media as routinely and quickly
as possible.

• For those of us who don’t want to pay a lot for backup
software but still need our entire system backed up,
Mike Bombich’s Carbon Copy Cloner saves the day.
CCC allows you to create a bootable backup of your
volume by copying it to another hard disk. You can
also choose to create an image file on the target disk
instead of making a clone. CCC uses the ditto
command to copy the entire drive including important
resource forks. CCC also allows you to synchronize
the source to the target only backing up items that
have changed. This can save a great deal of time and
processing power. Another option in the preferences
allows to you encrypt the disk image saving it from
prying eyes. CCC is a great shareware application that
can be downloaded from:
http://www.bombich.com/software.

• FTP can be another great way to backup. I’ve setup a
SFTP server on my PowerMac to use as a backup
server for my other computers. I recommend only
using Secure FTP (SFTP) when backing up over a
public network because it will encrypt your data.
Most importantly it encrypts your username/password
so that someone using a network sniffer can’t steal
that valuable information and gain access to your FTP
server. My FTP client of choice is Transmit because of
its great interface and apple scripting ability. I use it
to automatically synchronize my iBook’s home folder
with a home folder on my PowerMac.

Transmit can be automated with some simple
applescript. Open Script Editor (found in
Applications/AppleScript/Script Editor) and try typing in
the following script entering the appropriate values for
your configuration to backup your home folder to a
remote server running SFTP.

— *** CONFIGURATION ***
set myServer to “169.127.0.1” — Put your server
address here
set myUsername to “MacTechReader” — Put your
username here
set myPassword to “password” — Put your password
here
set myServerPath to “/BackupHere” — This is the
path to save
— on your server
set myLocalPath to “/Users/MacTechReader” — this is
the path to backup
— *** END CONFIGURATION ***

try
tell application “Transmit”

make new document at before front document
— Creates new window for use

tell document 1
if (connect to myServer as user myUsername

with
password ¬

myPassword with initial path myServerPath
with
connection type SFTP) then

— Tries to connect to the server with my
username and password & the path

— specified using Secure FTP.
if (set your stuff to myLocalPath) then
synchronize direction upload files method
mirror with time offset 0

— Uses the synchronize method to upload
files and deletes files on the

— server that are not found on the local
computer.

else
display dialog “Sorry. Could not set

local
folder.”

end if
else
display dialog “Sorry. Could not connect to

remote
server.”

end if
end tell

end tell

end try

delay 1
tell application “Transmit”
activate

end tell
tell application “System Events”
tell process “Transmit”
tell window myServer
keystroke return

end tell
end tell

end tell

tell application “Transmit”
quit

end tell

Save this script and then you can insert it in your
startup items (inside Accounts pane of System
Preferences in OS 10.3). Transmit will automatically open
and synchronize your files with the remote server on
startup. If you don’t reboot your Mac often, a crontab can
be created to run the backup at a specific time of day at
certain intervals using the osascript command. Cronnix is

Sampler69 WWW.MACTTEECCHH.COM

At Small Dog Electronics, happy customers are our highest priority.

When you shop at Small Dog Electronics, you get more than just
great selection and low prices; you also get personalized service
from genuine Apple Professionals who take customer service
very seriously. And that’s a promise... no if’s, and’s or but’s.

1-800-511-MACS
A socially responsible business since 1996

71 WWW.MACTTEECCHH.COMWWW.MACTTEECCHH.COM71 Sampler

a shareware application that gives you a GUI to work
with crontabs. CronniX and its documentation can be
downloaded at http://www.koch-schmidt.de/cronnix.

This crontab is set to run at 8AM the first day of every
week regardless of the day of the month or which month
it is. The command osascript launches an applescript file
from the command line and should be followed by the
path and name of your applescript.

• Another good option for a quick backup is creating
your own shell script. Ditto is a powerful
command for backing up to a mounted volume,
but rsync is an even better option. Rsync can be
used to create a backup of a file on the same disk,
another volume, or a remote host. According to its
man-page there are eight different ways to use
rsync, and they are:

There are eight different
ways of using rsync. They
are:
1. For copying local files. This is invoked when

neither source nor destination path contains a :
separator.

2. For copying from the local machine to a remote
machine using a remote shell program as the
transport (such as rsh or ssh). This is invoked
when the destination path contains a single :
separator.

3. For copying from a remote machine to the local
machine using a remote shell program. This is
invoked when the source contains a : separator.

4. For copying from a remote rsync server to the local
machine. This is invoked when the source path
contains a :: separator or a rsync:// URL.

5. For copying from the local machine to a remote
rsync server. This is invoked when the destination
path contains a :: separator or a rsync:// URL.

6. For copying from a remote machine using a remote
shell program as the transport, using rsync server
on the remote machine. This is invoked when the
source path contains a :: separator and the —
rsh=COMMAND (aka _-e COMMAND”) option is
also provided.

7. For copying from the local machine to a remote
machine using a remote shell program as the
transport, using rsync server on the remote
machine. This is invoked when the destination
path contains a :: separator and the —
rsh=COMMMAND option is also provided.

8. For listing files on a remote machine. This is done
the same way as rsync transfers except that you
leave off the local destination.

Rsync is installed by default on Mac OS X, but if you
need documentation or a download for another machine
you can visit http://rsync.samba.org/features.html.

Rsync can be set to work without authentication if
you are running a rsync server on the remote host. If
you’re not running rsync server remotely a password has
to be entered to authenticate thus making an automated
backup a little more difficult. Here’s an example of a
command you could put in a crontab specified to run at
a particular time (keep in mind someone must type in
the password before this will execute):

rsync –r /Users/myUsername/Documents
myUserName@myRemoteHost:/myRemoteDirectory

The –r option uses recursion to copy an entire
directory. If you’d like more information on setting up a
rsync server so that a username and password do not have
to be entered, read the man page for rsyncd.conf for details.

Security & Encryption
If data is important enough to backup, you don’t

normally want just anyone to be able to read it. Precautions
must be taken to make sure the data is safe from prying
eyes. In a remote transfer, always be aware if the data is
being sent encrypted. You can use ssh as an argument to
rysnc and if a computer has remote login enabled you can
encrypt your entire session. Secure FTP is encrypted during
transmission, but not regular FTP. But even if you’re
backing up to an external hard disk, you might want to
encrypt your data after it is stored in case of theft. If you
use Carbon Copy Cloner you can tell it to create an image
and encrypt it, otherwise you may want to use Disk Utility
after the backup to create an image from your backup and
encrypt it. After all the recently made-up Chinese proverb
says, “Sometimes it is worse for data to fall into wrong
hands than to be lost completely.”

BBrraadd BBeellyyeeuu is the President of ABConsulting based out of Oklahoma City, OK.
He is an Apple Certified Technician and a member of

the Apple Consultant Network.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

Sampler WWW.MACTTEECCHH.COM73

By Brad Belyeu

Welcome
The purpose of having a remote control for you home

entertainment center (other than a good thumb workout) is to
save you the effort and time of getting out of your recliner to
change channels or adjust the volume. It’s a great idea, and
everyone uses one. Remote control of your Mac is just as easy
and convenient. Anyone who has more than one computer has
valid reasons to use remote computing. Most people probably

don’t make use of this great functionality simply because they
don’t understand how it can make things so much easier for
them. The advantages of a TV remote are pretty obvious, but
unless we stop to think about it the advantages of remote
controlling another computer are not quite as obvious. We’ll
take a how-to look at some of the powerful things that can be
done with different forms of remote computing.

WWW.MACTTEECCHH.COMSampler

Take Command Line Control
Thanks to the Unix underpinnings of OS X, remote

computing is built right into our operating system. You can
enable secure command line remote login via SSH in System
Preferences Sharing pane.

Secure SHell (SSH) came about due to the increasing
security needs when transferring data over the Internet. Back in
the early days of the Internet, a lot of data was sent as plain text.
Back in the “good old days”, you didn’t need to worry about
who was watching. Unix applications like rsh, rcp, & rlogin
were perfectly acceptable for logging into a computer remotely.
Now any ten year old that knows how to download and use a
packet sniffer can intercept plain text transmissions. SSH
provides security by creating a “tunnel” between two computers.
Every packet of data sent between the computers is encrypted
using an authentication key shared between the computers. If
SSH is used correctly, it can make remote computing just as
secure as sitting in front of the machine itself.

To login remotely to a Mac, you need to know the
hostname or IP address of the machine you want to connect to.
You also need to have a username and password setup on the
Mac you want to login to. Open Terminal and type:

ssh username@remotehost

You will then be prompted to enter your password. After
entering it correctly your current working directory becomes the
home folder of the user you logged in as. To make this
meaningful, lets run Software Update on another Mac on your
network. To list the available updates, try:

sudo softwareupdate –l

This will list all available updates. It will give you output
saying, “Software Update found the following new or updated

software” after which it will list each available update. Using the
–i argument will install updates. You can specify each one to be
installed individually by specifying the updates name.

sudo softwareupdate –i name_of_update

You can choose to install all “required” updates by using the
–r flag in place of the update name. Using the –a command will
install all available updates.

Another practical application for remote login would
be to fix a “lockup”. If your system is stuck to the point where
you can’t even open Activity Monitor or Terminal, you may be
able to kill the process remotely. Try using SSH to login
remotely as described above, then use the command:

top –u

This will list all running applications on the remote
machine. The –u argument will sort processes by processor
usage. The processes at the top of the list are using the most
system resources and are more likely to be locking the system
up. Take a note of the PID (process ID) to the left of the
application name. You can press the Q key to quit the ‘top’
command, then you can use the ‘kill’ command to terminate the
offending process.

sudo kill process_id

This will hopefully kill the offending application so you can
use your Mac again. If it doesn’t kill the application, try using
the argument –9 before the process id. The –9 flag is used to
send a non-catchable, non-ignorable ‘kill’ command.

Let’s say it’s late and you’ve been using your
PowerBook and Airport network to check your email one last
time before you retire for the evening. Suddenly you remember
that you left the Mac on in the study. Instead of getting out of
your warm, cozy bed, just use SSH again to save the day, or
night. After logging into the remote system, use the command:

sudo shutdown –h –now

The –h option halts the system and shuts it down. You can
use the –r option in its place to restart the computer instead of
shutting it down. The –now option can be replaced with
+anynumber to shutdown the computer a certain number of
minutes later.

Another great security feature of SSH is port forwarding. You
can forward TCP/IP traffic through an SSH shell to secure your
data over the Internet. Port forwarding can be used with FTP,
HTTP, POP3, SMTP, etc; this can allow you to connect securely to
any of these types of servers. The data will be sent through the
SSH tunnel. It works like an encrypted subway system connecting
two points. Normally the traffic goes over its respected port (80
for HTTP, for example), but when you use port forwarding it is
actually sent over SSH’s port (22). The syntax is:

ssh –L local_port:hostname:remote_port username@hostname

74

Sampler WWW.MACTTEECCHH.COM75

To forward your outgoing mail port, you could use the
example below.

sudo ssh –L 25:smtp_server_name:25 username host

If you are running Mac OS X Server, almost any System
Preference option can be set through the command line
‘systemsetup’ command. If you are running a copy of OS X Server
view the man page for ‘systemsetup’ to view all available options.

VNC- Virtual Network Computing
Virtual Network Computing was developed by AT&T

laboratories as an open-source cross platform graphical interface
for remote desktop computing. It is currently on version 3.3.7.
VNC requires a server application and client application to
communicate. The server software must be running first on the
computer that you want to connect to before the client software
can connect to it. Major advantages of VNC include cost (its
free!), small & simple file size, platform-independency, and the
fact that one desktop can be shared with several computers. No
state is stored at the viewer, which means if you’re working on
something remotely and your computer crashes or locks up
nothing will be lost. It is all stored completely on the server. A
good & free VNC server application for Mac OS X is OSXvnc by
Redstone Software Inc. My VNC client of choice is
VNCDimension, a freeware application from AT&T laboratory
developers. My favorite part of VNC is that it is cross-platform.
If someone has a VNC server running on a pc, it can be accessed
from a Macintosh. VNC loads only the viewer application
locally. All other work is processed remotely. I will never use
a memory hogging virtual pc application on my Mac again.
VNC can be used to run applications off your pc while saving
tons of processing power on your Mac. You can initiate any
program and it will run remotely. Understanding that most of
the computers in the world run Microsoft Windows, it is
sometimes necessary to run Windows applications. With the
cost of Virtual PC starting at $249 (Win XP Home Ver 7), it is
worth the extra couple hundred dollars to me to have the extra
processing power and storage of actually owning a Windows
pc. I run TightVNC freeware on my pc.

Imagine the extra productivity this allows! Of course, I use
VNC more often on external networks than I do on my internal
network. VNC allows for connections across the Internet as well.
I recommend using an SSH session when connecting over an
insecure network such as the Internet via port forwarding
techniques explained earlier. For details on setting up VNC over
SSH, see Aaron Adams article in MacTech Vol 20, No 7 2004.
Other VNC clients worth trying are VNCThing and Chicken of the
VNC. ShareMyDesktop is another good VNC server.

VNC is a great way to do simple remote computing but
there are professional applications which are much more
powerful and feature rich than most VNC clients. Let’s take a
look at these.

Professional Applications
Whether you professionally service computers or

you’re just the ‘computer guy’ for your friends and family, you
might want to consider purchasing a professional remote
desktop application such as Timbuktu. It’ll save you a lot of
time and money if you make frequent trips to fix small software
related problems. Also if you have an Xserve you want to
control without hooking up a monitor to it, remote computing
applications are a great solution. If you want to share your
desktop with up to fifty other Macs in a training type
environment, Apple Remote Desktop would be the perfect
application. Timbuktu is great for one to one computer
connections to fix problems, but ARD seems to be a better
application for a lab or classroom type environment.

Apple Remote Desktop can be used to sleep, wake, restart or
shutdown a group of Mac OS X systems. Software packages can
be installed onto multiple computers at once, and they can even
be scheduled to install at times when you network will have its
lightest traffic load. ARD can connect to a VNC server running on
any platform. It allows you to copy files remotely, and you can
also have a real-time text chat with the user sitting at the remote
computer. ARD supports Unix commands being sent to remote
Macs. Sharing your screen with up to fifty other Macs allows
teachers or trainers to demonstrate on-screen to students. If
you’re using ARD to troubleshoot a problem, it allows you to get
a complete hardware report of remote machines. ARD also has a
software difference report, which compares installed packages on
the admin computer with other computers in a group. Timbuktu
has most of the same options as ARD, but it also allows for voice
communications. Unfortunately, due to the cost, both of these
products are frequently restricted to commercial use.

Brad Belyeu is the President of ABConsulting based out of Oklahoma City,
OK. He is an Apple Certified Technician and a certified member of the Apple

Consultant Network.

About The Author

MT

KEYSPAN
Digital Media Remote

iTripmini
FM Transmitter

iTalk
iPod Voice Recorder

SightLight iMic
USB Audio Interface

$3799

AC Adapter

$3999

Listen in your car! Works as a loud speaker!

Designed
exclusively
for the iPod
mini.

NO BATTERIES NEEDED!

A must-have device for people
who are serious about high
quality audio.

Connect
virtually
any sound
device!

Turn your iPod into a
world-class voice
recorder.

Control your computer’s media
programs just like
your TV!

For iTunes,
Windows
Media
Player, DVD,
CD, and more!

Get More out of your Mac!

$7999 $8999 $3699

Keypoint Remote Noise Reduction

Headphones

FlashDrive PowerWave PowerMate iceKey
USB Audio Interface
& Amplifier

USB Multimedia
Controller & Input
Device

Cyclops
256 MB USB
Flash Drive

$4999 $5999

Includes
free bug
reporter
with each
application
release!

Bug reporting and organizing!

TechTool Pro
for Mac OS X

UNIX Utilities
for Mac OS X 3.0

Office Applications
for Mac OS X 3.0

Office Applications
for Mac OS X 3.0

Packed with
office and
productivity
apps!

Everything you
need to turn
your Mac
into a UNIX
Workstation.

The ultimate
emergency
software is now
available for
OS X!

4.0

DevDepot is not responsible for typographical errors. Offers subject to change at any time. © 1984-2004 Developer Depot, Inc.
Some material copyright of their respective holders. All Rights Reserved. Developer Depot, Inc. is a division of Allume Systems,
Inc. located in California.

www.devdepot.com

Visit our online store today for special
offers and great new products.
www.devdepot.com

DevDepot has it all!

FireWire light
for iSight

For Powerbook
and iBook
laptops

Multimedia RF
remote
control

$4499

Slim USB Keboard

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

Sampler WWW.MACTTEECCHH.COM79

GETTING STARTED • by Dave Mark

The Latest Version of
Xcode

There’s a new version of Xcode on
the Apple Developer Connection web
site. Definitely worth the download.
Make your way over to:
http://connect.apple.com

Login, then click on the Download
Software link. Figure 1 shows the
section of the page dedicated to the
new version of Xcode, version 1.2.

If you are working off of an
unadulterated Panther install, chances
are good that you won’t have an easy
time using Safari to download the
pieces that make up the new Xcode
installer. Fortunately, there’s a nifty
piece of freeware that will make your
job much easier.

MisFox is from a German
programmer named Alexander Clauss
and allows you to edit all the file
mappings and protocol helpers used
by Mac OS X. In our case, we want to
set the FTP helper app to whatever FTP
client you happen to be dating at the
moment. Here’s the URL for MisFox:
http://www.claussnet.de/misfox/misfox.html

Figure 1. The Xcode download listing in Safari.

When I wrote this, version 1.2.1 was the most
recent release. Figure 2 shows the main MisFox
window. Note that there are 3 tabs to choose from:
Default Applications, File Mappings, and Protocol
Helpers. I used the Default Applications tab to set my
default FTP application to Interarchy.

Figure 2. The MisFox Default Applications pane.

BZFLAG: A SOURCEFORGE

OPEN SOURCE PROJECT

WWW.MACTTEECCHH.COM80 Sampler

If you go back to Figure 1, you’ll see a Download
button to the right of the Xcode Tools 1.2 CD. Once you
use MisFox to set your default FTP client, Safari will hand
the list of files behind that Download button to your client
for easy downloading.

Xcode 1.2 consists of 21 segments. Download
them, and if they are not automatically reassembled,
just double-click on one of them. The disk image will
be mounted and you can run the installer. Obviously,
make sure you backup your hard drive before you do
the install, just in case something goes horribly,
horribly wrong.

When you first launch the new Xcode, you’ll have a
chance to go through the release notes to see what’s new
with the new version. If you miss your chance, go to the
Help menu and select Show Release Notes. Lots of good
info here. Still some issues to address, but lots of fixes,
making this release of Xcode more stable overall.

An Awesome New Keyboard
In the March 29th issue of TidBits, Adam Engst wrote

a glowing review of the Tactile Pro keyboard from Matias.
Here’s a picture of the keyboard:
http://halfkeyboard.com/tactilepro/viewer/tp_mainpic.html

Here’s Adam’s eloquent review:
http://db.tidbits.com/getbits.acgi?tbart=07607

I live on my PowerBook. Have a 17” Apple Studio
Display. But have never found a keyboard I was really happy
with. Until now. As you’ll find when you read Adam’s review,
the designers made some excellent decisions when it came to

laying out the keyboard. But to me, the most important
aspect of this keyboard is its incredible responsiveness. The
keys on my PowerBook keyboard are mushy. Perhaps a
better way of saying this is, I can’t feel the micro-switches
underneath the keys when I press them. The keys on the
Tactile Pro keyboard, however, clack when I press them, the
reassuring clack of a micro-switch being depressed. The
throw of each key is deeper, meaning that I have to press
each key down further as I type. This might seem like a bad
thing, but it is not. I can tell when I’ve pressed a key and the
Tactile Pro keyboard is much more forgiving that any other
keyboard I’ve tried. The result is much faster typing speeds
with much higher accuracy.

If you’ve ever typed on the old Apple Extended
Keyboard (think back to the days of the original Macintosh
II), you’ll have a sense of the Tactile Pro. They used the
same mechanical keyswitches, and the result is brilliant.
You can buy it online at http://tactilepro.com, $99.95.

Mac OS in an Open Source World
A long, long time ago, back before Cocoa and the

second coming of Steven P. Jobs, the Mac was pretty
much an island. You were either a Mac person or you
were not. When it came to Mac sample code, there were
some wonderful communities set up, but they were
always either Apple-driven, or catered for the most part
to Mac people. If you found some cool Unix/X windows
code, chances are pretty good that any sample projects
were set up for Windows or Unix-based environments,
Mac folk need not apply.

Now that Mac OS X has passed through the steep
portion of its adoption curve, there is much more of an

ots to talk about this month. There’s a new version of Xcode up
on the net, I got an excellent new toy I’ll touch on briefly, and for
the main event, we’re going to download and build an open
source Mac OS X program called BZFlag.LL

Sampler WWW.MACTTEECCHH.COM81

acceptance of the Mac among the open source crowd. A
perfect example of this can be seen at the big dog of
development web sites, http://sourceforge.net.

Now, you might think that your favorite web site has
lots of sample code and a big community of users, but no.
This is big. SourceForge has more than 800,000 registered
users (and that number does not include the hundreds of
thousands of developers who just like to poke around)
and more than 80,000 hosted projects. Those are crazy
huge numbers.

In the olden days, there might have been a few
scattered Mac projects, but they would have been few and
far between. Navigate over to http://sourceforge.net and
click on the software map button, just below the banner
ad towards the top of the window. Here’s the URL that
will get you there directly:
https://sourceforge.net/softwaremap/trove_list.php

This is a useful page if you are looking for a project
and know the topic. But you can also browse by other
categories, including OS. Click on the Operating System
link. Again, here’s the direct link:
https://sourceforge.net/softwaremap/trove_list.php?form_cat=199

Figure 3 shows the OS categories, along with the
number of projects in each category. More than three
thousand Mac OS projects. This is cool!

Figure 3. The list of SourceForge projects,
listed by OS.

If you click on Mac OS, and then on Mac OS X, you’ll
find 2,290 Mac OS X projects, 1,526 of which are Cocoa
projects. That is a pretty rich vein of interesting material
to explore. And, who knows, you might find a project that
interests you so much that you’ll dig in and get involved
with the development process. SourceForge (and Open
Source, in general) is cool that way.

It is worth noting that there are many projects that
support the Mac or will just plain run on the Mac that are

not necessarily in the MacOS category. For example,
there are several thousand Mac-savvy projects in the OS
Independent and POSIX categories.

Read through the rest of this column, then start
digging around, see what you can find.

Building BZFlag
Each month, SourceForge nominates a Project of the

Month. This past April, the project of the month was a
cool tank-based shooter game named BZFlag. Here’s a
link to the SourceForge BZFlag page:
https://sourceforge.net/potm/potm-2004-04.php

Cool! Pictures of Tim Riker, David Trowbridge, and
Sean Morrison, BZFlag’s key developers. The page
contains a lot of interesting info, including an interview
with the principals. This is pretty typical of a “potm”
(project of the month) page. The potm URLs are well
constructed, so you replace the 2004-04 with a 2004-03 to
get to the March project of the month:
https://sourceforge.net/potm/potm-2004-03.php

The potm page is more of a marketing page. On it,
you’ll find a link to the SourceForge BZFlag Project page:
https://sourceforge.net/projects/bzflag/

This is the actual SourceForge home for BZFlag,
where you’ll go to download the various sources and
binaries for the different platforms BZFlag supports.
These pages are very well organized. Figure 4 shows the
listing of recent BZFlag file releases. The link at the
bottom of the figure takes you to a page with a much
more exhaustive listing.

Figure 4. The list of recent BZFlag
file releases on the project page.

Sampler WWW.MACTTEECCHH.COM

If all we were interested in was the app itself, we
could download the binary for our platform. Now BZFlag
is a lot of fun to play, but there’s something gratifying
about successfully building an app on your own machine,
especially an app as complex as this one.

Click on the bzflag source link towards the bottom of
the list. Be sure to click on the one with the most recent
date. As you can see, I’ll be working with the one labeled
April 25, 2004.

This link will take you to a page listing various source
releases, including the one you selected. Source code is
archived in a number of different ways, depending on the
OS. In general, you do not want to download a .zip file.
This will likely be a build intended for a Windows
machine. The permissions will not be setup for Mac OS X,
and there will also likely be carriage return/line feed
confusion as well. For Mac OS X, look for a tar.bz2 or a
tar.gz archive.

Click on the link labeled:
bzflag-1.10.5.20040426.tar.bz2

This will take you to a download page. Select your
nearest location and click the link to start the download.
StuffIt Expander will expand the archive just fine.

In the Finder, open the newly expanded directory. In
my case, it was called bzflag-1.10.5.20040426. Now open
the subdirectory src/platform/MacOSX. As the name
implies, these are the build files for Mac OS X.

Open the Xcode project file in the MacOSX directory.
When the Xcode project window appears, click on

the targets popup menu (it’s in the upper-left corner) and
select BZFlag (Figure 5).

Figure 5. The BZFlag targets popup
from the BZFlag project window.

Now select Build and Run from the Build menu.
This is gonna take a while, so this might be a good
time to alphabetize those Zamfir pan flute CDs you’ve
been collecting.

When you start the build, if nothing appears to be
happening, it may be that you have the split closed in
your build window. If your build window is not divided
into two distinct panes, click on the dot on the bottom
edge of the window and drag it up, towards the middle
of the window (Figure 6). The build is driven by a set of
Makefiles (Unix build scripts) and the script steps are
shown in the bottom pane, while Xcode’s compile
messages will be shown in the top pane.

Figure 6. Be sure you split your build window by
dragging the dot from the bottom of the window

towards the middle.

If you get an error message during the build process,
try changing the target to BZAdmin, doing a Build of that
target, then selecting BZFlag as a target and doing a Build
and Run again. Worst case, do a Build of the Everything
target, then select BZFlag and do a Run. You need to run
the BZFlag target to run the game.

Have fun playing BZFlag. It will take over the
entire screen and put up a simple menu. Navigate the
menu with the arrow keys and the return key. Escape
takes you back up a level. Your choices are Join
Game, Options, Help, and Quit. Review the help and
options if you like, then select Join Game. This will
take you to a new menu screen. Select Find Server,
scroll through the list of servers to find a game you
like, select the game, then select Connect.

83

WWW.MACTTEECCHH.COMSampler

Dave Mark is a long-time Mac developer and author
and has written a number of books on Macintosh
development. Dave has been writing for MacTech
since its birth! Be sure to check out Dave’s latest
and greatest at http://www.spiderworks.com.

About The Author

MT

84

That’s it. You’re in the game. And there is always
a game going. It is amazing how big this game has
gotten. When you are done playing, hit escape, then
arrow down to Quit.

Doing a Unix Build
Not every Mac OS X project will ship with an Xcode

project. That’s OK, though. As long as the developers
included the appropriate make files, we can use those to
do our build. So if you had some trouble with your Xcode
build or if you just want to give the Unix build process a
try, here’s the process.

Start by launching the Terminal app.
Use the cd command to navigate into the top level of

the BZFlag folder you downloaded. For example, I
unstuffed my archive onto my desktop. From my home
directory, I did:

cd Desktop

and then I did:

cd bzflag-1.10.5.20040426

I then did:

./autogen.sh

The leading “./” tells the Unix shell to execute the
shell script contained in the file autogen.sh found in the
current directory, that is, in the directory bzflag-
1.10.5.20040426.

The script hangs a bit, then spits out this message:

BZFlag sources are now prepared. To build here,
run:
./configure
make

And that’s exactly what you want to do next. First,
type:

./configure

This will create a bunch of Makefiles and do a few
other things. When it is done, type this command:

make

Got a dual processor G5? If so, do a:

make –j2

This tells make to split the task into two concurrent
jobs. Gets the job done in half the time!

This will take a while. You’ll be compiling a fairly
large batch of code, so sit back and dream about
Gilligan’s Island. Who would you be? Hmmm…

By the way, in case you were wondering, gcc is the
C compiler, and g++ is the GNU C++ compiler.

The build should take about 10 minutes (obviously,
depends on your processor). To run the binary, be sure

you are still in that top directory and type the command:

src/bzflag/bzflag

If you get an error message, do an ls and verify that
there is a directory named src in the current directory. If
not, you may have changed directories

Till Next Month…
Hopefully, between the Xcode method and the

Terminal method, you’ve gotten BZFlag to run. Here are
a couple of BZFlag related sites that can help you with
your gameplay:
http://www.dervishdukot.org/home/bzflag/bzflag.html
http://bzflag.org/wiki/

Also, if you are IRC-savvy, you can make your way
over to #bzflag on irc.freenode.net with any questions or
comments.

Your homework assignment is to search through
some of the other Open Source projects on
SourceForge.net listed in the Mac OS X area, find one you
like, and get it to build.

A huge shout out to Sean “brlcad” Morrison for his
most excellent help in getting BZFlag to build.

Oh, and be sure to head over to
http://www.spiderworks.com and sign up for the email
list. See you next month…☺

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

WWW.MACTTEECCHH.COM

GETTING STARTED • by Dave Mark

Sampler86

GETTING STARTED • by Dave Mark

What Makes PHP
Different

In most programming languages, the
output from your program goes to the user,
in some form or another. For example, in
your Cocoa program, you might put up a
window, then display some data in the
window, perhaps with a scrollbar that lets
the user scroll through the data and buttons
that allows the user to accept the data or
cancel whatever process brought
up the data in the first place.
The point is, some portion of
your program is directly
dedicated to interacting with
the user.

PHP is different. Though
PHP does sport a set of user
interface functions, one of its
strongest uses is as a means to dynamically
generate web content. For example,
suppose you were building a web site and
you wanted to serve up one set of pages
for folks running Safari and a different set
of pages for other folks. There are lots of
ways to do this, and PHP offers its own
mechanism for doing this (and we’ll take a
look at this a bit later in the column).

More importantly, suppose you
wanted to build a web site that was data-
driven. For example, you might build a
table that lists the most up-to-date statistics

from your weekly Halo 2 league. You could embed the statistics
directly in your HTML, or you could use PHP to build an
interface to an open source database like mySQL or PostgreSQL.
You’d write one PHP-laden web tool for entering the data, then
another for displaying the data.

PHP is idea for managing HTML forms. Especially if you’ll
want to back your forms up to a database. Once you get a taste
of PHP, you’ll definitely want to play with it yourself. And the

cool thing is, if you know a bit of C,
you’ll find PHP quite easy to pick up.

Installing PHP
In the golden, olden days of Mac

OS X, installing PHP was a bit of an
adventure. For starters, you
downloaded the latest version of

Apple’s developer tools, then used Google or the like to find the
most recent source code distribution of PHP that some kind soul
had ported to Project Builder (later Xcode) format. Each source
code distribution came with a set of scripts that would drive the
process of compiling the source and installing the binaries in the
right place. These scripts are known in the Unix world as
makefiles. Once you downloaded the distribution that was right
for your version of Mac OS X, you ran the makefile, got yourself
a sandwich and, hopefully, by your last bite you had yourself an
installed version of PHP. More often than not, however, you ran
into a funky error that required you to tweak some permission
or other, or perhaps rename a directory. Bottom line, this was not
rocket science, but it was far from trivial.

GETTING STARTED
WITH PHP

The point is, some portion of
your program is directly
dedicated to interacting

with the user.

87

Nowadays, PHP has really hit the mainstream. Soon after
each rev of PHP or Mac OS X release, web pages pop up with
instructions on the best way to install that version of PHP on
your particular configuration of Mac OS X. Some folks even go
to the trouble of creating traditional Mac OS X installers that do
all the hard work for you.

I used Google to search for:

“php 5” “mac os x”

Why php 5? When I wrote this article, PHP 5.0.2 was the
latest release. By the time you read this, I suspect PHP 5.0.3 will
be out, if not an even later version. But the major release will still
likely be 5, so a search for PHP 5 will work.

The site I chose for this month’s column has a packaged
installer for PHP 5.0.1, as well as a forum section where you can
message with other folks with similar experiences. Hopefully, by the
time you read this, the installer will have been updated to the latest
version, but for the purposes of this discussion, 5.0.1 will do just fine.

Here’s the link to the main page:
http://www.entropy.ch/software/macosx/php/

Note that this install is for the version of PHP designed
to work with the Apache web server that ships with Mac OS
X. You are going to install PHP on your own machine, then
put our php test pages in the Sites folder in your home
directory. In effect, the Apache web server on your local
machine will be serving up pages to you, without going over
the net. This is a great way to learn PHP. With this setup, you
can make changes to your code without using an FTP client.
Just edit the file in place, save, then test. As long as you save
your change, you don’t even need to close the file before

switching back to your browser to hit the reload button to
retest the page. This is an extremely efficient way to work.

If this is still a bit confusing to you, not to worry. After
we do the install, we’ll run a few examples so you get the
hang of working with PHP.

FFiigguurree 11 shows the install instructions from our download
page. You’ll want to click on the link labeled PHP 5.0.1 for Apache
1.3 (remember, the page might have been updated to a more
recent version of PHP). Click the link and a disk image will be
downloaded. It’s about 20 megs, so it might take a while. Once
the .dmg file downloads, the disk image will mount. Navigate into
it and double click on the file named php-5.0.1.pkg (or whatever
the .pkg file is called when you download it).

Figure 1 – Installation instructions for installing PHP

ne of the things I love most about writing this column is the
opportunity to play with different technologies. I especially love
it when this means playing with a technology that takes a sharp

left turn from the traditional. A perfect example of this is PHP, a
programming language that looks like C, smells like C, but takes C in a
very different direction.

OO

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COMSampler88

Follow the installation instructions and PHP should
install without a hitch. To verify that the install went
OK, fire up Terminal and enter these two commands:

ls -F /usr/local
ls -F /usr/uocal/php5/

For you non-Unix folks, the ls command lists the
contents of the specified directory or file. The -F
option asks ls to put a * at the end of executable files
and a / at the end of directories. This makes an ls
listing a bit easier to understand.

FFiigguurree 22 shows my results after I did my PHP
install. Note that PHP is installed in the directory
/usr/local/php5/.

Figure 2 – A Terminal listing showing the location
of the newly installed PHP files

To test the installation, create a plain text file using
a tool like TextEdit, BBEdit, or Xcode. Be sure that
your text files are plain text files. Personally, I use
BBEdit for all my PHP and web editing. Here’s a link
to a page that will let you download a demo of BBEdit:

http://www.barebones.com/products/bbedit/demo.shtml

Regardless of how you create the plain text file,
here’s what goes in it:

<?php phpinfo() ?>

Save this line in a file named test.php and place the
file inside the Sites directory in your home directory. It
is critical that the file have the .php file extension so
the Apache web server knows to pass the file through
the PHP pre-processor before serving up the page. The
PHP pre-processor will scan the file looking for PHP
code to interpret. PHP code always starts with “<?php”
and ends with “?>”. You can have more than one block
of PHP code in a single file. We’ll show examples of
this a bit further along in the article.

The line above contains a single PHP statement, a
call of the function phpinfo(). This function returns a
bunch of information about your PHP installation, all
formatted in a two column HTML table. Why does the
function return HTML? That’s one of the most important
aspects of PHP. Your PHP code will generate HTML
code, which will appear in line with the HTML code in
which it is embedded. Once the PHP code is done
running and its output is incorporated into the
surrounding HTML, the full HTML is returned by the
server and rendered by your browser. Again, we’ll get
into this more later on in the article.

For the moment, save your one line php file into
the Sites directory in your home folder. To test the file,
use this link:

http://127.0.0.1/~davemark/test.php

Obviously, you’ll replace “davemark” with your
own user name. The 127.0.0.1 is an IP address that
represents your local machine. The ~davemark
represents the Sites directory of the user davemark.
And, of course, the file name test.php is the file we are
passing along to the Apache web server.

FFiigguurree 33 shows the output when I ran test.php on
my machine. Obviously, this is just the first few lines
of a very long series of tables.

Figure 3 – The output from phpinfo().

Hello, World!
Our next example shows what happens when we

mix PHP and HTML. Create a new plain text file and
type in this code:

<html>
<head>
<title>PHP Test</title>

</head>

<body>
<p>This is some pure HTML loveliness.</p>
<?php
echo “<p>Hello, World!</p>”;

?>
<p>Did we echo properly?</p>
<?php
echo date(“r”);

?>
<p>It works!!!</p>

</body>
</html>

Save the file as hello.php and save it in your Sites
directory. When you send this file to Apache, Apache
will note the .php file extension and send the file to
the PHP pre-processor. The pre-processor will scan the
file, copying the HTML to its output as is, until it
encounters the open PHP tag:

<?php

As soon as it hits the end of those characters, the
pre-processor starts interpreting the rest of the file as
PHP code, until it hits the close PHP tag:

?>

Once it hits that close tag, the processor runs the
PHP code it just scanned and places the output from the

PHP code following the HTML code it just copied. In the
hello.php example, this means executing this statement:

echo “<p>Hello, World!</p>”;

and copying the output from that statement into the
HTML stream. The echo command simply copies its
parameters to output, where it joins the HTML stream.

Once the close PHP tag is encountered, the pre-
processor continues copying the HTML to its output until it
hits the end of the code or encounters another open PHP tag.

Note that our example has two chunks of PHP code. The
second chunk executes this line of code:

echo date(“r”);

The first version of echo you saw copied the text string
to output. This version of echo has a function as a parameter.
In that case, the PHP pre-processor calls the function and
returns the output of the function call as input to echo. echo
simply echoes that output to the HTML stream.

Confused? Type in this link to execute your copy
of hello.php. Be sure to replace my user name with
your user name:

http://127.0.0.1/~davemark/hello.php

89 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COMSampler90

The output of this example is shown in FFiigguurree 44.

Figure 4 – hello.php in action.

To get a true sense of this process, choose View
Source from Safari’s View menu. This will show you
the merged PHP output and HTML code. Here’s my
merged source:

<html>
<head>
<title>PHP Test</title>

</head>
<body>
<p>This is some pure HTML loveliness.</p>
<p>Hello, World!</p> <p>Did we echo

properly?</p>
Fri, 1 Oct 2004 11:01:48 -0400 <p>It

works!!!</p>
</body>

</html>

Notice that the output from the PHP commands is
right there in the mix. One bit of funkiness, though.
Notice that the PHP generated HTML did not include a
carriage return, so the follow-on HTML starts on the same
line as the end of the PHP output. In this line of output:

<p>Hello, World!</p> <p>Did we echo
properly?</p>

you can see that the two paragraphs are on the same
line of source. This will not affect the final output, but
it does make the source a bit harder to read. An easy
solution to this is to embed a carriage return character
“\n” at the end of each line of PHP output.

Here’s a new version of hello.php:

<html>
<head>
<title>PHP Test</title>

</head>
<body>
<p>This is some pure HTML loveliness.</p>
<?php
echo “<p>Hello, World!</p>\n”;

?>
<p>Did we echo properly?</p>
<?php
echo date(“r”);
echo “\n”;

?>
<p>It works!!!</p>

</body>
</html>

Note that we added the “\n” directly at the end of
the first echo’s parameter string. Since the second echo
did not use a string, we added a second line of code,
just to echo the “\n”.

When you run this chunk of code, the output will
be the same. But let’s take a look at the source code
that is generated when you do a View Source:

<html>
<head>
<title>PHP Test</title>

</head>
<body>
<p>This is some pure HTML loveliness.</p>
<p>Hello, World!</p>
<p>Did we echo properly?</p>
Fri, 1 Oct 2004 11:39:16 -0400
<p>It works!!!</p>

</body>
</html>

Notice that the carriage returns we added made the
intermediate source a bit easier to read.

Include Other PHP Files
Here’s another example, for you folks who like the

organizational power of include files. This one is a
slight mod of one from the php.net site. Create a new
file named vars.php and type in the following code:

<?php
$color = ‘green’;
$fruit = ‘apple’;

?>

Save the file in the Sites folder and create a second
new file named inc_test.php. Here’s the code:

<html>
<head>
<title>PHP Include Test</title>

</head>
<body>
<?php
echo “<p>A $color $fruit</p>”; // A
include ‘vars.php’;

echo “<p>A $color $fruit</p>”; // A green apple
?>

</body>
</html>

Save this file in the Sites folder as well. Run this
example by typing in:

http://127.0.0.1/~davemark/inc_test.php

WWW.MACTTEECCHH.COMSampler

Remember to replace davemark with your
username. Your output should look like this:

A

A green apple

In a nutshell, inc_test.php is made up of two
identical echo statements, with an include statement in
between. The echo statements print the value of two
variables, each of which is set in the include file.
Notice that the first echo does not have values for
$color and $fruit and does not print anything for those
values. The second echo occurs after the include file.
Since the include file sets the values for the variables,
the second echo prints those values.

This example was included as a bit of food for
thought. Many web sites achieve their unified look and
feel through included header, nav bar, and footer files,
as well as through a judicious use of variables. No
doubt you’ll want to take advantage of include files
and variables as you build your own PHP projects.

Restarting Apache
If you happened to reboot your machine since you

did the PHP install, you may have noticed that Apache
is no longer running. Not to worry. There are two easy
ways to restart the server. The simplest way is to select
System Preferences… from the apple menu, then select
the Sharing icon. On the Sharing page, click on the
Services tab and make sure the Personal Web Sharing
checkbox is checked. As soon as you check the
checkbox, Apache will be started and the Start button
will change to Stop so you can stop the server. Unless
Apache runs into a problem at restart, it should be
restarted automatically when you restart your machine.

Another way to start and stop the server is by using
the apachectl command in Terminal. Start up Terminal
and type in this command:

sudo apachectl restart

You’ll be prompted for your admin password, since
the sudo command executes a shell with root
privileges. Type in the password and the Apache
server will be stopped (if it is running) and restarted.
Either way works just fine.

Till Next Month…
We’ll be doing a bit more with PHP next month. In

the meantime, check out the web site
http://www.php.net, the official web site for PHP
developers. There are a ton of resources on this site,

92

Dave Mark is a long-time Mac developer and author
and has written a number of books on Macintosh
development. Dave has been writing for MacTech
since its birth! Be sure to check out Dave’s latest
and greatest at http://www.spiderworks.com.

About The Author

including complete on-line and downloadable PHP
documentation. To figure out why the date() function
did what it did, find the search field at the top right of
the main page and type in the word “date”, make sure
the popup menu says “function list”, then hit return or
click on the right arrow icon. This will take you to the
“date” documentation.

Check out all the format character options in Table
1 and play with a few of them. Enjoy, and I’ll see you
next month.

Oh, if you haven’t done so already, be sure to head
over to http://spiderworks.com and sign up. The new
version of Learn C

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

GETTING STARTED • by Dave Mark

Sampler94

APPLESCRIPT ESSENTIALS • by Benjamin S. Waldie

WWW.MACTTEECCHH.COM

Manipulating Finder
objects

In this article, when I refer to a
Finder “item” or “object”, please note
that I am simply referring generically to
either a file or a folder.

Opening
We have already seen how the

following code can be used to open a
folder using the Finder:

tell application “Finder”
set theFolder to make new folder

at desktop with properties
{name:”My Folder”}
open theFolder

end tell

You may also have the need to
open a file using the Finder. To simply
open a file, the AppleScript syntax is
the same:

set theFile to choose file
tell application “Finder”
open theFile

end tell

In some cases, you may want to
open a file using a specific application.
For example, let’s say that you have a
Photoshop or ImageReady droplet, or
an AppleScript droplet, and you want
to process one or more dropped items.

You can do this with AppleScript in the Finder by making
use of the using parameter along with the open
command.

set theApplication to choose application as alias
set theFile to choose file
tell application “Finder”
open theFile using theApplication

end tell

Revealing
If you simply want to locate and navigate to an item

in the Finder, you can use the reveal command. This
will locate the object in the Finder, open a new window
if necessary, display and select the specified object.

set theFile to choose file
tell application “Finder”
reveal theFile

end tell

Moving
Moving files and folders around is another common

task involving the Finder. To move a file or folder, use
the move command.

set theFile to choose file
set theDestinationFolder to choose folder with
prompt “Please select a destination folder:”
tell application “Finder”
move theFile to theDestinationFolder

end tell

By default, the move command will not automatically
replace existing items in the destination location with the

MORE FINDER
SCRIPTING

95

same name. If you want to replace existing items in any
situation, then you can simply use the replacing
parameter to indicate that any existing items should be
replaced, if necessary. For example:

tell application “Finder”
move theFile to theDestinationFolder replacing true

end tell

If you do not want to replace existing items, but you
still want to move the item to the destination folder, then
you will need to create custom code to handle the
situation as you see fit. For example, if you wanted to
add a unique numeric suffix to the item name, and then
move it, you could use the following code:

set theFile to choose file
set theDestinationFolder to choose folder with prompt “Please
select a destination folder:”
tell application “Finder”

set theFileName to name of theFile
set thePathToCheck to theDestinationFolder & theFileName as

string
if item thePathToCheck exists then

set theSuffix to 1
repeat

if (item (thePathToCheck & theSuffix) exists) = false
then exit repeat

set theSuffix to theSuffix + 1
end repeat
set name of theFile to theFileName & theSuffix

end if
move theFile to theDestinationFolder

end tell

Duplicating

To copy an item, you need to use the duplicate
command, rather than the copy command. For example:

set theFile to choose file
set theDestinationFolder to choose folder with prompt
“Please select a destination folder:”
tell application “Finder”

duplicate theFile to theDestinationFolder
end tell

As of the writing of this article, the Finder dictionary did
indicate the presence of a copy command. However, this
command was not yet implemented in the Mac OS X
Panther (10.3.3) Finder. In addition, once functional, the
copy command will be used to copy items to the clipboard,
rather than to copy them from one location to another.

Duplicating is similar to moving, in that it will not
automatically replace existing items with the same names.
In order to replace existing items, you need to use the
replacing parameter.

tell application “Finder”
duplicate theFile to theDestinationFolder replacing true

end tell

If you do not want to replace existing items in a
destination folder, but you still want to copy an item to
the destination folder, then you will need to create code
to handle this situation. For example:

set theFile to choose file
set theDestinationFolder to choose folder with prompt
“Please select a destination folder:”
tell application “Finder”

set theFileName to name of theFile
set thePathToCheck to theDestinationFolder & theFileName

as string
if item thePathToCheck exists then

set theSuffix to 1
repeat

if (item (thePathToCheck & theSuffix) exists) = false
then exit repeat

e’ve taken a look at some basic Finder scripting, including
creating, naming, and updating folders. This month, let’s
expand a bit further, and begin looking at some other scriptable

Finder functionality.

WW

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COMSampler96

set theSuffix to theSuffix + 1
end repeat
set name of theFile to theFileName & theSuffix

end if
duplicate theFile to theDestinationFolder

end tell

Deleting

To delete an item, use the delete command:

set theFile to choose file
tell application “Finder”

delete theFile
end tell

Please note that the delete command will not
actually delete an item. Rather, it will move the item to
the trash, where it may be retrieved until the trash has
been emptied. If you want to fully delete a file, you will
need to tell the Finder to empty the trash after performing
the deletion. For example:

set theFile to choose file
tell application “Finder”

delete theFile
empty the trash

end tell

Keep in mind that by emptying the trash, you will be
removing any other items residing in the trash as well.

Getting Object Info
When working with an item in the Finder, you will

probably want to retrieve information about the item.
You can do this by accessing the properties of the
desired object. Common properties shared by both files,
folders, and disks can be found under the Finder Items
suite in the Finder dictionary.

Figure 1. Finder Dictionary > Finder Item Detail

Some commonly accessed properties of Finder items
include the modification date, name, and size of
the item. For example:

set theFile to choose file
tell application “Finder”

set theModDate to modification date of theFile
set theName to name of theFile
set theSize to size of theFile

end tell

In addition to these common properties, files,
folders, and disks also have additional properties
specific to their particular class. For example, files have
a file type and creator type property, whereas
folders and disks have other properties not possessed by
files. For example:

set theFile to choose file
tell application “Finder”

set theFileType to file type of theFile
set theCreatorType to creator type of theFile

end tell

Some developers prefer to avoid scripting the Finder when
possible, and resort instead to using a scripting addition to access
certain properties of files and folders. The Standard Additions
scripting addition, which is installed with Mac OS X, contains a
command for just this task – info for. This command may be
used to retrieve a variety of properties for files and folders, such
as name, modification date, size, and more. For example:

set theFile to choose file
set theFileInfo to info for theFile
set theName to name of theFileInfo
set theModDate to modification date of theFileInfo
set theSize to size of theFileInfo

What About System Events?
If you have done some scripting in Mac OS X before,

then you may be somewhat familiar with the System
Events background application. This application allows
you to automate various system related activities.

Figure 2. The System Events Dictionary Window

Some of the commands in the System Events
dictionary are very similar to commands found in the
Finder dictionary, including the delete, move, and
open commands. For these specific commands, System
Events may be used instead of the Finder. However,
please note that certain parameters, which are present
when scripting the Finder, are not present when scripting
System Events. For example, when moving an item using

System Events, there is not currently a way to specify
whether existing items should be overwritten. When
using this command, items will never be overwritten.

set theFile to (choose file) as string
set theDestinationFolder to choose folder
tell application “System Events”

move disk item theFile to theDestinationFolder
end tell

The System Events dictionary has expanded
significantly with the last few major Mac OS X releases,
and I expect it to continue to expand in the future. My
guess is that more Finder-like functionality will continue
to be built into System Events with every major OS release.
System Events contains much more than the few
commands I mentioned above, and I encourage you to
explore it in greater detail in order to find out more about
what System Events has to offer.

In Closing
This month’s article should take you a little further

down the road of Finder scripting. For some editable
examples of Finder scripting, you may want to check out
the example Finder scripts included with Mac OS X.
These can be found in the Library > Scripts > Finder
Scripts folder on your machine. In addition, Apple’s
AppleScript web site contains some Finder scripts, which
can be triggered from the Finder’s toolbar. For additional
information about all of these scripts, as well as links to
download the toolbar scripts, please visit
http://www.apple.com/applescript/finder/.

Until next time, keep scripting!

Benjamin Waldie is president of Automated
Workflows, LLC, a firm specializing in
AppleScript and workflow automation
consulting. In addition to his role as a consultant,

Benjamin is an evangelist of AppleScript, and can
frequently be seen presenting at Macintosh User Groups, Seybold
Seminars, and MacWorld. For additional information about Benjamin,
please visit http://www.automatedworkflows.com, or email Benjamin
at applescriptguru@mac.com.

About The Author

MT

97 Sampler WWW.MACTTEECCHH.COM

QuarkXPress® 6 has arrived. Take it out for a spin at www.quark.com/demo6.

Show it what you can do. It’ll return the favor.

The joy of six.

QuarkVista™

image editing

Direct PDF export

Multiple levels
of undo

Mac OS® X compatible

OpenType
fonts from
Linotype*

QuarkXClusive™

variable data printing

6
*Offer ends December 31, 2005. Available for download by registered QuarkXPress 6.5 users. ©2004 Quark Technology

Partnership. All rights reserved. Quark, the Quark logo, and QuarkXPress are trademarks of Quark, Inc. and all applicable affiliated

companies, Reg. U.S. Pat. & Tm. Off. and in many other countries. QuarkVista and QuarkXClusive are trademarks of Quark, Inc.

and all applicable affiliated companies. All other marks belong to their respective owners. 60198AD

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

WWW.MACTTEECCHH.COMSampler100

Basic PDF viewing and printing is generally okay.
Interactive PDF forms, however, are a different story. Adobe
Reader on Windows integrates closely with popular web
browsers, allowing a web developer to drive an interactive
PDF form filling session using the web server (e.g.,
http://pdfhacks.com/form_session/form_session-1.1/). OS X
users, however, won’t have the same experience, nor will
many Linux users.

One solution is to use HTML form features instead of PDF
form features when collecting data. The web server can manage
this data collection session, providing data validation and any
necessary database access. When the form is complete, the web
server can load the PDF form with the user’s data, flatten the
form, and then serve it to the user. “Flattening” makes the
dynamic form data a permanent part of the page, so the
resulting PDF will display properly using any PDF viewer.

Collecting data online using HTML forms is old hat. We’ll
discuss the part where you pack this data into the PDF form for
delivery to your user. We’ll also talk about how you can
automatically convert a PDF form into an HTML form. My free,

command-line tool, pdftk, makes both of these possible. We’ll
need to discuss how to get pdftk working on OS X (it also works
on FreeBSD, Linux, Solaris and Windows). We should also touch
on PDF forms.

PDF Forms
Using Adobe Acrobat 4, 5, or Acrobat 6.0 Pro (but not 6.0

Standard), you can add interactive form fields to PDF
documents. PDF form fields closely resemble the form fields
available to HTML form programmers. You have text boxes,
check boxes, radio buttons, combo boxes, list boxes, and
buttons. These can be further configured to suit your needs. For
example, a text box can be configured to be multi-line or to
mask password input, and buttons can be configured to submit
the form data to a web server.

You can even program PDF forms using JavaScript, although
the PDF document object model is quite different than the DOM
familiar to web developers. To learn more about programming PDF
using JavaScript, see the Acrobat JavaScript Object Specification

Adobe’s Portable Document Format (PDF) is really only as portable as the viewer used
to read or print it. This has become an issue in recent years as the Adobe Reader (née
Acrobat Reader) has evolved to support some platforms better than others. Web
publishers who desire maximum portability must now take stock: would this work on OS
X or Linux as well as Windows? This issue is complicated by the rise of alternative PDF
viewers such as Apple’s Preview and alternative web browsers such as Konqueror.

BY SID STEWARD

(http://partners.adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf)
and the Acrobat JavaScript Scripting Guide
(http://partners.adobe.com/asn/acrobat/sdk/public/docs/Acr
oJSGuide.pdf). We won’t discuss using JavaScript with PDF
forms, here. Though, I will mention the site
http://www.math.uakron.edu/~dpstory/acrotex.html, where
you will find JavaScript powered PDF games, such as Tic-
Tac-Toe and Naval Battle.

For our purposes, the important thing about PDF forms is
that you can permanently merge them with form data. You can
do this using Acrobat, or you can use the free, command-line
PDF Toolkit, pdftk.

Pdftk, the PDF Toolkit
Pdftk is a command-line program for manipulating PDF

documents; it is free software. I created it one year ago to fulfill my
own requirements. Since then, I have added features that I
believed this free, general-purpose PDF tool should provide. It can:

• Merge PDF Documents
• Split PDF Pages into a New Document
• Decrypt Input as Necessary (Password Required)
• Encrypt Output as Desired
• Fill PDF Forms with FDF Data and/or Flatten Forms
• Apply a Background Watermark
• Report on PDF Metrics such as Metadata, Bookmarks, and

Page Labels
• Update PDF Metadata
• Attach Files to PDF Pages or the PDF Document
• Unpack PDF Attachments
• Burst a PDF Document into Single Pages
• Uncompress and Re-Compress Page Streams
• Repair Corrupted PDF (Where Possible)

The pdftk web site (http://www.pdftk.com) describes these
features and explains how to get pdftk working on your system.
Pdftk does not require Acrobat or Java. An OS X 10.3 installer is
available for pdftk 1.11 from the site. Alternatively, you can build
pdftk yourself, a non-trivial task described below. You must
have version 1.11 if you want to automatically create an HTML
form from a PDF form.

Under pdftk’s hood, the iText PDF library does all the
heavy lifting. iText is written in Java, but I prefer programming
in C++. So I used GCJ, the Java compiler maintained as part of
GNU GCC. GCJ allows me to compile iText and then link it with
my C++ program. The result is a stand-alone binary that does
not need Java. Very cool.

The problem is that your OS X system probably doesn’t have
GCJ. You must build GCJ (along with GCC) before you can build
pdftk on OS X. Happily, John M. Gabriele provides instructions
at: http://users.bestweb.net/~john3g/gcj_osx/gcj_on_osx.html.
Brian D. Foy documents his experience building GCJ and pdftk
at: http://www.oreillynet.com/pub/wlg/5500.

After building and installing GCC/GCJ, download and
unpack the latest version of pdftk (currently 1.11) from
http://www.pdftk.com. If you configured GCC/GCJ with —
prefix=/usr/local/gcj as John describes, then you won’t need
to edit the OS X Makefile. Otherwise you will need to edit
Makefile.MacOSX so that TOOLPATH matches your location
of GCC/GCJ.

After unpacking pdftk 1.11, change into the pdftk-
1.11/pdftk directory and run make -f Makefile.MacOSX. It will
take awhile to finish compiling. When it is done, move the
resulting pdftk program to a convenient location in your $PATH,
such as /usr/bin. Test pdftk by displaying its help page:

pdftk —help
and merging a couple PDFs together:
pdftk 1.pdf 2.pdf cat output 12.pdf

Note that you cannot name pdftk’s output PDF so it
overwrites an input PDF. Also, upon success, pdftk will
overwrite files with its output without warning. Change this
latter behavior by appending do_ask to the end of the
command line, or change the ASK_ABOUT_WARNINGS setting
in Makefile.MacOSX and recompile pdftk.

Before we begin using pdftk to fill PDF forms with data,
let’s talk about FDF.

Store Form Data Using FDF
FDF is Adobe’s Forms Data Format, a file format for storing

and managing PDF form data. FDF is usually plain text, so you
can create it pretty easily using a text editor or your favorite

101

COLLECT DATA USING AN HTML FORM,
DELIVER A FILLED-OUT PDF FORM

THAT WORKS IN PREVIEW

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COMSampler102

scripting language. FDF is fully documented in section 8.6.6 of
the PDF Reference, fourth edition. You can download the latest
version of the PDF Reference from:
http://partners.adobe.com/asn/tech/pdf/specifications.jsp. Here
is an example of an FDF file that assigns the value “San
Francisco” to the PDF field named city:

%FDF-1.2
%âãÏÓ
1 0 obj
<< /FDF << /Fields [<< /T (city) /V (San Francisco) >>

<< /T (state) /V (California) >>]
>>
>>
endobj
trailer << /Root 1 0 R >>
%%EOF

To simplify FDF creation, I created a PHP program called
forge_fdf. It takes form data as name/value pairs and then spins
out the matching FDF. The program logic should be easy to
reproduce in any language. Visit
http://www.pdfhacks.com/forge_fdf/ to download the latest
version. In PHP, you would use forge_fdf like so:

<?
require_once(‘forge_fdf.php’);

// use this array for text fields, combo box, and list box form field values
$fdf_data_strings= array(‘city’ => ‘San Francisco’,

‘state’ => ‘California’);

// use this array for check box and radio button values
$fdf_data_names= array();

// these aren’t used in this example
$fields_hidden= array();
$fields_readonly= array();

$fdf= forge_fdf(‘’,
$fdf_data_strings,
$fdf_data_names,
$fields_hidden,
$fields_readonly);

$fdf_fn= tempnam(‘.’, ‘fdf’);
$fp= fopen($fdf_fn, ‘w’);
if($fp) {

fwrite($fp, $fdf);
fclose($fp);

// serve PDF, but prompt the user to save it to disk
header(‘Content-type: application/pdf’);
header(‘Content-disposition: attachment; ‘.

‘filename=filled_form.pdf’);

// our pdftk magic;“flatten” merges data with the page
passthru(‘pdftk form.pdf fill_form ‘. $fdf_fn.

‘ output - flatten’);

unlink($fdf_fn); // delete temp file
}
else { // error

echo ‘Error: unable to write temp fdf file: ‘.
$fdf_fn;
}
?>

One FDF peculiarity is that text field, combo box and list
box form field values are represented as PDF “strings,”
where check box and radio button values are represented as

PDF “names.” For our purposes, names and strings are the
same; they are just encoded a little differently in the FDF.
That is why forge_fdf takes two arrays of data:
fdf_data_strings and fdf_data_names; pack them
appropriately. By default, check boxes and radio buttons use
the values “Yes” and “Off” to represent their true and false
states, respectively. The form designer can choose an
alternative to “Yes,” but “Off” always means false.

The arrays fields_hidden and fields_readonly have no role
in this discussion, so you can ignore them.

Now things are beginning to come together. We have a PDF
form, we have an FDF data file, and we can also see, above, that
pdftk can merge these two files into a single, non-interactive
PDF. Let’s talk about that.

PDF Form Filling and Flattening with
Pdftk

The pdftk command for filling a PDF form looks like this:

pdftk <input PDF form> fill_form <input FDF data> output
<output PDF file> [flatten]

The PDF input, the FDF input, and the PDF output can be
a filename, a hyphen (-), or “PROMPT.” Passing a hyphen into
pdftk instead of an input filename causes pdftk to look for data
on stdin. Similarly, passing a hyphen into pdftk instead of an
output filename causes pdftk to return data on stdout. You can
see we used this latter technique in the snippet, above. Finally,
you can pass “PROMPT” into pdftk if you would like pdftk to
ask you for the necessary filename at run time.

If you include the flatten output option, then all form field
data is converted into static page elements. All of the interactive
form features are removed, so the result is a plain old PDF that
any viewer can handle. If you omit the flatten option, then form
fields are filled to match your input data, but they also remain
interactive. You can flatten a PDF form at any time by running:

pdftk filled_form.pdf output flattened_form.pdf flatten

So, these are the back-end pieces to our workaround for
online PDF forms. We can take form data, cast it into FDF, merge
it with the PDF form, and then serve it to the user. Now let’s
look into creating the front-end HTML form. To help us along
the way, we’ll use pdftk to discover PDF form field information.

PDF Form Field Discovery with Pdftk
A PDF form can have dozens of interactive fields. Manually

mirroring these fields in HTML would be cumbersome and
error-prone. Instead, let’s use one of pdftk’s reporting features.
You can learn everything you need to know about your PDF’s
interactive form fields by running:

pdftk form.pdf dump_data_fields > form.pdf.fields

This will create an easily parsible plain text report on your
form’s fields. The output might look like this:

—-
FieldType: Text
FieldName: name_last
FieldNameAlt: Last Name
FieldFlags: 8392706
FieldValue:
FieldJustification: Left
FieldMaxLength: 200
—-
FieldType: Button
FieldName: previous1
FieldFlags: 0
FieldJustification: Left
FieldStateOption: Off
FieldStateOption: Yes
—-
FieldType: Choice
FieldName: select_one
FieldFlags: 4587520
FieldValue: a
FieldValueDefault: c
FieldStateOption: a
FieldStateOption: b
FieldStateOption: c
—-

You can see that the field named title has a maximum length of
200 characters, that a button named previous1 has two possible
states: Off and Yes, and a combo box named select_one has three
possible states: a, b, and c. Note that push buttons, check boxes and
radio buttons all have a FieldType of Button. To tell them apart, you
must consult the FieldFlags. Similarly, list boxes and combo boxes
both have a FieldType of Choice. See section 8.6 of the PDF
Reference for details on field flags and their meanings. We won’t be
bothering with them, here.

This plain text report should provide you with all the
information you need to create an HTML interface to your form. For
fun, let’s use PHP to do this automatically. Here’s a script that reads
this text report and generates an HTML form to suit. If you added a
“Short Description” to each field in Acrobat, then that text will
appear as the FieldNameAlt entry in our report. Our script will use
this information, if present, to label the HTML field.

<?php

// this function loads a data file created using pdftk dump_data_fields
function
load_field_data($field_report_fn)
{

$ret_val= array();

$fp= fopen($field_report_fn, “r”);
if($fp) {

$line= ‘’;
$rec= array();
while(($line= fgets($fp, 2048))!== FALSE) {

$line= rtrim($line); // remove trailing whitespace
if($line== ‘—-’) {

if(0< count($rec)) { // end of record
$ret_val[]= $rec;
$rec= array();

}
continue; // skip to next line

}

// split line into name and value
$data_pos= strpos($line, ‘:’);
$name= substr($line, 0, $data_pos+ 1);
$value= substr($line, $data_pos+ 2);

if($name== ‘FieldStateOption:’) {
// pack state options into their own sub-array

if(!array_key_exists(‘FieldStateOption:’,$rec)) {
$rec[‘FieldStateOption:’]= array();

}
$rec[‘FieldStateOption:’][]= $value;

}
else {

$rec[$name]= $value;
}

}
if(0< count($rec)) { // pack final record

$ret_val[]= $rec;
}

fclose($fp);
}

return $ret_val;
}
// open our web page; the form action is a script we provide,below
echo ‘<html>
<head>
</head>
<body>
<form method=”POST” action=”pdf_form_fill.php”>
<table>’;
// create the file form.pdf.fields using pdftk’s dump_data_fields
$field_arr= load_field_data(‘form.pdf.fields’);
foreach($field_arr as $field) { // iterate form fields

echo ‘<tr><td>’; // one row per field
if(array_key_exists(‘FieldNameAlt:’, $field)) {

// use human readable name, if available;you can add these in Acrobat
echo $field[‘FieldNameAlt:’];

}
else {

echo $field[‘FieldName:’];
}
echo ‘</td><td>’;

if($field[‘FieldType:’]== ‘Text’) {
// construct an HTML text form field to match our PDF text form field;
// cannot use periods in field names with PHP,so translate them to tildes
echo ‘<input type=”text” name=”’.

strtr($field[‘FieldName:’],’.’,’~’). ‘“ ‘;
// text field default value
if(array_key_exists(‘FieldValueDefault:’, $field)) {

echo ‘value=”’. $field[‘FieldValueDefault:’]. ‘“ ‘;
}
// text field size and maxlength
if(array_key_exists(‘FieldMaxLength:’, $field)) {

echo ‘maxlength=”’. $field[‘FieldMaxLength:’]. ‘“ ‘;
if($field[‘FieldMaxLength:’]< 80) {

echo ‘size=”’. $field[‘FieldMaxLength:’]. ‘“ ‘;
}
else {

echo ‘size=”80” ‘;
}

}
echo ‘>’;

}
else if(array_key_exists(‘FieldStateOption:’, $field)) {

// use an HTML selection field for all other PDF form fields
// (check boxes, radio buttons, list boxes,combo boxes);
// cannot use periods in field names with PHP,so translate them to tildes
echo ‘<select name=”’.

strtr($field[‘FieldName:’], ‘.’, ‘~’). ‘“>’;
foreach($field[‘FieldStateOption:’] as $option) {

echo ‘<option>’.$option.’</option>’;
}
echo ‘</select>’;

}
echo “</td></tr>\n”;

}
// close our table and our HTML page;don’t forget the submit button
echo ‘</table>
<input type=”submit” value=”Create PDF”>

</form>
</body>
</html>’;
?>

Now, we need a companion script that takes this submitted
data, packs it into the PDF form and serves it to the user. This script

103 Sampler WWW.MACTTEECCHH.COM

is the pdf_form_fill.php action in our above HTML form. It looks
much like our earlier form filling example:

<?php
require_once(‘forge_fdf.php’);

$fdf_data_strings= array();
$fdf_data_names= array();

// funny thing; for our purpose,we can get away with packing everything
// everything into fdf_data_strings; that’s handy
foreach($_POST as $key => $value) {

// translate tildes back to periods
$fdf_data_strings[strtr($key, ‘~’, ‘.’)]= $value;

}
// ignore these in this example
$fields_hidden= array();
$fields_readonly= array();

$fdf= forge_fdf(‘’,
$fdf_data_strings,
$fdf_data_names,
$fields_hidden,
$fields_readonly);

$fdf_fn= tempnam(‘.’, ‘fdf’);
$fp= fopen($fdf_fn, ‘w’);
if($fp) {

fwrite($fp, $fdf);
fclose($fp);

header(‘Content-type: application/pdf’);
header(‘Content-disposition: attachment; ‘.

‘filename=filled_form.pdf’);

passthru(‘pdftk form.pdf fill_form ‘. $fdf_fn.
‘ output - flatten’);

unlink($fdf_fn); // delete temp file
}
else { // error

echo ‘Error: unable to write temp fdf file: ‘. $fdf_fn;
}
?>

When filling forms this way, it turns out you can pass
everything into forge_fdf using the fdf_data_strings array; there’s no
need to use fdf_data_names. That’s handy.

Now the Fun Begins
We have done it! We have created an HTML front-end to

filling PDF forms. This is where the fun begins. You can now
take everything you know about web programming, such as
data validation and database access, and use it to fill PDF forms.
Your users will be glad, too, because your resulting PDFs will
work in alternative viewers such as Preview, and because you
give them a filled-out PDF form for their records (which Adobe
Reader does not provide).

To see an online example of these scripts, visit
http://www.accesspdf.com/html_pdf_form/. You will also find the
code, quoted in this article, available for download.

Sid Steward is a longtime PDF service provider and software developer. He
developed the free PDF Toolkit (http://www.AccessPDF.com/pdftk/) and

wrote the book PDF Hacks (O’Reilly Media). You can reach him at
sid@accesspdf.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

BECOMING
A BLOGGER
WITH IBLOG

106 Sampler WWW.MACTTEECCHH.COM

Blogs, the latest Internet craze, have become a
wildly popular way for people of all backgrounds to
share ideas, opinions, and information. A blog, which
stands for Web log, is basically an online journal of
frequently added, chronologically organized entries.
Although most blog entries are short and to the point,
they can be any length. They can also include
hyperlinks, pictures, movies, and sounds.

I got my first look at blogging about a year ago. I’d
just renewed my .Mac membership and was surfing the
.Mac site for software perks. That’s where I downloaded
a special version of iBlog for .Mac users. iBlog offered a
very Mac-like interface for creating blogs, blog categories,
and entries. It then enabled users to publish their blogs
on their .Mac Web space on Apple’s server. I downloaded
iBlog, set it up, and started publishing my own blog.
Within a remarkably short time, I was hooked.

iBlog makes it easy for me to share my thoughts with
Web site visitors without HTML coding or fiddling around
with Dreamweaver (my current authoring tool of choice).
iBlog entries are automatically put in chronological order,
with the most recent on top. Old entries are automatically
archived by date. All I have to do is type in my entry and
publish it. iBlog does the rest.

If you want to start your own blog and you don’t feel
like putting a lot of effort into programming or paying a
blog hosting site to host your blog, iBlog is the answer.
Here’s how you can get started.

Download and Install iBlog
That special version of iBlog that I downloaded from

.Mac is no longer available. That’s the bad news. The
good news is that newer, more feature-packed versions
have been released since then. And although the software
is distributed as shareware with a 2-week trial period, it
only costs about $20 to buy. (Payment is in Indian rupees,
so the exact amount varies.) You can download a copy
from the Lifli Software Web site at www.lifli.com.

iBlog comes as a disk image. Open it up and drag the
iBlog icon from the disk image’s folder to your hard disk
to copy it there. That’s all there is to it.

Using iBlog creates an iBlog folder in
~username/Library/Application Support/. Depending on
how you configure iBlog, it may also create an iBlog
folder in ~username/Sites/. So if you decide later that you
don’t want to use iBlog after all, just delete the application
and the two iBlog folders. That’ll remove it and its data
files from your computer.

logs, the latest Internet craze, have become a wildly popular way for people of all
backgrounds to share ideas, opinions, and information. A blog, which stands for
Web log, is basically an online journal of frequently added, chronologically

organized entries. Although most blog entries are short and to the point, they can be any
length. They can also include hyperlinks, pictures, movies, and sounds.

BB
by Maria Langer

Getting Started
Double-click the iBlog application icon. iBlog opens

and displays its Blogger Mode window. FFiigguurree 11 shows
what my well-established iBlog window looks like. When
you first launch iBlog, this window will be empty.

Fig 1: iBlog Blogger Mode with lots of blogs,
categories, and entries.

(iBlog has two modes: Blogger Mode and Reader
Mode. You use Blogger Mode to create and publish blogs.
You use Reader Mode to read other people’s syndicated
blogs. This article covers Blogger Mode only.)

iBlog’s interface should look familiar. It’s a lot like
iPhoto, iTunes, and other Apple software. A pane on the
left side of the window lists blogs (gold folder icons)
and their categories (blue folder icons). When you click
a blog or category, a list of its entries appears to the
right. When you click an entry name, the entry appears
in a window beneath it. A calendar beneath the Blogs &
Categories list offers a way to view entries by date. Click
a date to see its blogs.

Create a Blog
The first step to using iBlog is to create a blog. I like

to think of a blog as an online book. You need to create
the book before you can fill it. Although I have lots of
blogs, you really only need one to be a blogger.

Click the Add New Blog/Category/Entry button at the
bottom-left of the window ((FFiigguurree 22)). Choose New Blog
from the menu that pops up. A dialog sheet with options
for the new blog appears.

Fig 2: The New Blog/Category/Entry button displays a
menu.

If necessary, click the Attributes button ((FFiigguurree 33)).
You must enter information in the Blog Name and Blog
Description fields. This information is used for the Web
pages iBlog creates automatically for you.

Fig 3: Blog Attributes include the Blog name,
description, and other settings.

There are a few other important settings in this
dialog. Make sure Blog Type is set to Public and that the
Publish Blog option is set to Yes. The Author Name
appears at the bottom of the page in a copyright notice
and the Author Email is used for a feedback link.

Click the Display Settings button ((FFiigguurree 44)). This
dialog sheet determines how the pages of your blog will
appear and offers some customization options. iBlog has
many other powerful customization options, as I’ll discuss
briefly later. For now, just set the What to show in blog
page option to Abstract and Body.

107 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM108

Fig 4: Display settings offer some page
customization options.

When you click Save, your new blog appears as a
gold folder in the Blogs and Categories list. You can
repeat these steps to create multiple blogs if you like.

Create a Category
If a blog is like a book, then a category is like a

chapter in the book. Although you don’t have to create
categories, I recommend it. Categories offer a way to
organize entries in a way other than by date. iBlog creates
category pages that list entries for just that category.

Click the Add New Blog/Category/Entry button
(Figure 2) and choose New Category from the menu that
pops up. A dialog sheet for the new category appears
((FFiigguurree 55)). If you have more than one blog, choose the
name of the blog the category belongs to from the Select
Blog Name pop-up menu. Enter a name for the category
in the Category Name box. And, if you want to get fancy
and assign an image to the category, drag the icon for an
image file from the Finder to the Category Image well.
The image appears in the well.

Fig 5: A the category settings sheet with some
information entered for a new category.

(Yes, that’s my mug.)

When you click Save to save your settings, the
category appears in the Blogs & Categories list as a blue
folder beneath its blog. If you can’t see it, click the
triangle beside the blog folder to display it.

Of course, you can repeat this process for as many
categories as you’d like to create. FFiigguurree 66 shows the
Blogs & Categories list with three categories created.

Fig 6: A single blog with several categories.

Create an Entry
If a blog is a like book and a category is like a

chapter, then an entry is like a page. Well, something
like a page. Entries are what make up the contents of
your blog.

Click the Add New Blog/Category/Entry button
((FFiigguurree 22)) and choose New Entry. Use the New Entry
form window that appears to create your entry
((FFiigguurree 77)).

Fig 7: A blog entry.

Sampler

This window is pretty self-explanatory. You set
options at the top of the window to determine which
blog and category the entry should be associated with.
The Post Date is entered automatically, but you can set
it to a different date to change the order in which the
entry appears or set it to publish at a later date. Then
you enter the entry’s title in the Entry Title box and the
entry’s body in the big box at the bottom of the
window.

The Entry Abstract is a shorter version of the entry.
The Auto Abstract option, which is relatively new, will
create an abstract based on the entry body. I don’t like
this feature, so I turn it off. Instead, I manually enter a
one-sentence description of the entry in the Entry
Abstract box. That’s just the way I use iBlog, though.
You may prefer real abstracts and think the Auto
Abstract feature is great. Give it a try and decide for
yourself. It’s easy enough to turn off if you decide you
don’t like it.

The toolbar at the top of the window has buttons
for the usual formatting options, as well as options to
add features to your blog entry. For example, you can
select text in the blog window and click the Hyperlink
button to display a dialog like the one in FFiigguurree 88 for
turning the selected text into a hyperlink. Enter the
URL, turn on the check box if you want the page to
open in a new Web browser window, and click Save.

Fig 8: Use this dialog to create a hyperlink.

If you use iPhoto to organize your photos and
other graphics, you can click the Photos button to
insert a photo into the entry. Choose an iPhoto album
in the dialog that appears ((FFiigguurree 99)) and click the
photo you want to insert. The Width and Height boxes
work a little weird; the size of the photo is determined
by the height and the width is adjusted proportionally.
Click Import to insert the image into iBlog. Once the
image is inserted, you can double-click it to display a
dialog sheet ((FFiigguurree 1100)) for setting other image
options. Although you won’t see those options in the
iBlog entry window ((FFiigguurree 77)), you will see them
applied on the Web page iBlog creates ((FFiigguurree 1133)).

Sampler109

WWW.MACTTEECCHH.COM110

Fig 9: Use this dialog to insert an image from your
iPhoto photo library.

Fig 10: Then use this dialog to set image options.

When you click the Save button to save your entry, it
appears in the Blogger Mode window ((FFiigguurree 1111)).

Fig 11: A completed blog entry in the
Blogger Mode window.

Preview
You can use iBlog’s preview feature to get a look at

your entry before it’s published. Just click the Preview
button (which looks like a magnifying glass) in the
bottom of the Blogger Mode window. iBlog launches
your default Web browser and displays the Home page
for your blogs ((FFiigguurree 1122)).

Fig 12: iBlog creates a home page
for all of your blogs.

Click the link for a blog name. The blog page for that
blog appears, with the entry you created at the top
((FFiigguurree 1133)). As you can see, iBlog also creates a
navigation bar complete with calendar and links. Try out
the links to see what other pages iBlog created. You
should be impressed. I was. iBlog is a heck of a lot
quicker than creating all those pages manually.

Sampler

111

Fig 13: Previewing an entry.

Publish
Publishing with iBlog is just as easy as previewing.

But first you have to set up a publish location and
match the blog to the location. You do this just once
and iBlog remembers your settings for each time you
want to publish.

Choose Preferences from the iBlog menu. In the
dialog that appears, click the Publish button, you should
see a dialog like the one in FFiigguurree 1144, but it’ll be empty.

Fig 14: Publish preferences with a publish location
already set up.

Choose a location type from the pop-up menu at the
bottom of the screen ((FFiigguurree 1155)). For this example, I’ll
choose FTP to publish on an existing Web server. Then click
New Location.

Fig 15: Use this menu to choose a location type.

Use the New FTP Location dialog ((FFiigguurree 1166)) to
enter the usual information for accessing the appropriate
FTP server. Then turn on the check boxes beside the
name of the blog you want to publish to that site. As you
might imagine, if you have multiple blogs, you can
publish them to multiple locations. Click Save and your
settings are saved as a Publish Location ((FFiigguurree 1144). You
can close the Publish preferences window.

Fig16: Enter FTP site information in this dialog.

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM112 Sampler

Back in the Blogger Mode window, click the
Publish button, which looks like a little planet Earth. If
you have multiple blogs, a dialog appears so you can
specify which blog(s) you want to publish. But if you
have just one blog, iBlog goes online and uploads all
the pages and related files it has created for your blog.
While it’s doing this, it displays a Publish Status dialog.
When the dialog disappears, your Web browser
launches, displaying the blog page that has been
uploaded to your site.

Simple, no?

Going the Next Step: Customization
While I admit that iBlog isn’t the perfect solution,

it’s pretty darn close for a non-programmer like me.
Although the pages it creates are perfectly acceptable
“right out of the box” as discussed here, iBlog can be
customized to change the appearance and layout of
pages and the items that appear in the navigation bar.
You do this by creating or customizing templates, style
sheets, and navigation bar contents. A complete
discussion of this is far beyond the scope of this
article, but if you’re familiar with HTML and CSS, you
already have the knowledge you need to make the
changes. If you want a good idea of what can be done

with iBlog to create a truly customized site, check out
the support Web site I’ve created for my books,
www.langerbooks.com. That entire site is iBlog-
generated and it’s a heck of a lot easier to maintain
than the old sites I managed with Dreamweaver.

iBlog. Do you?
As you can see, iBlog offers a simple solution for

someone interested in blogging. As it continues to be
developed and refined, it may well become a leading
product for Mac bloggers everywhere.

Maria Langer is a freelance writer who has been writing how-to
books and articles for Macintosh users since 1992. You can read
her blogs at homepage.mac.com/mlanger/iblog and visit her on

the Web at www.marialanger.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

ACTIVE DIRECTORY

&
MAC OS X

114 Sampler WWW.MACTTEECCHH.COM

Ancient History
Many in the Mac IT community will recall the Windows NT

revolution and its impact on Apple’s place in the market. Microsoft
began heavily promoting NT, selling its centralized management
capabilities (which appealed to the rapidly professionalizing field of
desktop IT management) as well as Apple’s seemingly delayed
reaction. You could make a case that Apple’s strategy in this area
was unsuccessful and may have had some degree of negative
impact on its overall market share. In 1993 when Windows NT 3
was introduced Apple enjoyed a nearly 10% market share. By 1997,
1 year after NT4’s introduction, Apple’s market share had declined
to around 4.4 %, and Microsoft had made great inroads, particularly
in the server space, into some of Apple’s core markets. Rather than
embracing and fitting into the infrastructures that its customers had
chosen, Apple continued to employee strategies that have not been
proven successful in the enterprise marketplace.

History Reloaded
In 2003, Active Directory (Microsoft’s Directory Services

product) was in much the same position that Windows NT was in

the late 1990’s. In its second revision (as a part of the Windows 2003
server product; the first was included with Windows 2000) Active
Directory had achieved a deep level of penetration into several of
Apple’s core markets. Once again, Apple had a decision to make—
embrace the idea of heterogeneous multi-vendor networks driven
by ad-hoc market standards, or retreat to its less successful roots.
Luckily in 10.3 Apple seems to have at least tentatively chosen the
former path, engineering into the Mac OS X specific capabilities for
integration with Active Directory. This is a new and bold step
forward for Apple, and something that goes a long way towards
bring legitimacy to Apple in enterprise and institutional markets.

The Active Directory Plug-in:
Features

Active Directory Integration is nothing new to Mac OS X—
previous to Panther a certain level of interoperability was feasible.
Feasible, however implies neither secure nor straightforward, to say
nothing of the simplicity Mac users are accustomed to. The problem
with pre-10.3 configurations is that they were tedious, complex, and

Fitting in, not standing out. We mean it this time.
By Michael Bartosh

command line utility or the Accounts pane of the System
Preferences application.

• Multiple domain authentication: Active Directory is capable of
scaling to very large deployments. These large deployments
often form forests made up of multiple domains. Apple’s Active
Directory plug-in optionally allows for users from any domain
in a forrest (even domains in a different namespace— for
instance a domain called pantherserver.org in a forest called
apple.com) to log into the Mac in question.

• Active Directory Group Support: Active Directory keeps track of
groups in a way that is very different from Mac OS X (and most
other Unix-based Operating Systems). This made it very difficult
in Jaguar to leverage the extensive group management
capabilities of Active Directory. Panther’s Active Directory Plug-
in is designed specifically to interpret Active Directory group
data, manipulating it in a way that makes it useful to Mac OS X.

relatively insecure. There was no standardized or consistent
integration procedure, and the result was typically a mess of hacks,
work-arounds and duct tape. Additionally, really complete solutions
tended towards intrusiveness, often requiring extensive changes to
the Active Directory.

Panther’s Active Directory Plug-in provides a simpler and more
full-featured platform for directory services configuration. It supports
a number of line-item features (which I’ll cover) but its single most
important feature is not a line item at all, but a basic architectural
principal. It seeks to emulate a Windows client as much as possible.
Its communication with the Windows domain is nearly
indistinguishable from its Microsoft-bred counterparts. Its goal is to
integrate as seamlessly as feasible into the infrastructure that many
of Apple’s customers have chosen, requiring no infrastructure
changes and little massaging or special treatment. Beyond that
strategic goal, its specific features are many.

• Single Sign On: The Active Directory plug-in leverages the
extensive client-side work Apple has pursed in order to

effectively make use of the Kerberos authentication protocol.
Kerberos is Active directory’s native authentication platform,
and effective Active Directory integration demands a mature
Kerberos environment. When a User logs into Mac OS X using
an Active Directory account they are granted a TGT (ticket
granting ticket) which ultimately allows them to access
Kerberized services— including Exchange’s Outlook Web
Access— without having to authenticate again.

• Windows Home Directories: In its default configuration, the
Active Directory Plug-in obtains the location of the User’s home
directory (in the homeDirectory attribute of the User’s Active
Directory account) and puts it into the User’s Dock so that it is
easily accessible. It can also be configured, however (as covered
later in this article) to use the SMB-mounted Windows home
share as a Mac OS X network home directory.

• Password Policy Enforcement: In Jaguar password policies set in
Active Directory were not effectively enforced. Although the
situation isn’t perfect in Panther, users are allowed to change
expired passwords on log-in, and password changing is
effectively integrated into the user experience, allowing users to
change their Active Directory password with either the passwd

• Delegated Administration: Active Directory largely operates on
the principal of delegated administration— granting certain
administrative privileges in a granular fashion to users who are
not domain administrators (users, for instance, are often
delegated the authority to add their workstations to the
domain). The Active Directory Plug-in is friendly to this concept,
optionally allowing one or more Active Directory groups to
administer the Mac OS X workstation. Administrative capabilities
can additionally be granted to specific users (rather than groups)
the same way they would be on the Windows platform, by
setting the Managed By attribute in the Windows Active
Directory Users and Computers application.

• Disconnect Behavior: Panther displays far better disconnect
behavior when domain resources are not available. In Jaguar
the user experience as Open Directory (Apple’s Directory
Services infrastructure) struggled to re-connect to missing
directory domains was painful to say the least, with difficult
timeouts that left the client useful for extended periods of
time. This has improved in Panther to the extent that Active
Directory user accounts can even be cached locally, so that
the user is able to log in even if the domain is not available.
When the domain is available password policies (such as
expiry) are enforced.

115 Sampler WWW.MACTTEECCHH.COM

We mean it this time.

WWW.MACTTEECCHH.COM118 Sampler WWW.MACTTEECCHH.COM

• UniqueID Generation: One of the biggest challenges of
integrating any Unix operating system with Active Directory is
the UniqueID. This integer (sometimes called uid) is used to
uniquely identify Unix accounts. Active Directory supports
several unique identifiers (among them guids and sids) but they
are 128 bit hex identifiers. This results in quite a bit of difficulty
during integration, since a user account without a UniqueID
isn’t really a user account as far as Mac OS X is concerned. The
Active Directory Plug-in works around this issue, generating an
integer UniqueID from the 128 bit hex guid. This conversion
(done according to Microsoft’s specification at blah) produces
an integer UniqueID that is both consistent throughout the
domain and Unique among all user accounts. The only real
downside to this process is that the converted UniqueID’s are
very large, and not all Applications deal with them correctly.

• Domain controller preference: When the Active Directory
Plug-in joins a domain it attempts to locate the nearest
domain controller using site policy published to DNS.
Unfortunately site policy is not always configured correctly,
so the Active Directory Plug-in allows you to specify a
preferred domain controller.

Configuring the AD Plug-in
The Active Directory Plug-in, like most other end-user

configurable Open Directory Plug-in’s, is configured using the
Directory Access application, which is located in an out of box Mac
OS X install in /Applications/Utilities. Configuring Active Directory
integration is as simple as starting Directory Access, choosing its
Active Directory Plug-in, and clicking on the configure button, as
seen in FFiigguurree 11.

Figure 1. The Directory Access application.

Configuring the Active Directory Plug-in results in the dialog
seen in FFiigguurree 22. It is, in its basic form, extremely straightforward,
prompting for a domain and forest to join, along with an ID for

the computer. In the case of Mac OS X clients this computer ID
should reflect local naming conventions and policies (machines
are often named sequentially, or based on their user or physical
location). Servers joining Active Directory should use the
unqualified portion of their hostname. Homes.pantherserver.org,
for instance, would have a computer ID of homes (this allows for
easier single-sign on interoperability between the server an the
Active Directory Kerberos environment).

Figure 2. The Active Directory Plug-in’s
basic configuration dialog.

Optionally, clicking on the Show Advanced Options triangle
reveals the interface pictured in FFiigguurree 33. This is where most (but
not all) of the features listed earlier in this article are implemented.

Figure 3. The Active Directory Plug-in’s advanced configuration dialog.

Options from this interface (along with other interesting bits of data)
are stored in the Active Directory Plug-in’s configuration file
(/Library/Preferences/DirectoryService/ActiveDirectory.plist) which
is discussed in more depth later in this article.

When the desired options have been specified, you may select
the Bind button. This results in an authentication dialog, pictured in
FFiigguurree 44. This dialog accepts a container or organizational unit in
Active Directory along with credentials required to add a computer
account to it. This is an important concept— the graphical interface
erroneously implies that Domain Administrator credentials are
required to add the Mac to the Active Directory Domain. In reality,
all you need to supply are the credentials of a user able to add
computer accounts to the specified container or ou. As mentioned

119 Sampler WWW.MACTTEECCHH.COMWWW.MACTTEECCHH.COM

earlier this is a commonly delegated task, often left to users or low-
level IT staff.

Figure 4. Joining Active Directory requires that the specified
credentials be able to add computer accounts to the indicated

organizational unit or container.

Troubleshooting
Other than a thorough understanding of Active Directory, Open

Directory, and directory services in general the two most important
tools for troubleshooting Active Directory integration issues are
network sniffers (like tcpdump and ethereal) and the Directory
Service daemon’s debug mode.

tcpdump is installed on Mac OS X (and most other Unix
operating systems) so I most commonly use it to initially gather data,
later examining that data using a graphical tool like ethereal.
Kerberos data in particular looks largely like a bunch of hex over the
wire, and ethereal can be a great help translating this data into
something that’s human readable.

big15:~ mab$ sudo tcpdump -w join.dump -i en1 port domain
or port 3268 or port kerberos or port kpasswd or port ldap

Comment
The work of the Active Directory plug-in is actually executed

by the DirectoryService daemon, which produces very good logging
data, particularly in the case of Active Directory interoperability. To
turn debug logging in, you need to send the USR1 signal to the
DirectoryService process. This begins logging to
/Library/Logs/DirectoryService.debug.log. Active directory messages
are prepended with the string ADPlugin:, so the log itself (which is
very verbose) is easy to filter.

xsg5:~ tadmin$ sudo killall -USR1 DirectoryService
xsg5:~ tadmin$ tail -f
/Library/Logs/DirectoryService/DirectoryService.debug.log |
grep ADPlugin
2004-10-14 01:38:17 PDT - ADPlugin: Calling CustomCall
2004-10-14 01:38:17 PDT - ADPlugin: Doing
CheckServerRecords......
2004-10-14 01:38:17 PDT - ADPlugin: Good
credentials for joiner@ADS.4AM-MEDIA.COM
2004-10-14 01:38:17 PDT - ADPlugin: No connection
in connection mgr for joiner@ ADS.4AM-MEDIA.COM@ads.4am-
media.com:389
2004-10-14 01:38:18 PDT - ADPlugin: Secure BIND
Session with server w2k.ads.4am-media.com:389
2004-10-14 01:38:18 PDT - ADPlugin: Processing Site
Search with found IP
2004-10-14 01:38:19 PDT - ADPlugin: Added
connection to connection mgr joiner@ADS.4AM-
MEDIA.COM@ads.4am-media.com:389

2004-10-14 01:38:19 PDT - ADPlugin: Found Default
Domain ads.4am-media.com

Turning on debug logging in the DirectoryService daemon.
The debug log is easy to filter with grep.

DirectoryService debug logging remains enabled until the
daemon is re-started or until it receives another USR1 signal.
Sending a USR2 signal enables API logging, which logs every
Open Directory API call to the system log (/var/log/system.log).
USR2 logging is heavy-weight, and will automatically turn off
after 5 minutes.

The User Experience
In its default configuration, users from Active Directory are

allowed to log in to Mac OS X using several forms of their user
name (in order to be as compatible as feasible with the Windows
user experience.) John Doe for, for instance might be able to log in
as jdoe, John Doe, jdoe@ads.pantherserver.org or ADS\jdoe. The
user is given a local home location in the /Users directory and a
Kerberos TGT (ticket granting ticket) is obtained on log-in. This
means that users can access most domain resources— from
kerberized file servers to Outlook Web Access (using Safari) without
re-authenticating. In the client flavor of Mac OS X (Mac OS X
Server’s behavior differs) the user’s SMB home directory (if it is
listed in their user record) is placed in their dock and automatically
mounted using NTLMv1 authentication (the TGT is not obtained
early enough to mount it using Kerberos, which is far more secure).

Advanced Configuration
Some of the Active Directory Plug-in’s most significant features

are not available in its graphical interface. Most of these are
available through the dsconfigad command, the AD Plug-in’s
command-line configuration interface. The Active Directory
homeDirectory UNC, for instance, can be used as the Mac OS X
home directory (rather than being mounted on the desktop) using
the dsconfigad command’s –localhome flag.

djou:~ djou$ dsconfigad -localhome disable
djou’s Password:
Settings changed successfully
djou:~ djou$ dsconfigad -show

You are bound to Active Directory:
Active Directory Forest = ads.4am-media.com
Active Directory Domain = ads.4am-media.com
Computer Account = m-h02

Advanced Options
Mount Style = smb:

Using dsconfigad, first to turn off the the default local home
behavior, then to examine the Plug-In’s configuration. When
–localhome is disabled, user home directories are mounted late
enough to support Kerberos authentication.

This disabled localhome behavior has two variants, controlled
by the mountstyle flag. A mountstyle of SMB (the default
configuration) interprets the UNC as an SMB URL plist, allowing
Mac OS X to use it as an SMB home directory.

djou:~ djou$ dscl /Active\ Directory/ads.4am-media.com -

WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM120 Sampler WWW.MACTTEECCHH.COM

read /Users/winnie homeDirectory HomeDirectory
homeDirectory: \\w2k\homes\winnie
HomeDirectory: <home_dir><url>smb://w2k.ads.4am-
media.com/homes</url><path>winnie/</path></home_dir>

Coupled with the AD Plug-in’s –localhome disable option, the
SMB mount style interprites the Active Directory homeDirectory
UNC as a Mac OS X HomeDirectory (a URL plist). Notice the case
sensitivity here— the Active Directory attribute is called
homeDirectory. It is used to produce the Mac OS X HomeDirectory.

Conversely a mountstyle of AFP interprets the UNC as an AFP
URL. In general, AFP offers a better home directory experience than
SMB, so this option has potential to improve the overall
effectiveness of your infrastructure. In the vast majority of cases this
is less than useful, though, since Microsoft’s AFP Server is
specifically not up to the task of supporting Mac OS X home
directories. This setting becomes advantageous in two cases: when
the home directory server is running the newest version of
ExtremeZ IP (which features an AFP implementation that is far more
capable than Microsoft’s) or when the home directories are housed
on Mac OS X Server. The latter case is a new and powerful option,
implying that Windows clients will mount the same (Mac OS X-
hosted) home directory using SMB that Mac OS X clients mount
using AFP. The homeDirectory UNC in the AD User record in this
case actually specifies a share on Mac OS X Server. This allows you
to leverage Apple’s compelling and relatively affordable server
solutions, even in a Windows-centric infrastructure. That this is
feasible is a testament to the deep level of integration that Mac OS
X Server is capable of. The only real down side is that in Panther
this does limit administrators Unix user-group-other permissions,
rather than the deep set of access controls provided by the
Windows platform.

djou:~ djou$ dsconfigad -mountstyle afp
djou’s Password:
Settings changed successfully
djou:~ djou$ dscl /Active\ Directory/ads.4am-media.com -read
/Users/winnie HomeDirectory
HomeDirectory: <home_dir><url>afp:// w2k.ads.4am-
media.com/homes</url><path>winnie/</path></home_dir>

Changing the –mountstyle to afp indicates that the Active
Directory homeDirectory attribute should be interpreted as an AFP
(rather than SMB) url.

Most other, graphically available, options can also be set with
dsconfigad; these options are well documented on dsconfigad’s
man page.

The Active Directory Plug-in:
Architecture

Important to the deployment of any application is a good
architectural knowledge of the files, executables, data stores and
logs that support its functionality.

• /Library/Preferences/DirectoryService/ActiveDirectory.plist: The
configuration file for the Active Directory Plug-in. Options (set
both graphically and using dsconfigad) are stored here, in
addition to mappings between Active Directory and Open
Directory record types and attributes.

• /Library/Preferences/DirectoryService/SearchNodeConfig.plist:
The file that stores the Open Directory search policy, specifying
which directory domains should be searched for user accounts
and other directory data.

• /Library/Preferences/DirectoryService/ADGroupCache.plist:
As of 10.3.4, exists only in Mac OS X Server. Active Directory
stores group data differently from Mac OS X and most other
Unix operating systems. The transformation of Active
Directory groups into something that Mac OS X understands
is relatively heavy weight. Because of this and because Mac
OS X frequently likes to look up group membership Apple
initially cached a local copy of every group in the Active
Directory. This solution did not scale, taking up to three days
and sometimes producing a cache file that was a hundred
megabytes or more. In 10.3.4 Apple abandoned this strategy
in Mac OS X, reasoning that dynamic lookups of group
membership data probably could be achieved efficiently
enough to meet user performance expectations, meaning
that (in the client OS) the ADGroupCache is no longer used.
The legacy behavior is preserved in Mac OS X Server since
it needs access to a full listing of group membership no
matter who is logged in. The frequency of the Plug-in’s
interrogation, though, is configurable by editing the Group
Search Interval Hours key in ActiveDirectory.plist (it has a
default value of 12 hours).

Data transformation
The Active Directory Plug-in is interesting in that it doesn’t

just query Active Directory for data. That wouldn’t be very
useful, since Active Directory doe not contain all the data that
Mac OS X needs for valid user or group records. In addition to
querying Active Directory, the Plug-in performs a number of
data transformations, sometimes even appending data to the
user records it finds. The best example of this is probably
Managed Client data (MCXSettings). When the Plug-in’s
localhome flag is set to enable, a great deal of Managed client
data is added to each user record, specifically place the user’s
Active Directory Home Directory into their dock (and to have it
mounted at log-in) Other examples include:

• Authentication Authority: A user’s AuthenticationAuthority is
the attribute that Apple uses determine how the user should
be authenticated. Users without AuthenticationAuthorities
can not support login-time password policies (such as
expiry and forced changes) or password changes in the
Accounts pane. The AD Plug-in generates an
AuthenticationAuthority for every user based on the
domain’s configuration, allowing for the seamless support
of Active Directory password policies.

djou:~ djou$ dscl /Active\ Directory/ads.4am-media.com -read
/Users/winnie
AuthenticationAuthorityAuthenticationAuthority:
1.0;Kerberosv5;83981D08-027D-3843-BE3B-
AB80FA3DA07F;winnie@ADS.4AM-MEDIA.COM; ADS.4AM-MEDIA;
comment

121 Sampler WWW.MACTTEECCHH.COMWWW.MACTTEECCHH.COM

• HomeDirectory and NFSHomeDirectory: HomeDirectory and
NFSHomeDirectory describe the location of a user’s network
home directory. The former is an XML plist describing how
to create the latter, which is a file system path. Neither is a
standard part of an Active Directory user record (although
the latter can be supplied by Active directory’s
msSFU30HomeDirectory if services for Unix are installed). As
seen earlier, both are automatically generated based on the
account’s home directory as described in their Active
Directory user record (using the UNC path described earlier
in this chapter).

• Mount Record: The mount record works in conjunction with
the User’s HomeDirectory and NFSHomeDirectory attributes
to help support network home directories. Like the user
home directory attributes it is generated on the fly based on
the User’s home directory UNC.

djou:~ djou$ dscl /Active\ Directory/ads.4am-media.com -
read /Mounts/w2k:\\/homes
ADDomain: ads.4am-media.com
AppleMetaNodeLocation: /Active Directory/ ads.4am-
media.com Comment: Dynamically generated - DO NOT
ATTEMPT TO MODIFY
RecordName: w2k:/homes
VFSLinkDir: /Network/Servers/w2k/homes
VFSOpts: net url==smb://w2k.ads.4am-media.com/homes
VFSType: url

The AD Plug-in generates an automount record designed to
help mount network home directories. Guest access doe not
have to be enabled on this share point. For now, Mac OS X is
incapable of using virtual home shares (\\server\username) as
user network home directories, and must be able to locate home
directories at a path below a share point.

• Kerberos Auto Configuration record: One of Mac OS X’s
more intriguing Kerberos integration features is auto-
configuration. Mac OS X, when it determines that it needs to be
configured for Kerberos, will execute the kerberosautoconfig
command. Kerberosautoconfig, in turn, will search the directory
domains that the client is aware of, looking for a Kerberos
configuration record. This record is very specific to Apple’s
infrastructure, and not typically found in non-Mac directories.
The Active Directory Plug-in, however, is smart enough to auto-
generate this configuration record, allowing for easy Kerberos
interoperability.

Caveats
Panther’s Active Directory Plug-in is by no means perfect,

and although Apple has done a relatively good job I’d be remiss
if I did not mention some of the pitfalls I’ve encountered. The
most common issues tend to be unrelated to the Plug-in itself,
and are more related to other capabilities in the OS. –localhome
enabled’s use of NTLMv1 authentication (which is disabled in

security-sensitive environments), for instance, is due to the fact
that the OS does not obtain a TGT early enough during log-in.
There’s not much that the AD Plug-in can do about that.
Similarly, Mac OS X may not access user home directories on
either DFS or a clustered CIFS file system. Incidentally,
Thursby’s ADmitMac product, which is a commercial Open
Directory plug-in for both NT domains and Active Directory, is
not subject to these particular limitations, since it uses Thursb’y
Dave CIFS / SMB client. AdmitMac also overcomes a less
common issue, where Computer accounts are not allowed to
read certain user attributes. This measure is sometimes
implemented to protect user privacy, but since Panther’s AD
Plug-in connects to the domain as the computer (rather than as
the user) this could have the effect of keeping users from being
recognized. AdmitMac pulls some tricks to actually connect to
the domain as the user (rather than the computer) ensuring full
access to at least some user data. Finally, note that AdmitMac
supports Packet Signing, a cryptographic security feature turned
on by default in Windows 2003 server. The AD Plug-in does not.
Neither AdmitMac northe AD Plug-in support nested groups, a
common management strategy in Active Directory.

Another common issue that is encountered at the basic
integration level is the use of DNS. Mac OS X, like Windows
clients, uses DNS to locate domain resources during the join
process. This means that Mac OS X clients must have the Active
Directory DNS server listed in the Network pane of the System
Preferences application. Another DNS-related issue revolves
around the common use of the .local TLD. This conflicts with
Apple’s Rendezvous multicast DNS implementation and must be
worked around. Apple documents one procedure for this in
kbase 107800. There are several other, less intrusive solutions
but they are beyond the scope of this article.

Conclusion
Someone other than me said that “A willow tree bends in

the wind and so the branches, being supple do not break.” It
takes little imagination to understand that Microsoft is a force of
nature right now and that competing all out against them is ill
advised. What matters to Apple’s survival is sales, and Panther’s
Active Directory Plug-in, in making Mac OS X more willow-like,
makes sales a lot easier. Good solutions support— rather than
fight— existing IT infrastructures.

Michael Bartosh is a consultant specializing in large scale server deployments,
directory services integration and scalable systems management.

About The Author

MT

X
Excel Software

19 Misty Mesa Ct

Placitas, NM 87043

Ph. 505-771-3719

Fax 505-771-3718www.excelsoftware.com

When critical software is needed for the next space mission,

automotive control, defense system, telecommunications or

desktop application, we can help. MacA&D and WinA&D have

been there, done that with 18 years of field proven innovations.

Excel Software provides thousands of developers with tools to

design and manage object-oriented software, database systems

and embedded, real-time firmware.

Software Development Solutions

MacA&D OSXMacA&D OSX

UML

Data Modeling

Structured

Analysis & Design
Requirements Management

Code Generation

Flexible

Reporting
Reengineering

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

124

MAC OS X PROGRAMMING SECRETS • by Scott Knaster

WWW.MACTTEECCHH.COM

One of the classic mantra-like goals for
computer science over the past 20 years or
so has been to “Make simple things simple,
and complex things possible”.
Programming with Cocoa has a sometimes-
complex learning curve, but once you’ve
swerved through that curve, there are
definitely a bunch of things that are much
easier to accomplish than they were in the
old pre-OS X world we knew and
occasionally loved. Writing a screen saver is
a perfect example: it should be simple.
Most typical OS 9 application programmers
never dipped their toes into the slightly
wacky world of screen savers, but with
Cocoa in OS X, implementing a screen
saver is well within everybody’s grasp. In
this month’s column, we’ll take a look at
how to get your very own screen saver up
and, er, saving.

Here’s What
We’re Gonna Do

Let’s start by taking a look at the
process for creating a screen saver in OS X.
Here are the broad steps:
1. Create a new screen saver project in

Xcode.
2. Edit our .h file.
3. Override methods and write other code

in our .m file.

4. Build the project to create a .saver package.
5. Install the .saver package by putting it into the

Library/Screen Savers/ folder.
6. Open System Preferences and see a preview of our screen

saver.
7. Enjoy the savings!

We’ll go through each of these steps in greater depth now.

Little Help
The basic magic that makes screen savers so easy is the

Screen Saver framework in Cocoa. This framework defines the
ScreenSaverView class, which is a subclass of NSView. By
creating your own subclass of ScreenSaverView and adding
some code, you define your screen saver. The Screen Saver
framework also defines the class ScreenSaverDefaults, which
you can use for handling preferences for your saver. Along with
these classes, the framework provides some handy utility
functions you can use in your code.

We’ll go over some of the most interesting methods and
functions in the ScreenSaverView class. You will rarely call
methods defined by ScreenSaverView – most of the work is
creating your own subclass and override some methods.

initWithFrame:isPreview:

- (id)initWithFrame:(NSRect)frame isPreview:(BOOL)isPreview

You override initWithFrame in your ScreenSaverView
subclass. The system calls initWithFrame when the screen saver
is about take over the screen or is selected in System
Preferences. The frame parameter is the frame rectangle for the
view. The isPreview parameter tells whether the screen saver is
actually being invoked or is merely being asked to preview itself
in System Preferences (as shown in Figure 1).

SCREEN SAVERS
IN COCOA

Sampler

125

Figure 1. You can preview the screen saver in a little box in
System Preferences. In your code, you can tell whether the
screen saver is drawing full-screen or in the preview box.

startAnimation

- (void) startAnimation

The system calls startAnimation right before the screen
saver is about to start drawing. You should override
startAnimation to set up your screen saver’s initial state,
such as setting line widths or loading images. You should call
the inherited implementation, or bad things might happen,
such as incorrect drawing, or all water on earth
instantaneously evaporating.

animateOneFrame

- (void) animateOneFrame

This is where your screen saver gets to show off its
amazing graphical skills. Mac OS X asks your screen saver to do
its drawing by calling animateOneFrame repeatedly. You can
actually do your drawing in animateOneFrame or in
drawRect, or even a little in both places. If you make any
changes here that require further redrawing, your
implementation should call setNeedsDisplay:YES, which will
cause drawRect to be called.

drawRect

- (void) drawRect:(NSRect)rect

Override drawRect to draw the screen saver view. You can
do your drawing in animateOneFrame, or you can do some or
all of it here. rect is the rectangle you’re drawing into, which is
handy to have when you want to erase the view and start
drawing afresh.

stopAnimation

- (void) stopAnimation

When Mac OS X wants your screen saver to stop doing its
thing, it calls stopAnimation. You can override stopAnimation
to release resources or do any other cleanup you want before
your screen saver goes away.

Saving Time
Now that you’re familiar with the cast of characters in

ScreenSaverView, let’s go ahead and code up our screen saver.
To start, we’ll open Xcode and create a new project of type
Screen Saver (see Figure 2).

ne of the classic mantra-like goals for computer science over
the past 20 years or so has been to “Make simple things
simple, and complex things possible”. Programming with

Cocoa has a sometimes-complex learning curve, but once you’ve
swerved through that curve, there are definitely a bunch of things that
are much easier to accomplish than they were in the old pre-OS X
world we knew and occasionally loved.

OO

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM126

Figure 2. Creating a new Screen Saver project gets you
started with the Screen Saver framework, including your

own subclass of ScreenSaverView.

This proves that Xcode already knows about the screen
saver framework, which saves us plenty of work. Our new
project already contains a subclass of ScreenSaverView, and we
already have the usual .h and .m files. We’ll edit the .h file that
Xcode gives us until it looks like this:

#import <ScreenSaver/ScreenSaver.h>

@interface SaveyerView : ScreenSaverView
{

NSBezierPath *path;
}

@end

The header file is pretty darn basic. All we do here is create
a subclass of ScreenSaverView and add an NSBezierPath
object to keep track of what we’re drawing.

Now let’s get into the implementation files and see what we
can find. When we told Xcode to create a new ScreenSaver
project, it start us off with some code, including the
implementation for initWithFrame:isPreview:, the designated
initializer. In this case, we’re able to use the supplied code for
initWithFrame without any changes:

- (id)initWithFrame:(NSRect)frame
isPreview:(BOOL)isPreview
{

self = [super initWithFrame:frame
isPreview:isPreview];

if (self) {
[self setAnimationTimeInterval:1/30.0];

// Draw 30 frames per second
}
return self;

The code here starts by calling the inherited implementation.
After that, we use setAnimationTimeInterval to tell Mac OS X that
we want our screen saver to draw 30 frames per second. As I
mentioned, this is the default code that Xcode writes for this
method. You can modify it if you want to perform some other
task when the screen saver starts up. For example, if your screen
saver has user-settable options, you can handle them here.

Next, we’ll take a look at our startAnimation method,
which the system calls right before asking our screen saver to
start drawing. Our implementation of startAnimation begins by
calling the inherited implementation. Then, we create our
Bezier path and choose a nifty line join style:

- (void)startAnimation
{

NSPoint x;

[super startAnimation];

path = [[NSBezierPath alloc] init];
// We’ll use a Bezier path for drawing

[path setLineJoinStyle: NSRoundLineJoinStyle];
// Just for fun, connect the lines with
// a round joint

When the system asks our screen saver to get ready to
draw, we can call the view’s isPreview method to see if we’re
being asked to draw on the full screen or in the little preview
box in System Preferences (as shown back in Figure 1).

We can use the result of isPreview to make decisions about
just what to draw. In our screen saver, we’ll make the lines
skinny for the preview, and fatter for the real, full-screen version:

if ([self isPreview])
// When drawing a preview, make the lines
// much thinner than when saving screens.

{
[path setLineWidth: 0.0];
// This is the thinnest possible line width

}
else
{

[path setLineWidth: 10.18];
// This line width was chosen at random.
// OK, actually, it’s my son’s birthdate.

}

Our last task here is to get the Bezier path started. We’ll do
that by picking a random starting point and moving the path there:

x = SSRandomPointForSizeWithinRect
(NSMakeSize (0,0), [self bounds]);

// Call utility function to get a random point

[path moveToPoint:x];
// Start the path at the random point

}

We get a random point by calling
SSRandomPointForSizeWithinRect, a handy function
provided by the screen saver framework for just this purpose.
Hooray for handy functions! Then, we simply move the path
pen to that random point to start it out.

Everything that starts must end, and the next method we
define is stopAnimation, which is called when the system
doesn’t need the screen saver to draw any more. Here’s our
implementation of stopAnimation:

Sampler

Get your dark sunglasses ready. Tell your boss to roll out the red carpet. Are you ready for your break-
through role? Director Mark Dalrymple, author of Core Mac OS® X and Unix Programming, will take you from
indies to a blockbuster in five days.

Sample Scenes: Multithreading Distributed Objects
 RendezvousTM Network Programming
 System Daemons Authentication & Authorization

Big Nerd Ranch offers intensive training classes for developers and administrators. Your expert instructor
guides you through a rigorous week of learning. You leave ready to start developing (but with instructor
support if you get stuck).

Big Nerd Ranch: Baby, we’ll make you a star!

www.bignerdranch.com • 678.595.6773 • roundup@bignerdranch.com

Apache Bootcamp

Cocoa® Bootcamp

Core Bootcamp

PHP 5 Bootcamp

PostgreSQL Bootcamp

Python® Bootcamp

Shine.

Core Mac OS® X Bootcamp

WWW.MACTTEECCHH.COM128

- (void)stopAnimation
{

[super stopAnimation];

[path release];
// Release the path

path = nil;
// Tell our screen saver view that there’s no path

}

The standard stopAnimation provided by Xcode simply
calls the inherited implementation. In our version, we keep that
super call, and add code to release the Bezier path object and
set the path instance variable to nil.

Every time the system wants our screen saver to draw
another piece, it calls our animateOneFrame method. Let’s take
a look at that. First, we’ll call that convenient
SSRandomPointForSizeWithinRect utility function to get
another random point:

- (void)animateOneFrame
{

NSPoint x;

x = SSRandomPointForSizeWithinRect
(NSMakeSize (0,0), [self bounds]);

// Get a random point to extend the Bezier path

We want our screen saver to draw a bunch of lines on the
screen, and every so often, we want it to erase the lines and start
over. Let’s say we want 50 lines at a time, in honor of our 50
states. If we haven’t reached 50 yet, we add the new random
point to the path:

if ([path elementCount] < 50)
// Draw 50 lines before erasing
{

[path lineToPoint: x];
// If we don’t have 50 yet, add the
// new point to the line

}

Once we have 50 points in the path, we want to reset the path
by callously discarding all points and then start building it up again:

else
{

[path removeAllPoints];
[path moveToPoint:x];

// If we do have 50, clean out the path
// and get ready to start over

}

We finish by telling the system that we’ve messed with the
path and it needs to be redrawn by calling the screen saver
view’s drawRect method. Alternatively, we could do the actual
drawing right here in animateOneFrame:

[self setNeedsDisplay:YES];
// Tell the system that something has changed
// and drawRect should be called

}

The actual drawing happens in drawRect, which we’ll look
at NeXT. We start by calling the inherited drawRect, which by
default erases the background to black.

- (void)drawRect:(NSRect)rect
{

NSColor *color;

[super drawRect:rect];

We then choose a pretty color, and call set to make sure
that the drawing happens in that color. Then we call stroke on
the Bezier path object to actually draw the thing:

color = [NSColor colorWithCalibratedRed:(0.0)
green:(1.0) blue:(1.0) alpha:(1.0)];

[color set];
// Set the color to teal. Go Sharks!

[path stroke];
// Draw the Bezier path

}

The last method we implement is our version of dealloc.
The view’s Bezier path is the only allocated object we have to
worry about, so our method looks like this:

- (void) dealloc
{

[path release];
// Release the Bezier path

[super dealloc];
}

Put Me In, Coach
When we have all the source code done, we build our

project. If everything builds OK, a file with the suffix .saver ends
up in the project’s build folder. To install the screen saver, start
by quitting System Preferences if it’s running. Then move or
copy the .saver file into the /Library/Screen Savers directory.
You can put it in ~/Library/Screen Savers if you want to keep it
all to yourself and prevent other users from seeing it.

Once our screen saver is in the folder, you can start System
Preferences, click Desktop & Screen Saver, click the Screen
Saver tab, and select our screen saver in the list. You should see
the skinny lines in the preview mode. Then click Test, and
observe the big teal lines with their round elbows. There you
go! You can get this month’s code at
http://www.papercar.com/mt/Jun04.zip

If you’re interested in making your own screen savers, there
are lots of directions you can go from here. Add user-settable
options by overriding the hasConfigureSheet and
configureSheet methods. Use random colors. Do some much
fancier drawing in your animateOneFrame method – for
example, draw shapes, use curveToPoint instead of lineToPoint,
or load images from disk. Whatever you do, have fun, and
remember: the screen you save may be your own.

Sampler

Scott Knaster writes books, including the recently
published Mac Toys and the brand-new Hacking
iPod and iTunes, both from Wiley Publishing. Scott
can’t read and listen to vocal music at the same
time. Scott writes these little bios in the third

person. Write to Scott at scottk@mactech.com.

About The Author

MT

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

X
130 WWW.MACTTEECCHH.COM

INTRODUCTION
This article covers numerous methods to harden Apple’s

Mac OS X, from both a local user and network perspective. It is
primarily aimed at the single-user Macintosh client machine
owned and used by a security conscious user. Its methods can
be equally applied to a multi-user machine; however there are
numerous additional security risks presented the moment a Mac
OS X machine is made multi-user.

BACKGROUND
Apple’s MacOS has taken a dramatic change from its

predecessors (“MacOS Classic”), introducing numerous parts
of FreeBSD, NeXT and the Mach (Darwin) kernel into the
MacOS environment.

“Keep others out - With Mac OS X, you may never need to
worry about HYPERLINK
"http://www.apple.com.au/macosx/features/security/" security again.”

A default install of Mac OS X is one of the more secure Unix
operating systems from a network-security point of view, with
no network services open by default. However, there are still
numerous drawbacks to its local and network security which
can be addressed by the administrator of the machine.

ROOT USAGE
By default, the root user account within Mac OS X has

its password disabled. Throughout this paper, you are
required to run a command “as root”. The method of doing
this is left up to the reader, but possibilities (in order of
considered strength) include:

• sudo <command> as a normal admin user.
• sudo /bin/bash as a normal admin user and then running the

commands.
• Enabling the root account password, using su to start a shell

as root and then running the commands.

LOCAL SECURITY
The following section covers numerous methods to harden

security within Mac OS X from a local user perspective:

• With local physical access to the machine via its console.
With interactive local access to the machine via methods
such as Secure Shell (SSH) or Apple Remote Desktop (ARD).

By Paul Day

Securing
Mac OS X

A guide to security hardening for
Mac OS 10.3

Sampler

X
THE LOGIN WINDOW

The following includes instructions to enable and lock down
the GUI login window. By default, Mac OS X automatically logs in
rather than forcing the user to authenticate at a login window.

Enabling and locking down the Login Window
To enable the GUI login window, disable password hints,

access to shutdown/restart controls and automatic login you can
edit the file /Library/Preferences/com.apple.loginwindow.plist as root
or use the System Preferences Accounts pane as follows:

• Apple menu -> System Preferences -> Accounts -> Login options
-> Display Login Windows as -> Name and Password

• Uncheck Automatically log in as:
• Check Hide the Sleep, Restart and Shut Down buttons
• Uncheck Enable fast users switching if not used

Securing Login Windows options

Fast user switching is handy on a multi-user machine,
however on a single-user machine where it is never used, it is
an unnecessary risk (eg, An Apple Remote Desktop root
compromise used Fast User Switching).

To disable automatic login on a global basis:

• Apple menu -> System Preferences -> Security
• Check Disable automatic login

Disabling automatic login

To enable a text message to be displayed as part of the
login window, you will need to edit the file
/Library/Preferences/com.apple.loginwindow.plist as root. The
file may look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST
1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>DisableConsoleAccess</key>
<true/>
<key>LoginwindowText</key>
<string>Authorized users only.</string>

Note the <string> line below the key LoginwindowText.
Insert the text you would like to appear in the Login Window
here and finish it with the </string>.

Changing passwords
It is good security practice to regularly change your

password, especially as the login window does not presently
make of mlock() or encrypted swap and a user with
physical/root access to the machine could potentially get your
login password from the swap files.

• Apple Menu -> System Preferences -> Accounts
• Select your username -> Select the Password field
• If asked, type in your current password -> Type in a new

password -> verify the new password

SCREENSAVER
Mac OS X comes with a built-in screen-saver that includes

password locking. This should be enabled to stop someone
from using your computer when you step away from it.

131 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM130

To enable the screen-saver:
• Apple menu -> System Preferences -> Desktop & Screensaver ->

Screen Saver -> (Select a screen-saver)
• Change Start screen saver to 3 minutes

To require a password to exit the screen saver:
• Apple -> System Preferences -> Security
• Check Require password to wake this computer from sleep or

screen saver

Enabling password locking
within screen saver

You may also wish to enable an active-corner to disable the
screensaver for times you don’t want it to come on after
inactivity (e.g. while watching a movie) and, more importantly,
to instantly load the screensaver:

• Apple menu -> System Preferences -> Desktop & Screensaver ->
Screen Saver -> Hot Corners

• Choose a corner, e.g. bottom right -> Disable Screen Saver
• Choose a corner, e.g. top right -> Start Screen Saver

Enabling a screen saver corner

KEYCHAIN
Mac OS X includes a utility for caching commonly used

passwords. It should be noted that there is always a risk with
caching a password on disk in any form, regardless of the
software used.

Keychain stores its passwords on disk in an encrypted form
and it is difficult for a non-root user to sniff a password between
applications. However, similar to the Login Window, it is
possible to get hold of a user’s Keychain password with root or
physical access to a machine. The best practice is to remember
your passwords without storing them.

There are a number of steps you can take to minimise your
risk when using Keychain Access. To enable Keychain
automatic locking:

• Applications -> Utilities -> Keychain Access -> Edit -> Change settings
for Keychain “login”

• Check Lock after
• Change minutes of inactivity to 5 minutes
• Check Lock when sleeping
• Save

Configure Keychain Access security settings

By default, Mac OS X makes your Keychain password the
same as your login password. It is good practice to keep each
password different:

• Edit -> Change Password for Keychain “login”
• Type in your current user’s login password
• Type in a new different password twice
• OK

Changing your Keychain password

Sampler

PATCHING

As is generally the case, you should keep your Mac OS X
machine regularly patched with the latest software updates,
which often include security fixes.

Apple Software Update
Mac OS X includes an automatic software update tool to

patch the majority of Apple applications. Software Update often
includes important security updates which should be applied to
your machine. The tool automatically checks what updates are
available and, with major upgrades, can download patches
rather than full installations, to minimize the amount
downloaded.

Software Update

It is best to configure Software Update to automatically
check for updates on a frequent basis:

• Apple Menu -> System Preferences -> Software Updates
• Check Check for updates
• Choose Daily from drop-down menu.

Software Update, automatically
check for updates

Your machine will now check with Apple for software
updates once a day and notify you when there are new ones
ready for download.

Software update can also be run from the command line as
root with:

/usr/sbin/softwareupdate –ia
and scheduled to run with:
/usr/sbin/softwareupdate –schedule on

Software update for Fink
If you are using the Fink packaging systems, you may also

wish to have the following in root’s daily crontab or in /etc/daily:

/sw/bin/fink -y selfupdate
/sw/bin/fink -y selfupdate-cvs
/sw/bin/fink -y update-all
/sw/bin/fink -y scanpackages
/sw/bin/fink -y index
/sw/bin/fink -y cleanup
/sw/bin/apt-get -y update
/sw/bin/apt-get -y install fink
/sw/bin/apt-get -y upgrade
/sw/bin/apt-get -y dist-upgrade
/sw/bin/apt-get -y clean
/sw/bin/apt-get -y autoclean
/sw/bin/apt-get -y check

Other updates
Many other major software packages include their own

automatic software update utilities. These may be separate
utilities such as Microsoft’s AutoUpdate:

Microsoft AutoUpdate

Other packages, such as Omni’s OmniGraffle, include
automatic updating from within the software package itself:

131 Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM132

OmniGraffle automatic software update

You are encouraged to use these tools whereever possible,
however specifics are beyond the scope of this paper.

FILE ENCRYPTION
There are number of major ways of encrypting files within Mac

OS X. By far, the most secure method is to use GnuPG; however
Apple’s FileVault and disk images are much more convenient.

FileVault and encrypted volumes
Apple’s FileVault is an implementation of its AES-encrypted

volume images that automatically mount as your home directory as
you login and decrypt/encrypt data on the fly. Encrypting data on
your hard-drive is nothing new but MacOS 10.3 is the first Unix to
integrate decryption and mounting seamlessly into the system. From
the point-of-view of the user and applications, there is no
encryption taking place, beyond a slight performance hit.

To enable FileVault:

• Apple menu -> System Preferences -> Security
• Turn on FileVault

Enabling FileVault

Depending on the amount of data in your home directory, it
may take a while to convert it into a FileVault. It should be noted
here that after encrypting your home directory, it is not securely
deleted. It is simply unlinked and hence could be recovered.

You may also wish to set a master password for the
computer. The master password should be different to your
login (and hence FileVault) password and can be used to
decrypt your FileVault in the case of password loss.

From a security point of view, keep in mind that due to a
lack of mlock() in FileVault, an attacker with physical or root
access can gain your FileVault password and access to your
encrypted files.

Encrypted AES disk image
Apple’s encrypted disk images don’t offer the seamless

mounting of FileVault, but do still encrypt on the fly as you write
to them. To create an encrypted disk image:

• Applications -> Utilities -> Disk Utility
• New Image
• Save as -> Choose a name for the file system and image file name
• Where -> Choose a location to save the image file
• Size -> Choose a maximum size to allow the image to grow to
• Encryption -> Choose AES-128
• Format -> Sparse Disk Image
• Create -> Enter and Verify password
• Check or uncheck Remember password (add to Keychain)

Creating an encrypted sparse image

It is no less secure to save a disk image’s password in the
Keychain as Apple’s SecurityAgent (the program that takes the
password from the user) suffers from the same vulnerability as
Keychain itself.

Once you have created the disk image, you can mount it
by double-clicking on it in Finder. It will then mount as
/Volumes/<image file system name> and an icon will appear on
your desktop.

Openssl encrypted files
Another alternative is using openssl and a password to

encrypt a file. Openssl does not employ asymmetric keys (i.e. a
private and public key) and allows you to just assign a single
password to the encrypted file. However, openssl under Mac OS
X may suffer a similar vulnerability to FileVault.

Sampler

133

To encrypt a file using openssl and the (128bit) blowfish
encryption algorithm:

openssl bf –salt -in <plain file> -out <encrypted file>

Then securely remove the original file:

srm –fm <input file>

Finally, decrypt the file back:

openssl bf -d -in <encrypted file> -out <plain file>
A script to encrypt an entire directory could be:
#!/bin/sh
#
Script to encrypt a dir and securely remove it.

if [$# -lt 1] ; then
echo "Usage: $0 dir_to_encrypt"
exit 1

fi

file=`echo $1 | sed s/"\/"//g | sed s/"\."//g`
dir=$1

echo -n "Checking if $dir actually exists... "
if [-d $dir] ; then

echo "Yes."
else

echo "No. Exiting."
exit 1

fi

echo -n "Checking to make sure $file.tar.gz.bf doesn't
already exist... "
if [-e $file.tar.gz.bf] ; then

exists
echo "Yes. Exiting."
exit 1

else
doesn't exist
echo "No."

fi

echo -n "Checking to make sure tempfile doesn't already
exist... "
if [-e temp.tar.gz] ; then

echo "Yes. Exiting. You need to remove temp.tar.gz."
exit 1

else
echo "No."

fi
echo "Tarring up directory..."
tar -zcvf temp.tar.gz $dir
echo "Done."
echo "Encrypting directory..."
openssl bf –salt -in temp.tar.gz -out $file.tar.gz.bf
echo "Done."
echo
echo "Here is what the encrypted archive looks like:"
ls -l $file.tar.gz.bf
echo
echo "Is it safe to securely remove $dir? (y)/n"
read remove
if [x$remove = xn] || [x$remove = xN]; then

echo "Ok, exiting without removing it."
srm -fm temp.tar.gz
exit 0

else
echo "Ok, removing $dir securely and exiting..."
srm -rfm $dir
srm -fm temp.tar.gz
echo "Done"

fi
exit

Finally, a matching script to decrypt the archive back to a
directory in the current working directory:

#!/bin/sh
#

Script to decrypt a tar.gz.bf archive

if [$# -lt 1] ; then
echo "Usage: $0 archive_to_decrypt"
exit 1

fi

file=$1
dir=`echo $1 | cut -d "." -f 1`
echo -n "Checking if $file actually exists... "
if [-f $file] ; then

echo "Yes."
else

echo "No. Exiting."
exit 1

fi
echo -n "Checking to make sure $dir doesn't already exist...
"
if [-f $dir] ; then

exists
echo "Yes. Exiting."
exit 1

else
doesn't exist
echo "No."

fi
echo -n "Checking to make sure tempfile doesn't already
exist... "
if [-e temp.tar.gz] ; then

echo "Yes. Exiting. You need to remove temp.tar.gz."
exit 1

else
echo "No."

fi
echo "Decrypting..."
openssl bf -salt -d -in $file -out temp.tar.gz
echo "Untarring..."
tar -zxvf temp.tar.gz
echo "Cleaning up..."
rm temp.tar.gz
echo "All done."
echo
exit

GGnnuuPPGG eennccrryypptteedd ffiilleess

Gnu Privacy Guard (an open source version of PGP) allows
you to encrypt a file using a public key. You would then be able
to decrypt the file at a later date using the private key and the
key’s passphrase.

Unlike FileVault, GnuPG makes use of mlock() and hence
doesn’t suffer from the same vulnerability. However, it has had
a number of its own security concerns.

This section assumes you have already managed to install
GnuPG and have created yourself a public/private key-pair.
Numerous resources to help you can be found on the web. To
then encrypt a file, you would use:

gpg –r <your key’s name> --encrypt-files <filename>

This will create the file filename.gpg. You should securely
remove the original plain-text with:

srm –fm <filename>

Apple’s srm is included with OS 10.3 (some users may
prefer using the GNU fileutils rm). Similar to the GUN utility
shred, srm over-writes the file 7 times with random data before
unlinking it from the file-system.

To then decrypt the encrypted file:

gpg –r <your key’s name> --decrypt-files <filename.gpg >
filename

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM134

gpg can also be used with just a symmetric cipher and a
single password by using the -c switch.

The two scripts in the section REF _Ref87526463 \p \h *
MERGEFORMAT above cover en/decrypting entire directories
and could be easily modified to use gpg instead of openssl.

CONFIGURING OPEN FIRMWARE
PASSWORD

Configuring an Open Firmware (OF) password on your
Mac will disable any boot keys when your machine is booting.
This means a user with physical access to the machine is unable
to boot the machine into target-disk mode, from CD-ROM or
into single-user mode.

The simplest way to set an OF password is to use Apple’s
utility, which can be found at < HYPERLINK
"http://www.apple.com/downloads/macosx/apple/openfirmwarep
assword.html" http://www.apple.com/downloads/Mac OS
X/apple/openfirmwarepassword.html>.

The utility asks for your user password so that it can run
sudo nvram to set the OF password and then asks for a
password to set as the OpenFirmware password:

Setting an OpenFirmware password

To set the password yourself directly from OpenFirmware:

<power-button>
option-apple-o-f
password
<enter your password>
setenv security-mode command
reset-all

You may wish to remove the OpenFirmware password when
you are unable to boot the machine properly and need to re-install,
back data up using target mode or boot using single-user.

To do this, remove it directly from OpenFirmware:

<power-button>
option-apple-o-f
<enter password>
setenv security-mode=none
nvramrc
reset-all

In an emergency, the OpenFirmware password can also be
removed by changing the amount of RAM and then resetting the

PRAM three times (press and hold option-apple-p-r while
powering up until you hear the machine reboot three times).
This is obviously also a potential security risk and for this
reason, your machine should be physically secured.

You should also be aware that anyone with root/sudo access
to the machine can easily get the OpenFirmware password. Like
Sun’s OpenBoot, OpenFirmware is unagble to hash the password
before placing into non-volatile memory. The hex code of the ASCII
password can be revealed with, as root:

nvram security-password

You can then convert the output back to ASCII to get the
current OpenFirmware password.

DISABLING FIREWIRE DIRECT
MEMORY ACCESS

By default, the FireWire protocol gives the FireWire device
access to the host’s physical memory. This could potentially be
used to suck the entire memory contents out of the machine
(including your passwords and current working data).
Alternatively, an attacker could determine where in memory the
screensaver is and insert some random bytes to crash the
screensaver, gaining access to the machine.

An undocumented side-affect of enabling an Open
Firmware password (see section above) is that it indirectly
disables physical memory access for FireWire devices through
the IOFireWireFamily kernel driver.

Disabling FireWire DMA appears to have little affect on the
performance of FireWire.

DISABLING SINGLE-USER LOGINS
A default installation, without an OpenBoot password (or

with a subverted OpenBoot password), can be booted into a
single-user shell by holding down the “S” key during power-up
(or boot disk –s from within OpenBoot). This could be used by
an attacker with physical access to read your data, add extra
accounts or change your passwords.

The following section introduces a method of ensuring a user
must enter a password before being presented with a root-
user shell as part of a single-user login.
As root:
vi /etc/ttys
:1,$s/secure/insecure/g
:wq

To generate a password for root to use when logging into
a single-user booted system we use openssl:

openssl passwd –salt <xy> <password>

Replace <xy> with two random letters to act as salt for the
hashing and <password> with the password you want to use for
the single-user login. This is completely separate from the local
root password, which, if it exists, is stored in the NetInfo
database by default.

Now copy the hash that was returned by openssl into your
paste buffer, open the file /etc/master.passwd in vi (or your

Sampler

© 2005 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 4-05 Mismatch5MacTec

Relational
database

Object-oriented
development

Try a better database. For free.
Download a free, fully functional, non-expiring copy of Caché or request it on CD at www.InterSystems.com/match3

A BETTER DATABASE CAN SPEED
UP YOUR DEVELOPMENT CYCLE
If your relational database isn't a good match

for your object-oriented development, you need
a new database.

Caché, the post-relational database from
InterSystems, combines high-performance SQL
for faster queries and an advanced object database
for rapidly storing and accessing objects. With
Caché, no mapping is required between object
and relational views of data. That means huge
savings in both development and processing time.

Applications built on Caché are massively
scalable and lightning fast. They require little or
no database administration.

More than just a database system, Caché
incorporates a powerful Web application develop-

ment environment that dramatically reduces the
time to build and modify applications.

Caché is so reliable, it’s the world’s leading
database in healthcare – and it powers enterprise
applications in financial services, government and
many other sectors. With its high reliability, high
performance and low maintenance, Caché delivers
your vision of a better database.

We are InterSystems, a specialist in data man-
agement technology for over twenty-six years.
We provide 24x7 support to four million users in
88 countries. Caché is available for Windows,
OpenVMS, MAC OS X, Linux, and major UNIX
platforms – and it is deployed on systems ranging
from two to over 50,000 simultaneous users.

Mismatch5 MacTec.qxp 4/29/05 1:50 PM Page 1

136

favourite editor) and replace the asterisk (*) next to “root:” with
the hash so the file looks something like:

##
nobody:*:-2:-2::0:0:Unprivileged
User:/var/empty:/usr/bin/false
root:8d4Gfm/Dhzw6Q:0:0::0:0:System
Administrator:/var/root:/bin/sh

Write the file to disk (with :wq) and exit vi. You will now
be asked for the password when booting into single-user.

DISABLE SAFARI AUTO-OPEN
Safari, Apple’s web-browser, includes a feature where it will

automatically launch a number of different file types with their
associated application. This could potentially pose a risk with
the user unwittingly opening a file without realising it.

To disable the feature:
• Safari -> Preferences... -> General
• Uncheck Open ‘safe’ files after downloading

Disabling Safari auto-open

REMOVING OTHER LOCAL USERS
There are other vulnerabilities within Apple’s Mac OS X

10.3.6 that have not yet been publicly disclosed and hence
won’t be discussed in this article. However, it should be noted
(although probably obvious) that to ensure the security of your
Mac OS X machine, you should avoiding allowing any other
local users access to your machine, whether by Fast User
Switching or SSH.

Removing normal local users
The cleanest and easiest way to remove extra users is by

using the Accounts System Preferences pane:

• Apple menu -> System Preferences -> Accounts
• Select the other account
• Click the minus (-) button -> Delete Immediately

Using the Accounts preferences
pane to remove extra users

Checking system user accounts
You may also wish to ensure that no other accounts (not

shown in the Accounts preferences pane) have been added by
an application installation and left with insecure/default
passwords. These could be exploited by an attacker allowing
them login to your machine.

To do this you need to make changes within the NetInfo
database, either via the GUI or the command line. To remove
passwords on extra system accounts using the GUI:

• Applications -> Utilities -> NetInfo Manager -> Domain -> Open -> / ->
OK -> / -> users

• Choose a system user -> Ensure it has no passwd entry
• If it does have a password entry, click the lock in the bottom left

-> authenticate -> select the passwd line -> Delete
• Close the window -> Save -> Update this copy

Checking for active users in NetInfo Manager

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM137

FIX FILE PERMISSIONS
Over time, permissions and ownership of numerous files

may become insecure. This is generally caused by installation
of packages put together by non-security-savvy software
developers.

To try to correct this situation, it is a good idea to regularly use
Apple’s Disk Utility to fix file permissions. This can be done by:

• Applications -> Utilities -> Disk Utility
• Select your / disk-partition
• First Aid -> Repair Disk Permissions

Repairing file permissions

It can also be done from the command line as root:

/usr/sbin/diskutil repairPermissions /

The output may look like:

Started verify/repair permissions on disk disk0s3 local
Determining correct file permissions.
We are using special permissions for the file or directory
./System/Library/Filesystems/cd9660.fs/cd9660.util. New
permissions are 33261
Permissions differ on ./private/var/log/install.log, should
be -rw-r--r-- , they are -rw-r-----
Owner and group corrected on ./private/var/log/install.log
Permissions corrected on ./private/var/log/install.log
Permissions differ on ./private/var/log/wtmp, should be -rw-
r--r-- , they are -rw-r-----
Owner and group corrected on ./private/var/log/wtmp
Permissions corrected on ./private/var/log/wtmp
The privileges have been verified or repaired on the selected
volume
Verify/repair finished permissions on disk disk0s3 local
You may choose to add this to root’s or the system cron
files, e.g. /etc/weekly.local.

diskutil is unable to automatically correct all
insecure/incorrect permissions for you. To list all files with
potentially insecure or strange permissions, run the following
commands as root and examine (or redirect) the output:

To list all setuid/gid (binaries that run with a user or
group ID of someone other than the user running then,
commonly root) files:

find / -type f \(-perm -4000 -o -perm -2000 \) \-exec ls -al
{} \; 2>/dev/null

To list all world writable files:

find / -type f \(-perm -2 \) \-exec ls -al {} \; 2>/dev/null

To list all world writable directories:

find / -type d \(-perm -2 \) \-exec ls -ald {} \; 2>/dev/null

To list all un-owned files:

find / -nouser -o -nogroup \-exec ls -al {} \; 2>/dev/null

Based on the output of these commands, you may choose to
change or remove permissions to some files manually. Make sure
you are fully aware of the purpose of a file before fiddling with its
permissions. Random permission changes may result in an
unusable system!

REMOVING CLASSIC
Some users may have chosen to install Mac OS Classic support.

Classic provides Mac OS 9 emulation support within Mac OS X,
which allows a user to seamlessly run an old Mac OS application
on their new Mac OS X machine.

If you’re not actually using any Classic applications, it is best to
disable and remove Classic support entirely. Run the following
commands as root:

rm –rf /System/Library/PreferencePanes/Classic.prefPane/
rm –rf '/System/Library/Classic/'
rm –rf '/System/Library/CoreServices/Classic Startup.app/'
rm –rf '/System/Library/UserTemplate/English.lproj/Desktop/
Desktop (Mac OS 9)/'
rm –rf '/System Folder/’
rm –rf '/Mac OS 9 Files/’
rm –rf '/Applications (Mac OS 9)’

SECURING BLUETOOTH
Bluetooth is a radio (2.4GHz) data technology that allows a

user to wirelessly connect numerous personal devices to allow
communication between them. Bluetooth achieves what is
sometimes referred to as a Personal Area Network (PAN), allowing
you to, for example, have your mobile phone, hands-free kit, PDA
and computer all communicating wirelessly.

Unfortunately, Bluetooth has numerous security drawbacks.
This section discusses a number of methods to help lock down
Bluetooth on your Mac OS X machine. The methods can also be
applied to your other, non-Mac OS X, Bluetooth devices (eg,
PDA, mobile phone).

Sampler

138

Turn it off
If you’re not actively using the Bluetooth connection, you

should disable it:

• Apple menu -> System Preferences -> Bluetooth -> Settings
• Turn Bluetooth Off

Disabling Bluetooth

Put the device in hidden/invisible mode
Your devices only need to be in “visible” or “discoverable”

mode when pairing them with your other Bluetooth devices.
Once you have paired devices, you should disable visibility.
Paired devices are still able to communicate even when not in
discoverable mode.

To make your Mac invisible:

• Apple menu -> System Preferences -> Bluetooth -> Settings
• Uncheck Discoverable

Note that invisible/non-discoverable mode does not make
your device entirely invisible. It simply makes it harder to find.

Turn on authentication
Once Bluetooth authentication is on, devices generally

need to then use a common password to pair with another
device, although there are vulnerabilities in some vendor’s
implementation. To turn on password authentication:

• Apple menu -> System Preferences -> Bluetooth -> Settings
• Check Require Authentication

Turn on encryption
Turning on Bluetooth encryption means that the majority of

data transmitted between Bluetooth devices is encrypted with a

common key. This makes it difficult for a third party to sniff the
data or use recorded data in “replay attacks”. To turn on
Bluetooth encryption:

• Apple menu -> System Preferences -> Bluetooth -> Settings
• Check Require Authentication -> check Use Encryption

Do not allow auto-acceptance of files
It is best to always be asked for confirmation when

accepting a file, stopping a dangerous file or Trojan to be
automatically uploaded. To do this:

• Apple menu -> System Preferences -> Bluetooth -> File Exchange
• When receiving items: -> Choose Prompt for each file
• When PIM items are accepted and When other items are accepted: ->

Choose Ask

If you never use Bluetooth to push files from another
device to your Mac, set it to automatically Refuse all.

Disable file shares
If you do not actively share files from the Mac to your

other Bluetooth devices, disable all sharing (read-only and
read/write) of files:

• Apple menu -> System Preferences -> Bluetooth -> File Exchange
• Uncheck Allow other devices to browse files on this computer

Disabling Bluetooth file sharing

Do not pair with unknown devices
To alleviate the chances of an attacker pairing with your

machine, do not pair with an unknown device or allow physical
access to your machine to any un-trusted party.

Sampler WWW.MACTTEECCHH.COM

From legendary Apple guru, Scott Knaster, find out all the coolest hacks, tweaks, and
mods that you can make to your Mac®, iPod® or even to Mac OS® X Tiger™

Extreme Macs

Available wherever books are sold.
Wiley and the Wiley logo are trademarks of John Wiley & Sons, Inc. and/or its affiliates. The ExtremeTech logo is a trademark of

Ziff Davis Publishing Holdings, Inc. Used under license. All other trademarks are the property of their respective owners

™

MacTech ad 5/17/05 12:06 AM Page 1

WWW.MACTTEECCHH.COM140

NETWORK SECURITY
The following section describes methods of securing Mac

OS X from an external, or network, perspective.

DISABLING SERVICES
By default, Mac OS X does not come with any network

services enabled. However, some services may have been
enabled unwittingly or by installing extra software. This section
describes methods of ensuring unknown services are disabled.

Sharing
Apple’s Sharing preference pane is a front-end to xinetd and

SystemStarter. It is used to enable and disable a number of
common Internet services such as SSH (Remote Login) and the
Apache web-server (Personal Web Sharing).

By default, Mac OS X 10.3 comes with all the Sharing
network services turned off. However, some users may have
enabled services unnecessarily.

The Sharing preferences pane

To disable all services:

• Apple menu -> System Preferences -> Sharing
• Uncheck any checked service

A very basic description of each service can be read by
selecting the service and reading the description provided below
the Start/Stop button.

The following table shows the Apple service name, normal
Internet service name, and software associated with providing
the service:

Apple Service Internet Service Software

Personal File Sharing AFP(overTCP) AppleFileServer
Windows Sharing SMB/CIFS Samba
Personal Web Sharing HTTP Apache
Remote Login SSH OpenSSH
FTP access FTP tnftpd
Apple Remote Desktop ARD ARD Helper
Remote Apple Events EPPC AEServer
Printer Sharing LPR/printer CUPS

Table showing hostconfig entries and descriptions

If you must have remote access to your Mac, SSH (“Remote
Login”) is considered to be one of the more secure methods.
SSH can also be used for file transfer by using SCP (Secure
Copy) and SFTP (Secure FTP). You can also use it for securely
tunnelling other services, for example ARD or VNC. See below
for instructions on restricting to particular IPs (either through
xinetd or ipfw) and securing the default sshd settings.

inetd
Mac OS X uses the xinetd Internet Super Server for

providing a number of IP-based services. Some are
enabled/disabled through the Sharing preferences pane while
many others (including what are commonly referred to as
“useless Unix services”) aren’t. A list of all services it can
provide (from a default installation) can be found in
/etc/xinetd/.

A listing of any services that have been enabled (either through
the Sharing preferences pane or otherwise) can be found by:

grep disable /etc/xinetd.d/* | grep no

Any services that are not required should be disabled. This
can be done by editting the file revealed by the command
above and changing the line disable = no to disable = yes. For
example, your ssh file may look like:

service ssh
{

disable = yes
socket_type = stream
wait = no
user = root
server = /usr/libexec/sshd-keygen-wrapper
server_args = -i
groups = yes
flags = REUSE IPv6
session_create = yes

}

Once all unnecessary services have been disabled, you can
restart xinetd with:

kill –HUP `cat /var/run/xinetd.pid`

If you have disabled every service and want to kill off
xinetd entirely:

kill `cat /var/run/xinetd.pid`

Sampler

141

If you’re choosing to leave a service enabled, you can
either restrict what IPs can connect to it within xinetd, or within
the ipfw firewall software (see section below). If you decide to
restrict it within xinetd, you have the choice of either “allow
some, deny rest” or “deny some, allow rest”.

As the final line (i.e. above the closing }) within the xinetd
configuration file for the service you’re restricting, add in your
specifications. To “allow some, deny the rest”:

only_from = <ip or subnet>, <ip or subnet>, <ip or subnet>
Or to “deny some, allow the rest”:

no_access = <ip or subnet>, <ip or subnet>

Insecure services can also be tunnelled with encryption using
SSH. Doing so, you leave the service firewalled to the outside world
and tunnel a connection into the machine using SSH. OpenSSH
itself also has specific user access controls on top of xinetd’s and a
firewall. See the section below for specifics on securely using SSH.

OSX hostconfig Services
Mac OS X uses a service start-up system called SystemStarter,

which replaces the init scripts most people would be familiar with
from Unix System V variants. It does include a number of features
not available in init, such as including dependencies in the service,
rather than relying on manual ordering within a certain run-level.

A number of SystemStarter scripts source the /etc/hostconfig
file to see if they should start or not. This file contains variables
we can set to quickly enable/disable services at boot time.

The following table lists items you may find in /etc/hostconfig
and a short description of what they’re used for:

SSeerrvviiccee DDeessccrriippttiioonn
AFPSERVER Apple File Serving, over TCP for

“Personal File Sharing”
AUTHSERVER Apple NetInfo Authentication service
AUTOMOUNT Automatic mounting of NFS mount-points

(not to be confused with amd)
CUPS Local printing services
IPFORWARDING IP routing for other clients
IPV6 IP version 6 protocol support
MAILSERVER The postfix SMTP mail server
NETINFOSERVER Bind to a NetInfo server for directory

and authentication access
NFSLOCKS Network File System file locking support
NISDOMAIN Bind to a NIS domain server for authentication
RPCSERVER Remote Procedure Call support for numerous

Unix services, such as NFS
TIMESYNC Run NTPd to maintain constant time synchronisation
QTSSERVER Apple QuickTime Streaming Server modules
WEBSERVER The Apache web-server for “Personal Web Sharing”
SMBSERVER Windows file sharing using Samba
DNSSERVER BIND DNS server
COREDUMPS Writes a core dump to disk in the case

of a kernel panic
VPNSERVER Apple’s VPN service daemon (LT2P and PPTP)
CRASHREPORTER Apple’s crash logging service
XGRIDSERVER Act as a server for Apple’s grid computing

software, xgrid
XGRIDAGENT Act as a client for Apple’s grid computing

software, xgrid
ARDAGENT Apple Remote Desktop server

Table showing hostconfig entries and descriptions

Suggested services to enable include CUPS (with -YES-) to
allow printing and NETINFOSERVER (with =-AUTOMATIC-),
which will load netinfod on a stand-alone machine for
authentication.

You can enable ntpd for consistent time synchronisation for
meaningful logs if you wish. If you choose to disable it, you may
wish to add the ntpdate command to /etc/daily or root’s crontab:

/usr/sbin/ntpdate -p 8 –u time.asia.apple.com

Change “time.asia.apple.com” to a local NTP server closer
to your location.

Other OSX Services
Finally, some SystemStarter and mach_init.d scripts don’t

actually refer to an entry in /etc/hostconfig to see if they should
be run or not. These scripts require manual examination.

SystermStarter and mach_init store their scripts in three
locations: /Library/StartupItems/, /System/Library/StartupItems
and /etc/mach_init.d.

An example service that starts from StartupItems without
examining a /etc/hostconfig entry is the NFS server, nfsiod,
starting from /System/Library/StartupItems/NFS/NFS. To de-
activate it, as root you would edit the script and comment out
the line that starts nfsiod:

nfsiod is the NFS asynchronous block I/O daemon, which
implements

NFS read-ahead and write-behind caching on NFS clients.
#nfsiod -n 4

Apple’s auto-mount daemon (ADM – not to be confused
with the NFS automount service) is used for automatically
mounting CDs and image files. It can be disabled in
/System/Libraries/StartupItems/AMD/AMD. It also checks
/etc/hostconfig for a AMDSERVER:=-NO-, which can be inserted
manually (it isn’t included in /etc/hostconfig by default).

A default system is unlikely to have any further items that
aren’t controlled by /etc/hostconfig. However, third-party
applications you have installed may. You may wish to examine
the contents of each /System/Library/StartupItems/*/* and
/etc/mach_init.d/* file to determine what services start
automatically.

Finally, you can check for any services left running by
using, as root:

/usr/sbin/lsof | grep LISTEN

DISABLING DIRECTORY ACCESS METHODS
By default, Mac OS X comes with a number of directory access

methods enabled, which could be open to exploitation (e.g. the
LDAPv3 service accepts an LDAP server from DHCP by default,
which could be faked by a rogue DHCP server on the LAN).

WWW.MACTTEECCHH.COMSampler

WWW.MACTTEECCHH.COM142

For a stand-alone Mac OS X client, the majority of (or
potentially all) services are not required. The following is a table of
each of the Directory Access methods and a description of its use:

DDiirreeccttoorryy AAcccceessss mmeetthhoodd UUssee
Active Directory Windows 2000 domain file

sharing and authentication
AppleTalk Apples legacy protocol for

discovering file and print services
BSD Flat File and NIS /etc flat files and Unix Network Information

Service (NIS) or Yellow Pages (yp)
directory and authentication

LDAPv3 LDAP directory access and authentication
NetInfo Apple’s directory access and authentication
Rendezvous Apple multicast protocol for file, print, chat,

music and other network services
SLP Service Location Protocol – open standard file

and print server discovery
SMB Windows workgroup file and print sharing/serving

Table showing Directory Access methods and their use.

To disable services you don’t require:

• Applications -> Utilities -> Directory Access
• Uncheck unrequired services

Configuring Directory Access

If you need to use LDAP for directory services (such as an
enterprise LDAP email address book), ensure you have disabled
the DHCP-supplied LDAP Server option:

• Applications -> Utilities -> Directory Access -> LDAPv3 -> Configure
• Uncheck Use DHCP-supplied LDAP Server

Disabling DHCP-supplied LDAP Server

CONFIGURING A FIREWALL
By default, Mac OS X does not come with its built-in

firewalling software, ipfw, enabled. The following section
shows how best to enable a firewall on your machine.

Mac OS X’s built-in firewall configuration
Mac OS X includes a method for enabling a default set of

firewall rules within the Sharing preferences pane:

• Apple menu -> System Preferences -> Sharing -> Firewall -> Start

Enabling ipfw through System Preferences

By default, the firewall Sharing install isn’t is relatively
mediocre from a security point of view, but much better than
no firewall at all. The following is a list of the rules it adds:

02000 allow ip from any to any via lo*
02010 deny ip from 127.0.0.0/8 to any in
02020 deny ip from any to 127.0.0.0/8 in
02030 deny ip from 224.0.0.0/3 to any in
02040 deny tcp from any to 224.0.0.0/3 in
02050 allow tcp from any to any out
02060 allow tcp from any to any established
12190 deny tcp from any to any
65535 allow ip from any to any

Sampler

143

If you have enabled services, they will automatically be
allowed through the firewall from 0/0 (everyone). If you
have installed a third-party service, you may need to
manually add it firewall:

• New -> Port Name -> Other
• Port Number, Range or Series: -> Type in the port number/s or

range of ports the application needs inbound access for
• Description: -> Type in the name of the service

Adding an extra service to the firewall

A number of manually-installed services are already listed in
the New window under the Port Name menu.

MMaannuuaall ffiirreewwaallll ccoonnffiigguurraattiioonn
The following section discusses designing and implementing a

manual firewall script using ipfw.
As root, create the a SystemStarter directory and open its

parameter’s list in your favorite editor:

mkdir /Library/StartupItems/firewall
vi /Library/StartupItems/firewall/StartupParameters.plist
Insert the following into StartupParameters.plist:
{

Description = "firewall";
OrderPreference = "None";
Provides = ("firewall");
Requires = ("Network");
Messages =
{

start = "Starting firewall";
stop = "Stopping firewall";

};
}

Next, edit
/System/Library/StartupItems/IPServices/StartupParameters.plist
and insert the following between Provides and Uses:

Requires = (“firewall”);
So that it reads:
{

Description = "Internet services";
Provides = ("Super Server", "Config Server");
Requires =(“firewall”);
Uses = ("mDNSResponder", "Portmap", "NetworkExtensions");
OrderPreference = "None";

}

This creates a dependency and ensures the firewall has been
configured before any network services you’ve left enabled are
loaded. This ensures none of the services are loaded with no

protection between them and the outside world.
Finally, open up /Library/StartupItems/firewall/firewall in your

editor and, at a minimum, insert the following rule-set. You may
wish to add extra rules in the appropriate section from the example
rules below this section.

#!/bin/sh

Declare variables
Path to firewalling software
FW="/sbin/ipfw"

Flush any existing rules from the firewall
$FW -q flush

Outgoing

Drop MS VPC7 license checking going out
$FW add deny udp from any to any 21790
Drop MS Office license checking going out
$FW add deny udp from any to any 2222
Allow pretty much anything else out
$FW add allow all from any to any out

Incoming

Allow all from/to local loopback interface
$FW add allow all from any to any via lo0
Then deny anything pretending to come from 127 on other ifs
$FW add deny log all from 127.0.0.0/8 to any in

Allow relevant outgoing connections back in
Allow half open TCP back in (although not active ftp)
$FW add allow tcp from any to any established in
Allow related UDP back in
DNS - UDP/53
$FW add allow udp from any 53 to any 1024-65535 in
NTP - UDP/123
$FW add allow udp from any 123 to any 123 in
$FW add allow udp from any 123 to any 1024-65535 in
DHCP - UDP/67
DHCP request to server back in to client
$FW add allow udp from any 67 to any 1024-65535 in
DHCP offer from server in to client
$FW add allow udp from any to any 68 in
Allow the neccesary ICMP in
(echo reply, dest unreachable, ttl exceeded, IP header bad)
$FW add allow icmp from any to any icmptypes 0,3,11,12

###
Insert your custom rules here
###

Reject IDENT/AUTH with an ICMP reply
$FW add reject tcp from any to any 113 in

Deny (drop without ICMP) the rest and log to
/var/log/system.log
$FW add deny log all from any to any

exit

Some rules you may wish to insert could include the following:

Windows/SMB/Samba client access
$FW add allow udp from any 137-139 to any in
$FW add allow udp from any 445 to any in
$FW add allow tcp from any 137-139 to any in
$FW add allow tcp from any 445 to any in

PPTP VPN client access
(replace <ip> with your VPN server’s IP)
$FW add allow 47 from <ip> to any in

H.323 client access (NetMeeting and similar)
$FW add allow udp from 0/0 to 0/0 1720 in
$FW add allow tcp from 0/0 to 0/0 1720 in
$FW add allow tcp from 0/0 to 0/0 30000-30010 in
$FW add allow udp from 0/0 to 0/0 5000-5099 in

WWW.MACTTEECCHH.COMSampler

WWW.MACTTEECCHH.COM144

XWindows client in an XNest running in display :1
(replace <ip> with the Unix box’s IP)
$FW add allow tcp from <ip> to any 6001 in

XDMCP client in an XNest running in display :2
(replace <ip> with the Unix box’s IP)
$FW add allow tcp from <ip> to any 6002 in
$FW add allow udp from <ip> 177 to any in

SSH server
$FW add allow tcp from 0/0 to any 22 in

To determine what TCP or UDP port a service uses (so that you
can let incoming requests through your firewall), you can check the
/etc/services file:

grep -i <service name> /etc/services

Monitoring ipfw
The final rule in the above script tells ipfw to log any packets

hitting the final deny rule before silently dropping them. As root, you
can see which packets are being dropped with a command like:

/usr/bin/tail –f /var/log/system.log | grep ipfw

KERNEL TWEAKING
The following section describes a number of kernel

variables that should be set to ensure the most secure network
settings. Insert the following into /etc/sysctl.conf to ensure
they’re at their most secure:

Verbose firewall logging
net.inet.ip.fw.verbose=1
net.inet.ip.fw.verbose_limit=65535
ICMP limit
net.inet.icmp.icmplim=1024
Stop redirects
net.inet.icmp.drop_redirect=1
net.inet.icmp.log_redirect=1
net.inet.ip.redirect=0
Stop source routing
net.inet.ip.sourceroute=0
net.inet.ip.accept_sourceroute=0
Stop broadcast ECHO response
net.inet.icmp.bmcastecho=0
Stop other broadcast probes
net.inet.icmp.maskrepl=0
TCP delayed ack off
net.inet.tcp.delayed_ack=0
Turn off forwarding/routing
net.inet.ip.forwarding=0
Turn on strong/randomized TCP sequencing
net.inet.tcp.strict_rfc1948=1

They can also be manually entered at the command line (or in
another script) at any time with the following syntax as root:

/usr/sbin/sysctl –w <variable>=<setting>

SECURING SSH
SSH (Secure Shell), is provided under Mac OS X using the

open-source package OpenSSH. It can be used for a secure remote
interactive shell (SSH), secure file transfer (SFTP), secure copy (scp),
secure X-windows forwarding (X11Forwarding) and encrypted
tunnelling of other IP services.

General SSHd changes
SSHd is highly configurable and can be further locked down

from it default settings. Its server configuration file can be found
under Mac OS X as /etc/sshd_config and the following changes
from the default configuration are recommended:

#Protocol 2,1
(to)
Protocol 2

#PermitRootLogin yes
(to)
PermitRootLogin no

Subsystem sftp /usr/libexec/sftp-server”
(to)
#Subsystem sftp /usr/libexec/sftp-server

Using SSH keys for authentication
It is considered more secure to login with an SSH key pair than

a password. A machine that has already been hacked may have a
trojanned sshd binary or authentication services which may be able
to give a copy of your password to the attacker. If you have the
same password on multiple machines (which is obviously not
recommended) they may then login to those other machines using
your credentials.

On the other hand, logging in with an SSH key does not allow
an attacker to gain your password, even if you are using the same
SSH key (with same passphrase) to login to other machines. To
disable password authentication:

#PasswordAuthentication yes -> PasswordAuthentication no

To generate an SSH key pair on your external machine
(assuming it runs OpenSSH):

user@host:~$ ssh-keygen -b 4096 -t dsa -C "Key for user@host
Nov 2004"

Generating public/private rsa key pair.
Enter file in which to save the key (/Users/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/user/.ssh/id_dsa.
Your public key has been saved in /Users/user/.ssh/id_dsa.pub.
The key fingerprint is:
f3:99:d7:05:be:7f:41:42:64:97:b1:e7:d1:41:c9:08 Key for
user@host Nov 2004

DSA is considerably faster than RSA for key generation and
signing, however some argue that DSS has some potential
security flaws in its signing process on machines with low
random number entropy.

Ensure you add a pass-phrase to your key to protect it if the
remote machine is compromised.

Now put ~/.ssh/id_dsa.pub from the remote machine into
~/.ssh/authorized_keys on your Mac. Your key will now be
automatically used instead of a password for SSH, SCP and SFTP
remote access to your machine.

Forwarding X11 through SSH
Finally, if you have X11 programs that you want to export back

to a remote machine, it is recommended that you use SSH’s in-built

Sampler

WWW.MACTTEECCHH.COM145

CONCLUSIONS
With the move from Mac OS Classic’s roots to a Unix-

based operating system, Apple’s Mac OS has undergone
massive changes.

While it is one of the more secure Unix operating
environments by default, there are a number of methods the
administrator of the machine can make use of to harden the
environment further.

This article has outlined a number of these methods to
secure Mac OS X from a local and network perspective.

REFERENCES
• de Vries, Stephen. “A Corsaire White Paper: Securing Mac OS

X”, Corsaire, 22 June 2004

• Systems and network Attack Centre (SNAC), National
Security Agency (NSA). “Apple Mac OS X v10.3.x “Panther” –
Security Configuration Guide”, 2004

• Beale, Jay, JJB Security Consulting, LLC and GWU Cyber
Security Policy & Research Institute. “Locking Down Mac OS
X” Delivered at Black Hat USA, 2003.

X11 Forwarding in /etc/sshd_config:

#X11Forwarding no
(to)
X11Forwarding yes

From the client machine, you setup the SSH tunnel by typing:

ssh –X –l username <remote Mac>

Tunnelling other IP services through SSH
SSH can also be used to tunnel an otherwise insecure protocol

through it.
For example, you may wish to use a VNC server running on

the Mac OS X machine. VNC by itself is not encrypted and it’s
password is sent plain-text over the network. A somewhat more
secure solution to this problem is to leave the SSH port firewalled,
tunnel a VNC connection through to the machine and connect to
the VNC port on it’s loop-back interface.

For example, to make a tunnel through to the remote Mac’s
TCP port 5900 (commonly VNC), you would do:

ssh –N –L 5900:127.0.0.1:5900 <remote Mac>
This command binds SSH to port 5900 on the localhost and

tunnels it, via SSH, to port 5900 on the remote Mac. You would now
point your VNC client to 127.0.0.1 (ie, the localhost’s loopback
interface) on port 5900 and it will securely connect to the VNC
server on your remote Mac.

Restarting sshd after config changes
Because Mac OS X spawns sshd from xinetd rather than as

a stand-alone server, there is no need to restart anything.
Changes you make to sshd_config are read in on the next
connection to that service.

Paul Day is a Security Administrator who currently works for the
University of Western Australia. He primarily deals with security policy and the
administration of security in Cisco, Solaris, Linux and OS X based environments.
His passions revolve around Unix & network security and optimization

About The Author
MT

Sampler

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

147

By the time you read this article, Tiger will likely
have shipped. Reportedly, Apple will be enhancing
the connections via iSync, Bluetooth, and more to a
variety of phones.

But, what if you have that slick new Motorola
phone (like the RAZR), and you are using Panther?
You can sync the phones via a cable in the mean
time, but what about connecting to the net?

I took the challenge. I wanted to get my
PowerBook running 10.3.8 to go over Bluetooth to
my Motorola RAZR phone and dial up to the net. Not
fast, but it worked. I believe this will work on any
newer Motorola phone (e.g., 551 as an example) as
they have similar interfaces.

As you may know, Cingular had an early
exclusive on the RAZR, so if you have this phone,
you probably have Cingular.

If you call Cingular, you will find them to be of
little (or more likely no) help. In searching around
the net, I found several bits of information, and the
below is the best instructions I’ve been able to
cobble together ... and have actually gotten to work
myself.

You will need some sort of data package with
Cingular, but you don’t need to spend the
$80/month that they tell you at the first level
support. It’s not competitive with other services, and
not reasonable to ask. I’ve got a MediaNet package
for $20 that’s unlimited that I’m using. (I’ve been
told that they no longer offer the unlimited version,
but that might be regional restrictions.)

a) First, you have to download the latest modem
scripts. There are several places, but you can
download updated modem scripts
http://www.taniwha.org.uk>http://www.taniwha.org.uk
(You want “Motorola GPRS Scripts”)

b) Put the new scripts in the following folder:
[your hard disk]/Library/Modem Scripts

Now you have to configure your Network settings.

c) Go to your System Preferences/Network

d) Go to your “Network Port Configurations” and
create a new Bluetooth port

e) First Tab TCP/IP:
Using PPP
DNS Servers: 66.209.10.201, 66.209.10.202

(these are the Cingular DNS machines)

e) Next tab PPP:
Service Provider: CINGULAR
Account Name: WAP@CINGULARGPRS.COM
Password: CINGULAR1
Telephone Number: WAP.CINGULAR

Note: If you do this in mixed or lower case, it
won’t work. Make sure it’s all caps ... strange as that
may seem.

Then click on the PPP Options button and
uncheck both “Send PPP echopackets” and “Use TCP
header compression”, click OK

f) Bluetooth Modem tab: Modem: Choose Motorola
GPRS CID2 (If you dropped in the new modem
scripts into the correct folder, you should have
this in your drop down menu.

g) Open up your Internet Connect application
(Found in your Applications Folder) and select
Bluetooth and click connect.

That’s it. Happy connecting!

Tips & Tidbits

THE MOTOROLA RAZR IS COOL,
BUT I WANT TO USE BLUETOOTH!

by Neil Ticktin, Publisher

MT

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM148

PPooddccaassttiinngg 110011

LLIIVVIINNGG TTHHEE DDRREEAAMM
OK, I admit it: I’ve always wanted my own radio show. You

know, a show where I could talk about the things that interest me,
play the songs that I like, and interview fascinating people. The
unfortunate truth is that radio is a tough business to get into, and I
never got to have that show. Until now.

Podcasting is the hottest new term on the internet. In the last
few weeks, a Google search for podcasting has gone from only a
few hundred results to well over half-a-million. Some media analysts
predict that podcasting is going to change broadcasting forever.
Why? Because with podcasting, everyone can have their own show.
Instead of a huge studio, all you need is a computer and a bit of
software. In fact, in the method I’m going to describe, you can begin
podcasting for under $50. This article will show you how.

WWHHAATT IISS PPOODDCCAASSTTIINNGG??
The idea behind podcasting is simple. It’s like Tivo for internet

audio. The term podcasting is a play on the word broadcasting, but
it turns traditional broadcasting on its head. Programs aren’t
streamed, like radio, but instead delivered, like magazine
subscriptions, right to your desktop. With the right client software,
all this happens transparently, and you wake up with fresh content
to listen to all day long. The beauty of this method is that you’re no
longer tied to the show’s schedule – you can listen to the programs
when you have time, rather than when they’re “on.”

Podcasting works using syndication feeds, such as those using
RSS, to deliver these shows to you. If you use a newsreader, you
already know how to subscribe to a podcast, since it is exactly the
same as a newsfeed with just an enclosed file. Podcast clients let
you subscribe to syndication feeds. If there are any files available,
the client automatically downloads them for you.

There are hundreds of people producing podcasts, and more
shows are popping up every day. Even some of the big media names
are starting to take interest as more and more people turn to podcasts
rather than regular radio for their information and entertainment.

Even more interesting is that anyone can create and distribute
his own podcast. The power of today’s computers and the vast
reach of the internet mean that having your own radio show is
nearly as easy as hitting record on your Mac.

RREECCEEIIVVIINNGG PPOODDCCAASSTTSS
Before you start creating your own show, it’s probably a good

idea to listen to some of the other podcasts out there. To do that,
you’ll need a podcast client. For the Mac there are currently two
clients available, iPodderX (http://iPodderX.com), which is
shareware, and iPodder Lemon (http://ipodder.sourceforge.com),
which is open source. Both have their own set of features, but the
basic functionality of each is similar.

BByy AAuugguusstt TTrroommeetteerr

HHooww ttoo ccrreeaattee yyoouurr oowwnn ppooddccaasstt

NEW TECHNOLOGY

Sampler

149

FFiigguurree 11.. iiPPooddddeerrXX

FFiigguurree 22.. iiPPooddddeerr LLeemmoonn

Download and install the client of your choice. Launch it, and
you can begin adding feeds. Both clients feature an integrated
podcast directory listing many of the available podcasts, so feel free
to browse and choose the podcasts that interest you. Both clients
can also be set to automatically download podcasts, so you don’t
need to manually activate the downloads. I highly recommend that
you find this setting and turn it on.

Once you’re all set up, the fun begins. Whenever your client
checks for podcasts, it looks at the list of feeds you’ve subscribed to.
If there are any available files, it automatically downloads them to
your computer. Now the magic: if the file is an audio file, it will be

automatically moved to iTunes for you, where you can listen at your
leisure. If you have an iPod, the next time you sync, all those
podcasts will be copied to your iPod. You’ll have fresh content to go!

YYOOUURR FFIIRRSSTT PPOODDCCAASSTT
Now that you’ve familiarized yourself with the client-side of

podcasting, it’s time to start thinking about your own show. What
kind of show do you want to do? The sky is the limit. Some shows
are over half hour in length and feature music, commentary, or
interviews. Others are short. KOMO, out of Seattle, has brief two to
three minute podcasts containing their news stories. One podcast I
know is simply a guy reading a bit of poetry each day. Use your
imagination, and who knows what you might come up with.

After you’ve decided on a format, the next step is a bit of
paperwork. I’ve noticed that the most popular shows are the ones
that are the most professional. By professional, I don’t mean slickly
produced. Instead, I’m simply talking about a little preparation so
your show goes smoothly, so taking a few minutes to organize
yourself will help increase your eventual listenership.

I suggest sitting down and drafting a brief outline of your
show. Perhaps you’d like a music intro. Then maybe a few minutes
of commentary. Then another song. Whatever you decide, put it on
paper. That way, as the show goes along, you can refer to the
outline to make sure you don’t have any embarrassing gaps of
silence in the program.

Tape the outline to your computer monitor so that it’s in easy
view. If you’ve ever been to a real recording studio, they do the
same thing. You don’t want the sounds of rustling paper to be
recorded, so with it taped to the monitor you can refer to it without
handling it.

TTHHEE GGEEAARR
There are probably as many ways to set up a podcasting

studio as there are podcasts. The method I’m going to show you I
use for two reasons. One, it’s easy to set up. Two, it’s cheap. For
under $50, you’ve got a podcasting studio that’s ready to roll. I
suspect that sooner rather than later someone will develop a
Podcasting Studio application. Until then, we need to use several
bits of software.

Here’s the list of things you’ll need:
• A microphone. Most Macs have a built-in microphone. If you’rs

doesn’t, you can use an iSight (you’ve been looking for an
excuse, right?) or a USB mic, such as Griffin’s iMic. This article will
assume you’re simply using the built-in mic.

• Headphones or earphones. You’ll need to wear earphones during
the entire podcast, otherwise, you’ll end up with feedback which
will ruin your recording.

• iTunes or QuickTime. You’ll use these to play audio files.
• iChat or Skype. If you want to interview remote guests, you

can do so using an Audio iChat or Skype.
• WireTap from Ambrosia Software

(http://www.ambrosiasw.com/utilities/freebies). WireTap is

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM150

freeware, and it’s what we’ll use to capture your computer’s
output and record the audio.

• Audio Hijack Pro from Rogue Amoeba
(http://rogueamoeba.com/audiohijackpro/). Audio Hijack Pro is
$32. There is a Demo version, so you can try it before paying
for it. If you have GarageBand, you can use it instead of Audio
Hijack Pro, but it tends to be a little more resource hungry.

SSEETTTTIINNGG IITT AALLLL UUPP
The job of creating the podcast breaks down into two basic

tasks: recording what you say into the microphone, and recoding
the audio output from your Mac. While recording, you want to
make sure that nothing is recorded other than the show. So you
need to be in a quiet room, with the TV and stereo turned off.

You’ll also need to make sure that any error sounds from your
Mac are not recorded. The easiest way to fix this is to turn them off.
In your System Preferences, choose the Sound panel, then choose
the Sound Effects tab. Make sure the checkboxes for playing
interface sounds and volume sounds are unchecked.

FFiigguurree 33.. SSoouunndd EEffffeeccttss OOffff

While you’re here, click the Input tab and check your
microphone settings. These will need adjustment as you become
accustomed to how your particular setup records sound. The idea
here is to make sure your recording levels don’t clip, but the
sensitivity is still strong enough for you to be heard.

You also need to make sure to quit any non-essential
applications. Recording audio can be a processor intensive task, and
any stray processes running on your system will slow things down
considerably. You’ll also want to make sure you turn off the
automatic checking on your podcast client. Invariably, as soon as
you set down to record your client app will start downloading files,
causing you all kinds of headaches.

Plug in your headphones, put them on, and launch all the apps
you are going to use for your podcast, including WireTap and Audio
Hijack Pro. You’ll also want to get any audio clips you want to play
ready as well. Put them within easy reach or in a playlist in iTunes.
Finally, if you’re going to have a remote guest via Audio iChat, it’s
time to get them ready as well.

We’re going to use WireTap to record all audio output by your
Mac. It’s very easy, just configure it the way you like, and press the
record button. WireTap always saves your file as an AIFF audio file.
Once it’s recorded, we’ll convert it to an MP3 or AAC in iTunes.

FFiigguurree 44.. WWiirreeTTaapp SSeettttiinnggss

The main problem with WireTap is that it won’t record the
input from your microphone. We need to use another application to
monitor your mic that WireTap can record from. That’s what Audio
Hijack is for. In Audio Hijack, you’ll see a list of potential sources in
the left hand pane. Choose System Input (Default). Then, click the
Hijack button in the main window. You do not need to turn on
recording – that’s what WireTap is for.

FFiigguurree 55.. AAuuddiioo HHiijjaacckk SSeettttiinnggss

Sampler

152

In Audio Hijack, you can also add some effects to your voice.
In the lower right corner, click the Effects tab. Click any space to
insert an Effect, and a list of possible effects will pop up. Choose
what you’d like here, but unless you have a specific purpose in
mind, don’t go too crazy. A robot voice is fine for a few seconds,
but several minutes of it can be tiresome. I use the Bass and Treble
effect to boost the bass in my voice. It helps give me that “radio
sound” that we all know so well.

FFiigguurree 66.. AAddddiinngg aa VVooiiccee EEffffeecctt

TTHHEE CCUURRTTAAIINN RRIISSEESS
You’re all set to go! In WireTap, press the Record Button to

begin the show. Follow your outline. If you need to play something
in iTunes, go ahead, and WireTap will record it automatically. Call
up your pal on iChat, and they can be a guest on your show as well.

When you’re done, just click the Stop button in WireTap.
The entire file will be saved to your hard drive in the location
you specified.

That’s it! You just recorded your first podcast!
At this point, you’re finished with the recording. The method

described above will give you a single file, nearly ready to publish,
but you could just as easily record small clips and edit them
together with an audio editor to form a longer piece. If you’d like,
you can also edit to remove any long pauses, erms, and ahs from
your recording.

CCOOVVEERRSSIIOONN AANNDD PPUUBBLLIISSHHIINNGG
As I mentioned, WireTap records the file in AIFF format. We

need to convert that to either MP3 or AAC.
Drag the file into the iTunes window. The podcast will be

copied into iTunes. In the iTunes Preferences, choose the Importing
tab. Set these preferences however you’d like them. You’ll want to
use either MP3 or AAC. Set the bitrate to whatever you’d prefer, but
keep in mind that the higher the bitrate, the bigger the file. This

means longer download times for the listeners and higher
bandwidth usage for you.

FFiigguurree 77.. iiTTuunneess IImmppoorrtt SSeettttiinnggss

Control-click on the podcast file in your iTunes library. A
contextual menu will pop up. Choose “Convert Selection to
AAC” (or MP3), and iTunes will convert your AIFF file to the
proper format.

Finally, we need to change some ID3 tags so that the listeners
will have it properly added to their iTunes library. Select the
converted file in iTunes, then type Command-I to bring up the file’s
information. Change this as you see fit. Generally, you should put
the name of the podcast (“Mac News”) in the Album slot, while the
name of the individual episode (“MacWorld 2005”) goes in the
Name blank. It’s also nice if you set the Genre to ‘Podcast’, so those
who subscribe to your show can sort by Genre in iTunes to get all
of the podcasts. You can also, if you’d like, give the file some
“Cover Art.” Simply drag an image, say the show’s logo, into the
image well in iTunes. It will be converted and stored in the ID3 tag.

FFiigguurree 88.. IIDD33 TTaagg SSeettttiinnggss

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM153

GGEETTTTIINNGG IITT OONNLLIINNEE
OK. You’ve got the show recorded, and you’ve got it converted

to MP3 or AAC. All that’s left is getting it on the web. Upload the file
to a webserver you have access to. This could be your .Mac iDisk, an
ISP, or even your own home computer.

You’ve probably already got a weblog, and if you’ve got a
weblog, it’s most likely already got a newsfeed. More and more weblog
publishing tools are adding support for podcasting. WordPress and
MoveableType both have plugins available that will format your RSS
feed for podcasts. If yours doesn’t, you’ll need to hand code it. While
syndication feeds are far beyond the scope of this article, I’ll show you
the one small change you need to make to your RSS 2.0 feed.

In the RSS 2.0 feed (2.0, only, not .91,.92, or 1), between the
<item> tag of the appropriate item, you need to add an <enclosure>
tag with the following format:

<enclosure url=http://your.podcast.com/file.mp3 length=”5404566”
type=”audio/mpeg” />

The url is the URL of the file, the length is the size of the
file in bytes, and the type is the MIME type of the file. All three
are required.

Once that tag is added to your feed, any podcast client that has
subscribed to your feed will automatically get your new podcast.

AA CCOOUUPPLLEE OOFF CCOONNCCEERRNNSS
Since podcasting is such a new phenomenon, there are few kinks

that still need ironed out. One of the big ones is bandwidth. If you have
a successful podcast, for example, be prepared to use a lot of extra
bandwith. If your file is, say, 10MB in size and 500 people listen to it,
you’re looking at a pretty big bandwidth bill if you pay by the GB.

To alleviate the bandwidth concerns, both client developers
and content producers are experimenting with alternatives such as
BitTorrent, but there’s no real magic bullet yet. Your bandwidth costs
will likely go up, so just be aware of that.

Also, be careful of the music you play during your show. If it’s
copyrighted, and you don’t have the rights to play it, you could be
opening yourself up for legal trouble. There is a lot of Creative
Commons music available online that is royalty free, or you could
create your own with GarageBand. Above all, be careful with what
you publish.

NNOOTT JJUUSSTT AAUUDDIIOO
We’ve spent this entire article talking about audio, but

syndication enclosures can be any type of file. With a good podcast
client, images will be moved into iPhoto where they can be synced
with the iPod Photo, while video podcasts (which can’t go on your
iPod yet) will be saved to your hard drive where you can watch
them with QuickTime. Even sharing Applications is possible in a
podcast feed! Use your imagination – there’s no end to what can be
done with this technology!

TTHHEE SSHHOOWW MMUUSSTT GGOO OONN
Now you know how to create and publish your own podcast.

But that’s just the beginning! You’ve got to keep going, creating
more content. Like anything else, podcasting takes practice. In fact,
I recommend producing several podcast shows just to get the feel
of it before you actually publish anything for the world to hear. Once
you get the hand of it, add the shows to your feed, and you’re on
your way to being an internet icon!

Good luck – I can’t wait to hear your show!

August Trometer is the creator of iPodderX, a podcast receiver for Mac
OS X, as well as the .Mac-centric website dotmac.info. He can be reached

at BlueGus@mac.com.

About The Author

MT

Sampler

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

155

MAC IN THE SHELL • by Edward Marczak

WWW.MACTTEECCHH.COM

they’d turn on a computer. What do I do? It’s just
sitting there blinking at me. Will I break it if I type the
wrong thing?

The Mac OS tried to end all of that command line fear
and present a graphical interface at boot time that made
people feel comfortable. They did a great job. But fast-
forward to now, and Apple is singing a slightly different tune.
However, I find many people who are dyed-in-the-wool Mac
users simply pretend that Terminal.app doesn’t exist.

The Present

Here we are, and there’s a command line in a Macintosh
operating system. They just couldn’t keep it out of there. In
all honesty, if it weren’t in there, I’d be writing for a Linux
magazine right now. As a techie, and someone who likes
(and many times needs) to troubleshoot, there was no
bigger breath of fresh air when I fired up Terminal.app
under OS X (10.0 beta, on my Powerbook G3). I
immediately typed ‘ping 192.168.30.1’ for the network I was
on and saw the replies come back. Wow, Apple did it.
Keep Word. Keep Safari. Heck, even keep Quake and Tron
2.0, I don’t want a computer without access to the command
line. But why?

Terminally Acquainted

I mentioned the power that lies in the terminal, what is
that all about? Why is it so much more powerful? Firstly, you
can typically type more quickly than you can mouse around.
From time to time, I see people launch Calculator and click
on each number rather than use the number pad on their
keyboard. Doing that just doubles the time required.

THE TERMINAL: WHY?
LOVE IT OR LEAVE IT!

If you’re a bit more of a CLI veteran,
but are coming from a different
platform, you may simply want to jump
down to ‘Apple-fying the CLI”.

The Past

I work with a broad spectrum of
people that reign over technology in
some way: from low-level hardware
and software hackers, to networking
experts, high-level FileMaker
developers and GUI-rangers. These
people have all learned, or come close
to mastering, the command line, and
are better for it. I’ve grown up in a
world of teletypes, Commodores,
IBMs, Unix boxes, Apples, Netware
servers, DOS and Windows
environments. All of these machines
started with a command line (and
some ended there). In the timeline of
computing, the GUI was an
afterthought. Not for the Mac, of
course. But go back to an Apple II, (if
you’ve got one laying around!) and
you’ll find that when you boot up,
you’re presented with a ‘]’ prompt and
blinking cursor. Since this
environment has been around so long
in the Unix world, it is very well
thought out and very mature. But it’s
certainly one of the reasons people
not-in-the-know would panic when

Sampler

156

Secondly, as people like to customize their GUI (I’ll admit that
when I work on other people’s machines and I find the dock
on the left it drives me a bit batty…) and GUIs change over
time (look at the differences going from 10.0 to 10.3), the CLI
is pretty much the CLI. Of course, it can be customized, but
it’s usually done in such a way that it doesn’t change the way
standard utilities run. Third, it gives you a consistent way to
administrate a machine. Fourth, it gets you a little closer to
the operations of the machine. Have you ever had the GUI
lock up on you? I have. But everything else was still running
and I was able to console in and reset the machine gracefully.
Fourth, and most importantly, Apple lied to us! When OS X
shipped, we were told that we’d never have to see a
command prompt if we didn’t want to. OK, perhaps not. But
that stopped us from doing certain things with our machines.
While the entire situation is getting better, there are things you
can do in the terminal that there is simply no GUI equivalent
for. With those notes, let’s get familiar with Apple’s
Terminal.app, starting with the configuration that ships with
OS X 10.3.

Launch Terminal.app from /Applications/Utilities/Terminal.
Perhaps the fact that you find the app in ‘Utilities’ rather than
‘Applications’ is something that scares people right away, as
if it’s not something one should normally run. Figure 1 shows
approximately what the default terminal looks like.

Figure 1 – A default terminal in
OS X (Panther 10.3.7)

I say ‘approximately’ because you will have some
differences. Of course, the time of your last login will be
different. Unless you’ve already changed it, your “message
of the day” will still read “Welcome to Darwin!” The next line
is your prompt, and it is generated at run-time. ‘Jack-
Kerouak’ is the name of my machine (because, if you must
know, it’s a laptop and I’m always “On the Road”), and you’ll
have the host name of your machine. The “~” shows my
current path, and by default, we start out in our home

ou’ve got a fancy Aqua GUI in front of you (errr…if you have the print
magazine in front of you, look at your OS X box now), why would anyone
use the command line? The command line!?! We’re here at MacTech
because we use a Mac – the computer that popularized the GUI!!! The

computer that said, “CLI? Gag me with a spoon!” (well, it was California in the 80’s).
However, despite Apple initially eschewing a command line altogether, the CLI has
survived. There’s a lot of power there, and OS X lets you tap into it. Furthermore,
anyone can fire up a GUI utility and make some changes. But if you want to impress
your date, you have to learn some command line tricks.

YY

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM157

directory (which is represented by the tilde). “game” is the
short name of the account I’m logged in as (remember:
Quake and Tron 2.0!), and you’ll have your user name. Then,
there it is, the cursor. Patiently waiting for you to type.

Black text on opaque white. Boring. Lets go check our
window settings. Choosing the “Terminal->Window
Settings…” menu gives us some ways to modify the look
and behavior of the terminal. Figure 2 shows the first of
several preferences that can be changed in the ‘Terminal
Inspector’.

Figure 2 – Terminal Window Settings

Of course, these are all preferences, and are unique to
each individual. I’m going to share how I like my
terminal to behave, but by all means, choose what makes
you most comfortable.

The first set of preferences, “shell”, gives us one
option: choose what to do when the shell is done. I
think I’ve only had one occasion to keep it at the default,
so I immediately change this to “Close only if the shell
exited cleanly.”

The “process” preferences work perfectly at “prompt
before closing window if there are processes other than:”. I

like being prompted as little as possible for anything. The
“emulation” settings have good defaults, but may need to
be tweaked for a particular case. The only thing I do here
is check the “option click to position cursor” checkbox,
despite actually using that function very little myself.

The “buffer” preferences only deserve one change: set
the scrollback to ‘unlimited’. If you ever start compiling
things from the command line, like a custom Apache install,
10,000 lines can disappear pretty quickly.

The “display” preferences are a little more fun, as their
effects can be seen instantly. See figure 3 to get a look
at this one.

Figure 3 – Display settings

Call me old-school, but I want a block cursor that blinks.
Depending on the display I’m using, I’ll sometimes drop the
point size down to 9. A quick tip for you: never turn on anti-
aliasing. Not only does it look terrible, it slows Terminal.app
down – yes, even more so than it starts out. This is one valid
gripe that users of Terminal.app have. Its speed is nowhere
near a real terminal, a terminal emulator on other systems,

Sampler

158

or even a Windows DOS box (or, for that matter ‘DOSbox’
under OS X. Man is that thing quick!). While things did get
better in Panther, Terminal is still the laggard, comparatively.
But, hey, it looks great.

Next up are the color prefs, which go hand in hand with
the display prefs. Have fun with this one: there are no
wrong answers here. Come up with a style that is easy on
your eyes and makes you feel at home. Again, I go for the
old-school combo of green on black, with a pinch of ultra-
modern transparency. I have one terminal combo of light-
blue on dark-blue with a rather large font. Yes, it looks like
a Commodore 64….

Stepping down brings us to the ‘Window’ preferences.
I tend to check off just about everything in the lower-half
of the inspector window. Additionally, I like to make the
terminal fairly large. Why have text wrap if it doesn’t
have to?

On the last page of options, the ‘keyboard’ prefs allow
one to alter the escape codes that are sent to Terminal.app
for each key. Unless you have a great need to change these
(and you may), just leave these at their default settings.

Now, I know you’ve been eyeing that large “Use Settings
as Defaults” button at the bottom of the Inspector window.
Well, if you have everything set the way you like, click it! As
soon as you click it….nothing happens! Well, OK, it does
save your preferences, but there is absolutely no feedback
that it done anything. For proof, quit Terminal.app and
relaunch it. You should now have a terminal that defaults
to your settings. Nice, eh?

Now What?

So, now we’ve made the terminal pretty. Great. Besides
staring at a blinking cursor, now what? Let’s start with the
basics. Again, you’ll see where you are in the filesystem
based on your prompt, which at first should read ‘~’. We
can start from the top to best illustrate how this works. The
very top level of the filesystem is represented by ‘/’, or, ‘the
root’. Type ‘cd /’ and press enter. This will ‘c’hange
‘d’irectory to “/”. You’re now at the top level of your disk
tree, basically represented by “Computer” in the Finder. You
should also notice that the terminal prompt changed from
“~” to “/”. Now, type “cd Users” (capitalization is important).
You’ve moved into the familiar Users folder. Let’s see what’s
in here. Type “ls –l”. This produces a file ‘l’i’s’ting of the
current directory. The ‘-l’ following the command is a switch
that modifies the behavior of the command. In this case, we
want a ‘l’ong list. Try an ‘ls’ without the ‘-l’ switch and you’ll
immediately see the difference (and, hopefully, why I prefer
the long list).

So far so good, right? Nothing broke. Just remember,
although the terminal brings you down to a lower level,
there’s still a thin veneer between you and the OS. Not quite
the movie screen the GUI covers everything up with, but
still, a level of abstraction exists. For example, when you ask

for a file listing by typing ‘ls’, sure, you had to do something
manually. Directory information didn’t just come flying onto
your screen. But neither did you have to tell the disk drive
which blocks to access. So, as always, unless you pour
liquid onto your CPU, you’re not going to break anything.

If you feel comfortable with these two basic exercises,
the command line just may be for you! Naturally, this
doesn’t scratch the surface of what can be done via the CLI.
Not even the surface of the smallest surface that exists on the
surface of the CLI.

Want More?

Listing files? I can do that in the Finder! Where’s the
power? If you’re comfortable moving from directory to
directory, we can look at some more powerful commands.

Continuing with file related commands is important, as
Unix treats just about everything as a file. Your disk drive?
A file. Even the terminal display can be treated as a file.
We’ll get into this deeper in future columns, but safe to say,
file manipulation is important.

Back in the terminal, type ‘cd’. Simply typed by itself, the
change directory command will bring you back to your
home directory. Now, type ‘touch thefile.txt’. In short, the
touch command will either create a zero-length file, or, if the
name you specify already exists, will update the date stamp
of that file to the current date and time. Get a directory listing
and see if your file is there (‘ls –l’, remember?).

To copy that file, you use the ‘cp’ command. Type ‘cp
thefile.txt theotherfile.txt’. 5 points if you typed ‘cp thef’ and
hit tab to complete. This will copy ‘thefile.txt’ to a file called
‘theotherfile.txt’. We can alter these files as well as having
copied them. There are some holy wars in Unix-land as to
the best text editor in the world. I use vi. No apologies,
that’s just what I use. It will absolutely be the subject of a
future column. If you know another text editor, feel free to
use it here.

Invoke vi (the ‘v’isual ‘e’ditor) by typing ‘vi theotherfile.txt’
(did you use tab completion?). You’ll be presented with a
blank-ish looking screen with tildes running down the left-hand
side. Figure 4 should mirror what you’re seeing.

Sampler WWW.MACTTEECCHH.COM

WWW.MACTTEECCHH.COM159

Figure 4 – vi with an empty file

The tildes represent a non-existent line, which,
admittedly, can sometimes get confusing if you’re editing a
file with tildes. I’ll just give the key presses with a short
description, since I’ll cover vi in a future column – case is
important, by the way. Press ‘i’ for ‘i’nsert – you’re now free
to roam about the cabin. You should see a bold ‘INSERT’
notification at the bottom of the edit window. Type
whatever text you’d like. I just typed ‘This is a test.’ When
you’re done, press the escape key on your keyboard. Type
“:” (colon), and you should see a “:” appear at the bottom
of the window you’re editing in. Follow that with ‘wq’ and
press Enter. That tells vi to ‘w’rite the file to disk and then
‘q’uit. You’ll be dropped back to your prompt.

I’d like to delete the original file that we created. This
is done with the ‘rm’ command. Now, just like files that you
throw in the Trash via the Finder, be careful what you
follow the ‘rm’ command with. Unlike the trash, though,
the files that you list will be deleted immediately. No trash,
no undo. Gone. Tab completion can be great, or you can
use it without thinking after an rm command and nuke the
wrong file. Be careful out there! That said, type ‘rm
thefile.txt’ and, after checking yourself, press Enter. You’ve
just deleted ‘thefile.txt’.

The ‘mv’ (move) command moves and renames files.
Renaming, after all, is just moving a file within the same
directory. Type ‘mv theotherfile.txt thelastfile.txt’ and press
Enter. ‘theotherfile.txt’ just became ‘thelastfile.txt’.
To bring this all home, we can open the file we created in
the Finder. Switch to the finder, and open your home
directory. 10 points if you’ve left a Finder window of your
home directory open this whole time and watched all of
these machinations take place. You should see a text file
named ‘thelastfile.txt’ sitting there. If you double click it, it
should simply launch TextEdit. Check out our handiwork
in Figure 5.

Figure 5 – TextEdit displaying our file

While this was all a bit contrived and trivial, I’m sure you
can imagine some automated routines that compile
information, save it to a file, and then display it via TextEdit
or any other program. In fact, let’s try something a little
more serious.

Hop back over to terminal. Fire up vi or your favorite
editor. I’ll give instructions for vi. Type ‘cd’ so you’re sure
you are in your home directory. Type ‘vi showdi.sh’. This
will be a bash script that will show us a report of disk
information for our main disk and display it in TextEdit. Press
‘i’, and you’ll again see the bold ‘INSERT’ along the bottom of
your editor window. Type the following exactly:

#!/bin/bash
diskutil info /dev/disk0 > /tmp/disklist.txt

open /tmp/disklist.txt

Save this file by pressing escape, typing ‘:wq’ and pressing
Enter. Type ‘chmod 700 showdi.sh’ and press enter. This
gives this script the ability to be executed (run) as a program
(ok, this is a bit simplified, but without this command, this
script is just a text file).

Before we run this, let me note that you’ll need to be an
admin for this to work. When you’re ready, type
“./showdi.sh” to run our script. That’s dot, forward-slash,
showdi.sh. Don’t forget the tab-completion for this one!
Press enter. In about two seconds, TextEdit will pop up with
a short report about our disk ‘disk0’. See figure 6 for what
this looks like.

Sampler

161

Figure 6 – Our showdi.sh script in action.

Again, the details of this script and all the commands we
typed will be covered in future articles.

Apple-Fying The CLI

If you’re a more seasoned user, you may have skipped
some of the earlier bits of this article. You already know your
way around. You know what a hard link is and you know
how to use it. You like to fire up Terminal.app, dive in and
never look back. Some things that may escape you if you’re
coming from another environment:

If you’re a big xterm person, there are some notable
differences here. Mainly:

• Terminal.app doesn’t honor switches (like “-bg”) that allow you
to customize the Terminal at app launch. You have to use
Terminal Inspector as described earlier.

• $TERM defaults to “xterm-color”, which is great on your own
system, but can throw remote systems not ready for it.

• You can’t launch a new terminal from the command line! Goofy,
eh? You just have to slap Apple-N.

However, despair not. There are some really nice Terminal
attributes. Such as:

• You can set your window title on the fly (though escape
sequences and an ‘echo’).

• Split-screen bar (see figure 4)
• Tab completion. I couldn’t survive without tab completion.
• Integration with the Services menu.

We’ll step through these bits here.
If you’re really into customization and want to set your

window title from the command line, or have a script that
uses this functionality, you can! Try this:
echo -n -e "\033]0;Title\007"

The “\033” is the ‘escape’ key, needed to start an ANSI
escape sequence. Follow this code with the title you want,
and close it out with a “\007“.

You can split your terminal horizontally by clicking the
‘broken square’ icon in the upper right-hand corner of the
terminal window. This will display a horizontal bar that can
be adjusted to size the windows as needed. Figure 4 shows
a split screen with a file listing in the upper split, and ‘top’
running in the lower pane. While this functionality is
useful, I use it very little. The reason for that will be part
of a future article.

Figure 7 – Terminal with split-screen activated

Tab completion!!! All Unix veterans know some kind
of completion. And when you start using it, you’ll never
give it up. For you hard-core Unix people: OS X has
standard tab-completion, ‘nuff said. If you don’t know
what this is, here’s an illustration: once again, type ‘cd /’
to get to the root. Now, type ‘cd Li’ and then press the
‘tab’ key. Suddenly, the line you’re working on fills itself
out (to become ‘cd Library/’). Now, type ‘W’ and a
‘tab’…boom! You now have ‘cd Library/WebServer’. This
cuts down on the keystrokes you need to type by a huge
factor. Sometimes, your hit ‘tab’ and you simply hear a
beep. That’s either because nothing matches, or more
than one thing matches. As an example, if you still have
Classic loaded on your machine, and you type ‘cd /Sy’
and press tab, you get a partial completion (to ‘System’)
and a beep. If you press ‘tab’ again, the shell will show
you the matches. In this particular case, you can either
accept the match of ‘System’ (because it’s valid), or type
‘\ “ (backslash-space) and press ‘tab’ again to have the
shell complete the next match. The more you use it, the
more you’ll get the hang of it. Just don’t practice on
Windows XP, which now supports tab completion, but
has a really poor substitute of it.

Sampler WWW.MACTTEECCHH.COM

162 WWW.MACTTEECCHH.COM

OS X has a great feature in the Services Menu – which
someone else can cover much better than I can.
Terminal.app has nice integration with this menu. Highlight
some text, and then go check Terminal->Services. There’s
some nice functionality there, such as: Send to mail, create
new sticky note, create new window in TextEdit, and more.

One last note for those so inclined: You should also take
a look at the actual Terminal preferences, accessed through
the ‘Terminal->Preferences’ window. This will allow you to
define several aspects about your terminal that can help out
in situations where you’re trying to emulate a different
terminal. Be aware that changing the shell in the Terminal
preferences screen will only change it for shells launched
through Terminal.app. Alternate terminals (see below) and
ttys from remote sessions, such as telnet or ssh, use the shell
defined in your user profile. The good old ‘chsh’ works for
this purpose, or, if you want to get all OS X about it, change
the shell key in your NetInfo record.

The Future

Well, naturally, I can’t predict the future. But I can tell
you that a text, command line interface will be with us for
some time to come. There are new applications showing up
all the time that are CLI only. You can find MP3 players,
Gnutella clients, games, web browsers, e-mail programs and
more, that are all CLI driven. Although the Mac certainly
needs it less than other platforms, which may still be text-
driven by nature, learning the CLI is of great benefit. It helps
you troubleshoot a Mac with a boot time problem, and it can
help you automate your machine in better circumstances.

I’d be remiss if I didn’t mention that Apple’s Terminal.app
isn’t the only terminal for OS X! There are two more that I’m
aware of. GLTerm takes the speed issue head on. All display
is done through OpenGL. It also supports X .bdf fonts.
There may be cases where Terminal.app doesn’t handle
some graphics issue correctly. Chances are, GLTerm will
handle those cases just fine. Find it at
http://www.pollet.net/GLterm

The second terminal alternative is iTerm. iTerm shoots
for features. If you spend time in KDE or Gnome, check out
iTerm. It has support for bookmarks (saving session
settings), tabs, an anti-idle function and more. You can find
it at http://iterm.sourceforge.net.

The End

This is the end…of this column only (whew!)
Obviously, I’m a huge proponent of the CLI. Now, I’m not
so stubborn that I use the Terminal for everything! After
all, I am a Mac user!

PP SS
Anyone who read my 'Unix in OS X' article that appeared

in the December MacTech should note that I did find the
solution to making an OS X 10.3.4 through 10.3.7 machine

accept remote syslog connections. In your /etc/rc file, you
need to alter the syslog invocation to read:
/usr/sbin/syslogd -a 192.168.1.100/24:* -m 0
where the IP address and mask (in CIDR notation) represent
the interface to listen on.
Unfortunately, this incantation has changed a few times and
the syslog binary is out of sync with the man page. Stay
tuned for any changes to remote logging!"

When he’s not helping the clients of Radiotope,
you’ll find Ed Marczak on the grid, fighting for the users.

About The Author

MT

Sampler

®

Did you find this article helpful?

Imagine how helpful a whole
year’s worth of articles

would be!

For a one year subrscription please visit

http://store.mactech.com/sampler

M a g a z i n e

Big Nerd Ranch • Big Nerd Ranch, Inc. ..127

bruAPP Network Backup System • Tolis Group Inc. ...77

c-tree Plus • FairCom Corporation..82

Caché • InterSystems Corporation..135

Digital Rights Management • Aladdin Knowledge Systems, Inc.27

Excel Software ..122

Extreme Macs • John Wiley & Sons ...139

HVC Color Composer • Master Colors, LLC ..112

InstallerMaker, StuffIt • Allume Systems ..160

Internet Marketing Services • SharpNET Solutions, INC...97

Kerio Mail Server • Kerio Technologies, Inc. ...50

Law Offices • Sniderman ...89

MacDirectory Magazine • MacDirectory ...91

MacOSX.com • Digital Crowd, Inc...29

Maximizing Your Mac! • DevDepot...116-117

OpenBase • OpenBase International, Ltd. ..24

PDF Pen • SmileOnMyMac, LLC..7

Portlock Storage Manager • Portluck Software...56

Quark XPress • Quark Inc. ..98

RAM • Better Ram ...104,162

SmallDog Electronics• Small Dog ...70

SpiderWorks ebooks • Spiderworks ...38, 151

Test Track Pro • Seapine Software, Inc. ..5

3D Cad For Woodwork • GizmoLab Development...92

Tools • DevDepot ..76

Utilities • Utilities4Less.com...109

Valentina • Paradigma Software..153

VOIP • Data Banks Communications ..49

XSERVHOSTING • XSH Hosting LLC...61

The index on this page is provided as a service to our readers. The publisher does not assume any liability for errors or omissions.

Aladdin Knowledge Systems, Inc. ...160

Allume Systems, Inc. ...15

BetterRAM.com ...104, 162

Big Nerd Ranch, Inc...127

Data Banks Communications..49

DevDepot ..116-117

DevDepot..76

Digital Crowd, Inc. ...29

Excel Software ..122

FairCom Corporation ...82

GizmoLab Development...92

InterSystems Corporation...135

John Wiley & Sons ..139

Kerio Technologies, Inc. ...50

MacDirectory...91

Master Colors, LLC ...112

OpenBase International, Ltd. ...24

Paradigma Software..153

Portlock Software..56

Quark Inc. ..98

Seapine Software, Inc..55

SharpNET Solutions, Inc. ..97

Small Dog Electronics ..70

SmileOnMyMac, LLC ..7

Sniderman ..89

Spiderworks..38, 151

TOLIS Group, Inc. ..77

Utilities4Less.com ..109

XSH Hosting LLC..61

Advertiser/PAdvertiser/Product Indexroduct Index

